पंचभुज संख्या प्रमेय: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Relates the product and series representations of the Euler function Π(1-x^n)}} {{pp-sock|small=yes}} गणित में, पंचकोणीय स...")
 
(No difference)

Revision as of 16:24, 22 November 2023

Template:Pp-sock गणित में, पंचकोणीय संख्या प्रमेय, मूल रूप से लियोनहार्ड यूलर के कारण, यूलर फ़ंक्शन के उत्पाद और श्रृंखला प्रतिनिधित्व से संबंधित है। यह प्रकट करता है की

दूसरे शब्दों में,

दायीं ओर के घातांक 1, 2, 5, 7, 12, ... सूत्र द्वारा दिए गए हैं gk = k(3k − 1)/2 k = 1, −1, 2, −2, 3, ... के लिए और (सामान्यीकृत) पंचकोणीय संख्याएं कहलाती हैं (sequence A001318 in the OEIS). (स्थिर पद 1 से मेल खाता है .) यह अभिसरण शक्ति श्रृंखला की पहचान के रूप में कार्य करता है , और औपचारिक शक्ति श्रृंखला की पहचान के रूप में भी।

इस फॉर्मूले की एक खास विशेषता उत्पाद के विस्तार में रद्दीकरण की मात्रा है।

विभाजन के साथ संबंध

पहचान गणना के लिए एक पुनरावृत्ति संबंध का तात्पर्य करती है , n के विभाजन की संख्या (संख्या सिद्धांत):

या अधिक औपचारिक रूप से,

जहां योग सभी गैर-शून्य पूर्णांक k (धनात्मक और नकारात्मक) से अधिक है क हैवेंसामान्यीकृत पंचकोणीय संख्या. तब से सभी के लिए , दाईं ओर स्पष्ट रूप से अनंत श्रृंखला में केवल सीमित रूप से कई गैर-शून्य पद हैं, जो पी (एन) की कुशल गणना को सक्षम करते हैं।

फ्रैंकलिन का विशेषण प्रमाण

प्रमेय की व्याख्या पूर्णांक विभाजन के संदर्भ में साहचर्य से की जा सकती है। विशेष रूप से, बायीं ओर n के विभाजनों की संख्या को एक सम संख्या में अलग-अलग हिस्सों में से घटाकर n के विभाजनों की संख्या को विषम संख्या में अलग-अलग हिस्सों में विभाजित करने के लिए एक जनरेटिंग फ़ंक्शन है। अलग-अलग भागों की सम संख्या में n का प्रत्येक विभाजन x के गुणांक में +1 का योगदान देता हैn; अलग-अलग भागों की विषम संख्या में प्रत्येक विभाजन -1 का योगदान देता है। (विभाजन फलन (संख्या सिद्धांत) पर लेख इस प्रकार के सृजन फलन पर चर्चा करता है।)

उदाहरण के लिए, x का गुणांक5 +1 है क्योंकि 5 को सम संख्या में अलग-अलग हिस्सों (4+1 और 3+2) में विभाजित करने के दो तरीके हैं, लेकिन विषम संख्या में अलग-अलग हिस्सों के लिए ऐसा करने का केवल एक ही तरीका है (एक) -भाग विभाजन 5). हालाँकि, x का गुणांक12-1 है क्योंकि 12 को सम संख्या में अलग-अलग भागों में विभाजित करने के सात तरीके हैं, लेकिन 12 को विषम संख्या में अलग-अलग हिस्सों में विभाजित करने के आठ तरीके हैं, और 7 - 8 = −1।

यह व्याख्या सुमेलित पदों (इनवोल्यूशन (गणित) विधि) के जोड़े को रद्द करके पहचान के प्रमाण की ओर ले जाती है।[1] अलग-अलग भागों में n के किसी भी विभाजन के फेरर्स आरेख पर विचार करें। उदाहरण के लिए, नीचे दिया गया चित्र n = 20 और विभाजन 20 = 7 + 6 + 4 + 3 दिखाता है।

******हे
*****हे
****
***मान लीजिए m आरेख की सबसे छोटी पंक्ति में तत्वों की संख्या है (उपरोक्त उदाहरण में m = 3)। मान लीजिए s आरेख की सबसे दाहिनी 45 डिग्री रेखा में तत्वों की संख्या है (s = ऊपर लाल रंग में 2 बिंदु, क्योंकि 7−1 = 6, लेकिन 6−1 > 4)। यदि m > s, तो सबसे दाहिनी 45-डिग्री रेखा लें और इसे एक नई पंक्ति बनाने के लिए ले जाएँ, जैसा कि नीचे दिए गए मिलान आरेख में है।
******
*****
****
***
हेहेयदि m ≤ s (जैसा कि हमारे नवगठित आरेख में है जहां m = 2, s = 5) तो हम एक नई 45 डिग्री रेखा बनाने के लिए नीचे की पंक्ति को स्थानांतरित करके प्रक्रिया को उलट सकते हैं (पहली m पंक्तियों में से प्रत्येक में 1 तत्व जोड़कर), हमें पहले आरेख पर वापस ले जा रहे हैं।

थोड़ा विचार करने से पता चलता है कि यह प्रक्रिया हमेशा पंक्तियों की संख्या की समता को बदलती है, और प्रक्रिया को दो बार लागू करने से हम मूल आरेख पर वापस आ जाते हैं। यह हमें x में 1 और −1 का योगदान देने वाले फेरर्स आरेखों को जोड़ने में सक्षम बनाता हैnश्रृंखला का पद, जिसके परिणामस्वरूप x के लिए शुद्ध गुणांक 0 हैn. यह प्रत्येक पद के लिए लागू होता है, सिवाय इसके कि जब प्रक्रिया को प्रत्येक फेरर्स आरेख पर n बिंदुओं के साथ निष्पादित नहीं किया जा सकता है। ऐसे दो मामले हैं:

1) m = s और सबसे दाहिना विकर्ण और निचली पंक्ति मिलती है। उदाहरण के लिए,

*****
****
***ऑपरेशन करने का प्रयास हमें निम्न तक ले जाएगा:
******
*****
*जो पंक्तियों की संख्या की समता को बदलने में विफल रहता है, और इस अर्थ में प्रतिवर्ती नहीं है कि ऑपरेशन को दोबारा करने से हमें मूल आरेख पर वापस नहीं ले जाया जाता है। यदि मूल आरेख की अंतिम पंक्ति में m तत्व हैं, तो

जहां नए सूचकांक k को m के बराबर लिया जाता है। ध्यान दें कि इस विभाजन से जुड़ा चिह्न (−1) हैs, जो निर्माण के अनुसार (−1) के बराबर है और (−1).

2) m = s+1 और सबसे दाहिना विकर्ण और निचली पंक्ति मिलती है। उदाहरण के लिए,

******
*****
****हमारे ऑपरेशन के लिए हमें दाएँ विकर्ण को निचली पंक्ति में ले जाने की आवश्यकता है, लेकिन इससे तीन तत्वों की दो पंक्तियाँ बन जाएँगी, जो वर्जित हैं क्योंकि हम विभाजनों को अलग-अलग हिस्सों में गिन रहे हैं। यह पिछला मामला है लेकिन एक पंक्ति कम है, इसलिए

जहां हम k = 1−m (एक ऋणात्मक पूर्णांक) लेते हैं। यहां संबंधित चिह्न (−1) हैs s = m−1 = −k के साथ, इसलिए चिह्न फिर से (−1) है.

संक्षेप में, यह दिखाया गया है कि अलग-अलग हिस्सों की एक सम संख्या और अलग-अलग हिस्सों की एक विषम संख्या में विभाजन एक-दूसरे को बिल्कुल रद्द कर देते हैं, जिससे शून्य शब्द 0x उत्पन्न होते हैं।n, सिवाय इसके कि यदि n एक सामान्यीकृत पंचकोणीय संख्या है , जिस स्थिति में वास्तव में एक फेरर्स आरेख बचा हुआ है, जो एक शब्द (−1) का निर्माण करता हैxn. लेकिन यह वही है जो पहचान का दाहिना पक्ष कहता है कि घटित होना चाहिए, इसलिए हम समाप्त हो गए हैं।

विभाजन पुनरावृत्ति

हम विभाजन (संख्या सिद्धांत) का उपयोग करके उपरोक्त प्रमाण को दोबारा लिख ​​सकते हैं, जिसे हम इस प्रकार दर्शाते हैं: , कहाँ . n के विभाजनों की संख्या विभाजन फ़ंक्शन p(n) है जिसमें जनरेटिंग फ़ंक्शन है:

ध्यान दें कि यह हमारी पहचान के बायीं ओर उत्पाद का व्युत्क्रम है:

आइए हम अपने उत्पाद के विस्तार को इससे निरूपित करें , ताकि

.

बाएँ पक्ष को गुणा करने और दोनों पक्षों के गुणांकों को बराबर करने पर, हमें प्राप्त होता है ए0पी(0) = 1 और सभी के लिए . यह एक पुनरावृत्ति संबंध देता है जो पी(एन) को ए के संदर्भ में परिभाषित करता हैn, और इसके विपरीत a के लिए पुनरावृत्तिnपी(एन) के संदर्भ में। इस प्रकार, हमारा वांछित परिणाम:

के लिए पहचान के बराबर है कहाँ और i का दायरा ऐसे सभी पूर्णांकों पर है (इस श्रेणी में सकारात्मक और नकारात्मक दोनों शामिल हैं, ताकि दोनों प्रकार की सामान्यीकृत पंचकोणीय संख्याओं का उपयोग किया जा सके)। बदले में इसका अर्थ है:

.

विभाजनों के सेट के संदर्भ में, यह कहने के बराबर है कि निम्नलिखित सेट समान कार्डिनलिटी के हैं:

और ,

कहाँ के सभी विभाजनों के समुच्चय को दर्शाता है . जो कुछ बचा है वह एक सेट से दूसरे सेट पर आपत्ति देना है, जो एक्स से वाई तक फ़ंक्शन φ द्वारा पूरा किया जाता है जो विभाजन को मैप करता है विभाजन के लिए द्वारा परिभाषित:

यह एक इनवोल्यूशन (एक स्व-उलटा मानचित्रण) है, और इस प्रकार विशेष रूप से एक आक्षेप है, जो हमारे दावे और पहचान को साबित करता है।


यह भी देखें

पंचकोणीय संख्या प्रमेय जैकोबी ट्रिपल उत्पाद के एक विशेष मामले के रूप में होता है।

क्यू श्रृंखला ़ यूलर के फ़ंक्शन को सामान्यीकृत करती है, जो डेडेकाइंड और फ़ंक्शन से निकटता से संबंधित है, और मॉड्यूलर रूपों के अध्ययन में होता है। यूलर फ़ंक्शन का कॉम्प्लेक्स_नंबर#मॉड्यूलस_और_तर्क (चित्र के लिए वहां देखें) भग्न मॉड्यूलर समूह समरूपता दिखाता है और मैंडेलब्रॉट सेट के इंटीरियर के अध्ययन में होता है।

संदर्भ

  1. Franklin, F. (1881). "Sur le developpement du produit (1-x)(1-x^2)(1-x^3) ...". Contes Rendues Acad. Paris Ser A. 92: 448–450.


बाहरी संबंध