क्वांटम जंप: Difference between revisions
m (Indicwiki moved page क्वांटम छलांग to क्वांटम जंप without leaving a redirect) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 42: | Line 42: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 09/08/2023]] | [[Category:Created On 09/08/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 11:42, 24 November 2023
क्वांटम जंप क्वांटम प्रणाली (परमाणु, अणु, परमाणु नाभिक) का क्वांटम अवस्था से दूसरे, ऊर्जा स्तर से दूसरे ऊर्जा स्तर तक एकाएक अचानक संक्रमण होता है। जब यह प्रणाली ऊर्जा को अवशोषित करती है, तो उच्च ऊर्जा स्तर (उत्तेजित अवस्था) में परिवर्तन होता है; इस प्रकार से जब प्रणाली ऊर्जा खो देती है, तो निम्न ऊर्जा स्तर पर परिवर्तन होता है।
अतः इस अवधारणा को नील्स बोह्र ने अपने 1913 बोह्र मॉडल में प्रस्तुत किया था।
क्वांटम जंप ऐसी घटना है जो क्वांटम प्रणालियों की विशेषता है और उन्हें मौलिक प्रणालियों से पृथक करती है, जहां कोई भी परिवर्तन धीरे-धीरे किया जाता है। क्वांटम यांत्रिकी में, ऐसी जंपें माप के समय क्वांटम-मैकेनिकल प्रणाली के गैर-एकात्मक विकास से जुड़ी होती हैं।
चूंकि क्वांटम जंप के साथ फोटॉन का उत्सर्जन या अवशोषण भी हो सकता है; क्वांटम जंप के समय ऊर्जा हस्तांतरण गैर-विकिरणीय प्रतिध्वनित ऊर्जा हस्तांतरण या अन्य कणों के साथ टकराव में भी हो सकता है।
इस प्रकार से आधुनिक भौतिकी में, क्वांटम जंप की अवधारणा का उपयोग संभवतः ही कभी किया जाता है; नियम के रूप में वैज्ञानिक क्वांटम अवस्थाओं या ऊर्जा स्तरों के मध्य परिवर्तन पर विचार करते हैं।
परमाणु इलेक्ट्रॉन परिवर्तन
इस प्रकार से परमाणु इलेक्ट्रॉन परिवर्तन फोटॉन के उत्सर्जन या अवशोषण का कारण बनता है। उनके आँकड़े पॉइसन वितरण हैं, और जंप के मध्य का समय घातीय वितरण है।[1] अवमंदन समय स्थिरांक (जो नैनोसेकंड से लेकर कुछ सेकंड तक होता है) प्राकृतिक, दबाव और क्षेत्र स्पेक्ट्रल रेखा या रेखा विस्तार और परिवर्तन से संबंधित है। जिन अवस्थाओं के मध्य इलेक्ट्रॉन जम्प करता है, उनका ऊर्जा पृथक्करण जितना बड़ा होता है, उत्सर्जित फोटॉन की तरंग दैर्ध्य उतनी ही कम होती है।
आयन जालक में, इलेक्ट्रॉन परिवर्तन को चलाने के लिए दो पृथक-पृथक आवृत्तियों पर विकिरण के साथ फंसे हुए आयन को संबोधित करके क्वांटम जंप को सीधे देखा जा सकता है।[2] उत्साहित होने के लिए सशक्त और अशक्त परिवर्तन की आवश्यकता होती है (दाईं ओर के चित्र में क्रमशः 12 और 13 दर्शाया गया है)। इलेक्ट्रॉन ऊर्जा स्तर, , का जीवनकाल छोटा होता है, 2 जो आवृत्ति 12 पर फोटॉन के निरंतर उत्सर्जन की अनुमति देता है जिसे एक कैमरा और/या फोटोमल्टीप्लायर ट्यूब द्वारा एकत्र किया जा सकता है। अवस्था का जीवनकाल 3 अपेक्षाकृत लंबा होता है जो फोटॉन उत्सर्जन में अवरोध का कारण बनता है क्योंकि इलेक्ट्रॉन 13 आवृत्ति के साथ प्रकाश के अनुप्रयोग के माध्यम से अवस्था में आश्रयित हो जाता है। आयन का अंधेरा होना क्वांटम जम्प का प्रत्यक्ष अवलोकन है।
आणविक इलेक्ट्रॉनिक परिवर्तन
संदर्भ
- ↑ Deléglise, S. "प्रकाश की क्वांटम छलाँग का अवलोकन करना" (PDF). Archived from the original (PDF) on November 7, 2010. Retrieved September 17, 2010.
- ↑ Foot, C. J. (2005). परमाणु भौतिकी. Oxford: Oxford University Press. ISBN 978-0-19-152314-4. OCLC 181750270.
स्रोत
- क्या क्वांटम जंप हैं?
- «कोई क्वांटम जंप नहीं है, न ही कोई कण हैं!» एच. डी. जेह द्वारा, भौतिकी पत्र 'ए172', 189 (1993)।
- Gleick, James Gleick (October 21, 1986). "भौतिकविदों को आख़िरकार क्वांटम छलांग देखने को मिली". New York Times. New York City. Retrieved 2013-08-23.
- बोह्र के परमाणु मॉडल में क्वांटम जंप प्रारंभिक क्वांटम भौतिकी
- क्वांटम जंप तकनीकी शब्द का संदिग्ध करियर (ZEIT 1996)
- एम.बी. प्लेनियो और पी.एल. नाइट द क्वांटम जंप अप्रोच टू डिसिपेटिव डायनेमिक्स इन क्वांटम ऑप्टिक्स, रेव. मॉड. फिजिक्स भी देखें। '70' 101-144 (1998)। (क्वांटम जंप का उपयोग करके खुली प्रणालियों की गतिशीलता का विवरण)
- क्वांटम जंप का इतिहास, सोमरफेल्ड और आइंस्टीन 1911