केप्लर समस्या: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{short description|Special case of the two-body problem}}
[[शास्त्रीय यांत्रिकी|चिरसम्मत यांत्रिकी]] में, '''केपलर समस्या''' [[दो-शरीर की समस्या|द्विपिंड समस्या]] की एक विशेष स्तिथि है, जिसमें दो निकाय एक [[केंद्रीय बल]] F द्वारा परस्पर क्रिया करते हैं, जो दूरी ''R'' उन दोनों के बीच के व्युत्क्रम-वर्ग नियम के रूप में शक्ति में भिन्न होता है। बल या तो आकर्षक या प्रतिकारक हो सकता है। समस्या समय के साथ दो निकायों की स्थिति या गति को उनके [[द्रव्यमान]], [[स्थिति (ज्यामिति)]] और [[वेग]] को खोजने के लिए है। चिरसम्मत यांत्रिकी का उपयोग करते हुए, छह [[कक्षीय तत्व]]ों का उपयोग करके समाधान को [[केप्लर कक्षा]] के रूप में व्यक्त किया जा सकता है।
{{About|[[प्राचीन यांत्रिकी]] में [[द्विपिंड समस्या]] की एक विशेष स्तिथि|त्रि-आयामी यूक्लिडियन अंतरिक्ष में [[वृत्त की सघन संवेष्ठन का पता लगाना]] की समस्या|केप्लर अनुमान}}


[[शास्त्रीय यांत्रिकी]] में, केपलर समस्या [[दो-शरीर की समस्या|द्विपिंड समस्या]] की एक विशेष स्तिथि है, जिसमें दो निकाय एक [[केंद्रीय बल]] F द्वारा परस्पर क्रिया करते हैं, जो दूरी ''R'' उन दोनों के बीच के व्युत्क्रम-वर्ग नियम के रूप में शक्ति में भिन्न होता है। बल या तो आकर्षक या प्रतिकारक हो सकता है। समस्या समय के साथ दो निकायों की स्थिति या गति को उनके [[द्रव्यमान]], [[स्थिति (ज्यामिति)]] और [[वेग]] को खोजने के लिए है। शास्त्रीय यांत्रिकी का उपयोग करते हुए, छह [[कक्षीय तत्व]]ों का उपयोग करके समाधान को [[केप्लर कक्षा]] के रूप में व्यक्त किया जा सकता है।
केपलर समस्या का नाम [[जोहान्स केप्लर]] के नाम पर रखा गया है, जिन्होंने केप्लर के ग्रहों की गति के नियमों को प्रस्तावित किया था (जो चिरसम्मत यांत्रिकी का हिस्सा हैं और ग्रहों की कक्षाओं के लिए समस्या को हल किया है) और उन बलों के प्रकारों की जांच की, जिनके परिणामस्वरूप उन नियमों का पालन करने वाली कक्षाएँ होंगी (कहा जाता है) "केप्लर की व्युत्क्रम समस्या")।<ref name="goldstein_1980">{{cite book | last=Goldstein | first=H. | authorlink=Herbert Goldstein | date=1980 | title=शास्त्रीय यांत्रिकी| edition=2nd | publisher=[[Addison Wesley]]}}</ref>
 
केपलर समस्या का नाम [[जोहान्स केप्लर]] के नाम पर रखा गया है, जिन्होंने केप्लर के ग्रहों की गति के नियमों को प्रस्तावित किया था (जो शास्त्रीय यांत्रिकी का हिस्सा हैं और ग्रहों की कक्षाओं के लिए समस्या को हल किया है) और उन बलों के प्रकारों की जांच की, जिनके परिणामस्वरूप उन नियमों का पालन करने वाली कक्षाएँ होंगी (कहा जाता है) "केप्लर की व्युत्क्रम समस्या")।<ref name="goldstein_1980">{{cite book | last=Goldstein | first=H. | authorlink=Herbert Goldstein | date=1980 | title=शास्त्रीय यांत्रिकी| edition=2nd | publisher=[[Addison Wesley]]}}</ref>


त्रिज्यीय कक्षाओं के लिए विशिष्ट केप्लर समस्या की चर्चा के लिए, [[रेडियल प्रक्षेपवक्र|त्रिज्यीय प्रक्षेपवक्र]] देखें। [[सामान्य सापेक्षता]] दो पिंडों की समस्या का अधिक सटीक समाधान प्रदान करती है, विशेष रूप से शक्तिशाली [[गुरुत्वाकर्षण क्षेत्र]]ों में प्रदान करती है।
त्रिज्यीय कक्षाओं के लिए विशिष्ट केप्लर समस्या की चर्चा के लिए, [[रेडियल प्रक्षेपवक्र|त्रिज्यीय प्रक्षेपवक्र]] देखें। [[सामान्य सापेक्षता]] दो पिंडों की समस्या का अधिक सटीक समाधान प्रदान करती है, विशेष रूप से शक्तिशाली [[गुरुत्वाकर्षण क्षेत्र]]ों में प्रदान करती है।


== अनुप्रयोग ==
== अनुप्रयोग ==
केपलर समस्या कई संदर्भों में उत्पन्न होती है, कुछ भौतिक विज्ञान के अतिरिक्त जो खुद केप्लर ने अध्ययन किया है। [[आकाशीय यांत्रिकी]] में केपलर समस्या महत्वपूर्ण है, क्योंकि गुरुत्वाकर्षण [[व्युत्क्रम वर्ग नियम]] का पालन करता है। उदाहरणों में एक ग्रह के चारों ओर गतिमान एक उपग्रह, अपने सूर्य के चारों ओर एक ग्रह, या एक दूसरे के चारों ओर दो द्विआधारी तारे सम्मिलित हैं। दो आवेशित कणों की गति में केप्लर समस्या भी महत्वपूर्ण है, क्योंकि कूलम्ब का [[इलेक्ट्रोस्टाटिक्स|स्थिरवैद्युतिकी]] का नियम भी व्युत्क्रम वर्ग नियम का पालन करता है। उदाहरणों में [[हाइड्रोजन]] परमाणु, [[पॉजिट्रोनियम]] और [[म्यूओनियम]] सम्मिलित हैं, जिन्होंने भौतिक सिद्धांतों के परीक्षण और प्रकृति के स्थिरांक को मापने के लिए प्रतिरूप प्रणाली के रूप में महत्वपूर्ण भूमिका निभाई है।{{Citation needed|date=August 2008}}
केपलर समस्या कई संदर्भों में उत्पन्न होती है, कुछ भौतिक विज्ञान के अतिरिक्त जो खुद केप्लर ने अध्ययन किया है। [[आकाशीय यांत्रिकी]] में केपलर समस्या महत्वपूर्ण है, क्योंकि गुरुत्वाकर्षण [[व्युत्क्रम वर्ग नियम]] का पालन करता है। उदाहरणों में एक ग्रह के चारों ओर गतिमान एक उपग्रह, अपने सूर्य के चारों ओर एक ग्रह, या एक दूसरे के चारों ओर दो द्विआधारी तारे सम्मिलित हैं। दो आवेशित कणों की गति में केप्लर समस्या भी महत्वपूर्ण है, क्योंकि कूलम्ब का [[इलेक्ट्रोस्टाटिक्स|स्थिरवैद्युतिकी]] का नियम भी व्युत्क्रम वर्ग नियम का पालन करता है। उदाहरणों में [[हाइड्रोजन]] परमाणु, [[पॉजिट्रोनियम]] और [[म्यूओनियम]] सम्मिलित हैं, जिन्होंने भौतिक सिद्धांतों के परीक्षण और प्रकृति के स्थिरांक को मापने के लिए प्रतिरूप प्रणाली के रूप में महत्वपूर्ण भूमिका निभाई है।


शास्त्रीय यांत्रिकी में केप्लर समस्या और [[सरल हार्मोनिक थरथरानवाला|सरल आवर्त दोलक]] समस्या दो सबसे मौलिक समस्याएं हैं। वे केवल दो समस्याएं हैं जो प्रारंभिक स्थितियों के हर संभव सम्मुच्चय के लिए कक्षाओं को बंद कर देती हैं, यानी, एक ही वेग (बर्ट्रेंड के प्रमेय) के साथ अपने प्रारम्भिक बिंदु पर वापस आ जाती हैं। केपलर समस्या का उपयोग प्रायः शास्त्रीय यांत्रिकी में नए तरीकों को विकसित करने के लिए किया जाता है, जैसे लैग्रैंगियन यांत्रिकी, [[हैमिल्टनियन यांत्रिकी]], हैमिल्टन-जैकोबी समीकरण और [[क्रिया-कोण निर्देशांक]] है।{{Citation needed|date=August 2008}} केप्लर समस्या सरल आवर्त दोलक सदिश को भी संरक्षित करती है, जिसे बाद में अन्य अंतःक्रियाओं को सम्मिलित करने के लिए सामान्यीकृत किया गया है। केपलर समस्या के समाधान ने वैज्ञानिकों को यह दिखाने की अनुमति दी कि ग्रहों की गति को शास्त्रीय यांत्रिकी और गुरुत्वाकर्षण द्वारा पूरी तरह से समझाया जा सकता है। न्यूटन का गुरुत्वाकर्षण का नियम; ग्रहों की गति की वैज्ञानिक व्याख्या ने ज्ञानोदय के युग में प्रवेश करने में महत्वपूर्ण भूमिका निभाई।
चिरसम्मत यांत्रिकी में केप्लर समस्या और [[सरल हार्मोनिक थरथरानवाला|सरल आवर्त दोलक]] समस्या दो सबसे मौलिक समस्याएं हैं। वे केवल दो समस्याएं हैं जो प्रारंभिक स्थितियों के हर संभव सम्मुच्चय के लिए कक्षाओं को बंद कर देती हैं, यानी, एक ही वेग (बर्ट्रेंड के प्रमेय) के साथ अपने प्रारम्भिक बिंदु पर वापस आ जाती हैं। केपलर समस्या का उपयोग प्रायः चिरसम्मत यांत्रिकी में नए तरीकों को विकसित करने के लिए किया जाता है, जैसे लैग्रैंगियन यांत्रिकी, [[हैमिल्टनियन यांत्रिकी]], हैमिल्टन-जैकोबी समीकरण और [[क्रिया-कोण निर्देशांक]] है। केप्लर समस्या सरल आवर्त दोलक सदिश को भी संरक्षित करती है, जिसे बाद में अन्य अंतःक्रियाओं को सम्मिलित करने के लिए सामान्यीकृत किया गया है। केपलर समस्या के समाधान ने वैज्ञानिकों को यह दिखाने की अनुमति दी कि ग्रहों की गति को चिरसम्मत यांत्रिकी और गुरुत्वाकर्षण द्वारा पूरी तरह से समझाया जा सकता है। न्यूटन का गुरुत्वाकर्षण का नियम; ग्रहों की गति की वैज्ञानिक व्याख्या ने ज्ञानोदय के युग में प्रवेश करने में महत्वपूर्ण भूमिका निभाई।


== गणितीय परिभाषा ==
== गणितीय परिभाषा ==

Latest revision as of 16:33, 6 November 2023

चिरसम्मत यांत्रिकी में, केपलर समस्या द्विपिंड समस्या की एक विशेष स्तिथि है, जिसमें दो निकाय एक केंद्रीय बल F द्वारा परस्पर क्रिया करते हैं, जो दूरी R उन दोनों के बीच के व्युत्क्रम-वर्ग नियम के रूप में शक्ति में भिन्न होता है। बल या तो आकर्षक या प्रतिकारक हो सकता है। समस्या समय के साथ दो निकायों की स्थिति या गति को उनके द्रव्यमान, स्थिति (ज्यामिति) और वेग को खोजने के लिए है। चिरसम्मत यांत्रिकी का उपयोग करते हुए, छह कक्षीय तत्वों का उपयोग करके समाधान को केप्लर कक्षा के रूप में व्यक्त किया जा सकता है।

केपलर समस्या का नाम जोहान्स केप्लर के नाम पर रखा गया है, जिन्होंने केप्लर के ग्रहों की गति के नियमों को प्रस्तावित किया था (जो चिरसम्मत यांत्रिकी का हिस्सा हैं और ग्रहों की कक्षाओं के लिए समस्या को हल किया है) और उन बलों के प्रकारों की जांच की, जिनके परिणामस्वरूप उन नियमों का पालन करने वाली कक्षाएँ होंगी (कहा जाता है) "केप्लर की व्युत्क्रम समस्या")।[1]

त्रिज्यीय कक्षाओं के लिए विशिष्ट केप्लर समस्या की चर्चा के लिए, त्रिज्यीय प्रक्षेपवक्र देखें। सामान्य सापेक्षता दो पिंडों की समस्या का अधिक सटीक समाधान प्रदान करती है, विशेष रूप से शक्तिशाली गुरुत्वाकर्षण क्षेत्रों में प्रदान करती है।

अनुप्रयोग

केपलर समस्या कई संदर्भों में उत्पन्न होती है, कुछ भौतिक विज्ञान के अतिरिक्त जो खुद केप्लर ने अध्ययन किया है। आकाशीय यांत्रिकी में केपलर समस्या महत्वपूर्ण है, क्योंकि गुरुत्वाकर्षण व्युत्क्रम वर्ग नियम का पालन करता है। उदाहरणों में एक ग्रह के चारों ओर गतिमान एक उपग्रह, अपने सूर्य के चारों ओर एक ग्रह, या एक दूसरे के चारों ओर दो द्विआधारी तारे सम्मिलित हैं। दो आवेशित कणों की गति में केप्लर समस्या भी महत्वपूर्ण है, क्योंकि कूलम्ब का स्थिरवैद्युतिकी का नियम भी व्युत्क्रम वर्ग नियम का पालन करता है। उदाहरणों में हाइड्रोजन परमाणु, पॉजिट्रोनियम और म्यूओनियम सम्मिलित हैं, जिन्होंने भौतिक सिद्धांतों के परीक्षण और प्रकृति के स्थिरांक को मापने के लिए प्रतिरूप प्रणाली के रूप में महत्वपूर्ण भूमिका निभाई है।

चिरसम्मत यांत्रिकी में केप्लर समस्या और सरल आवर्त दोलक समस्या दो सबसे मौलिक समस्याएं हैं। वे केवल दो समस्याएं हैं जो प्रारंभिक स्थितियों के हर संभव सम्मुच्चय के लिए कक्षाओं को बंद कर देती हैं, यानी, एक ही वेग (बर्ट्रेंड के प्रमेय) के साथ अपने प्रारम्भिक बिंदु पर वापस आ जाती हैं। केपलर समस्या का उपयोग प्रायः चिरसम्मत यांत्रिकी में नए तरीकों को विकसित करने के लिए किया जाता है, जैसे लैग्रैंगियन यांत्रिकी, हैमिल्टनियन यांत्रिकी, हैमिल्टन-जैकोबी समीकरण और क्रिया-कोण निर्देशांक है। केप्लर समस्या सरल आवर्त दोलक सदिश को भी संरक्षित करती है, जिसे बाद में अन्य अंतःक्रियाओं को सम्मिलित करने के लिए सामान्यीकृत किया गया है। केपलर समस्या के समाधान ने वैज्ञानिकों को यह दिखाने की अनुमति दी कि ग्रहों की गति को चिरसम्मत यांत्रिकी और गुरुत्वाकर्षण द्वारा पूरी तरह से समझाया जा सकता है। न्यूटन का गुरुत्वाकर्षण का नियम; ग्रहों की गति की वैज्ञानिक व्याख्या ने ज्ञानोदय के युग में प्रवेश करने में महत्वपूर्ण भूमिका निभाई।

गणितीय परिभाषा

दो वस्तुओं के बीच केंद्रीय बल F उनके बीच की दूरी r के व्युत्क्रम वर्ग नियम के रूप में भिन्न होता है:

जहाँ k एक नियतांक है और उनके बीच की रेखा के साथ इकाई सदिश का प्रतिनिधित्व करता है।[2] बल या तो आकर्षक (k<0) या प्रतिकारक (k>0) हो सकता है। संबंधित अदिश क्षमता है:


केपलर समस्या का समाधान

केंद्रीय विभव में गतिशील द्रव्यमान के कण की त्रिज्या के लिए गति का समीकरण लाग्रेंज के समीकरण द्वारा दिया गया है

और कोणीय गति संरक्षित है। उदाहरण के लिए, बाईं ओर का पहला पद वृत्ताकार कक्षाओं के लिए शून्य है, और अंदर की ओर लगाया गया बल आशा के अनुसार अभिकेन्द्रीय बल के बराबर होता है।

यदि L शून्य नहीं है तो कोणीय संवेग की परिभाषा स्वतंत्र चर को से में बदलने की अनुमति देती है

गति का नया समीकरण दे रहा है जो समय से स्वतंत्र है

प्रथम पद का विस्तार है

चरों में परिवर्तन करने पर यह समीकरण अर्धरेखीय हो जाता है और दोनों पक्षों को से गुणा करने पर निम्न प्राप्त होता है

प्रतिस्थापन और पुनर्व्यवस्था के बाद:

गुरुत्वाकर्षण या स्थिरवैद्युत जैसे व्युत्क्रम-वर्ग बल नियम के लिए, क्षमता लिखी जा सकती है

कक्षा सामान्य समीकरण से प्राप्त किया जा सकता है

जिसका हल स्थिर है साथ ही एक साधारण ज्यावक्र

जहाँ (विलक्षणता) और (चरण ऑफ़सेट) एकीकरण के स्थिरांक हैं।

यह एक शंकु खंड के लिए सामान्य सूत्र है जिसका मूल बिंदु पर एक केंद्रबिन्दु है; चक्र से मेल खाता है, दीर्घवृत्त से मेल खाता है, एक परवलय से मेल खाता है, और एक अतिशयोक्ति से मेल खाता है। विलक्षणता कुल ऊर्जा से संबंधित है (cf. लाप्लास-रेंज-लेन्ज़ सदिश)

इन सूत्रों की तुलना करने से पता चलता है कि एक दीर्घवृत्त से मेल खाता है (सभी समाधान जो कक्षा (गतिकी) हैं वे दीर्घवृत्त हैं), एक परवलय से मेल खाता है, और एक अतिपरवलय से मेल खाता है। विशेष रूप से, पूरी तरह से वृत्ताकार कक्षाओं के लिए (केंद्रीय बल केन्द्रापसारक बल के बराबर है, जो किसी दिए गए वृत्ताकार त्रिज्या के लिए आवश्यक कोणीय वेग निर्धारित करता है)।

प्रतिकारक बल (k > 0) के लिए केवल e > 1 लागू होता है।

यह भी देखें

संदर्भ

  1. Goldstein, H. (1980). शास्त्रीय यांत्रिकी (2nd ed.). Addison Wesley.
  2. Arnold, VI (1989). Mathematical Methods of Classical Mechanics, 2nd ed. New York: Springer-Verlag. p. 38. ISBN 978-0-387-96890-2.