अतिपरवलयिक सर्पिल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Spiral asymptotic to a line}} | {{Short description|Spiral asymptotic to a line}}'''अतिपरवलयिक सर्पिल''' एक [[समतल वक्र]] है, जिसे समीकरण <math>r=\frac{a}{\varphi}</math> द्वारा ध्रुवीय निर्देशांक में वर्णित किया जा सकता है। सामान्यतः इसे [[आर्किमिडीयन सर्पिल|आर्कमेडीज सर्पिल (प्रसिद्ध यूनानी गणितज्ञ)]] के वृत्त व्युत्क्रम द्वारा उत्पन्न किया जा सकता है। इसलिए इसे लघुगणक सर्पिल भी कहा जाता है।<ref>{{citation|title=An Elementary Treatise on Analytic Geometry: Embracing Plane Geometry and an Introduction to Geometry of Three Dimensions|first=Edward Albert|last=Bowser|edition=4th|publisher=D. Van Nostrand|year=1880|page=232|url=https://books.google.com/books?id=g3cLAAAAYAAJ&pg=PA232}}</ref><ref name="lawrence2">{{citation|title=A Catalog of Special Plane Curves|series=Dover Books on Mathematics|first=J. Dennis|last=Lawrence|publisher=Courier Dover Publications|year=2013|isbn=9780486167664|page=186|url=https://books.google.com/books?id=9rrFAgAAQBAJ&pg=PA186}}.</ref> अतिपरवलयिक सर्पिल समतल वक्र की धुरी के ऊपर के भाग से संबधित सर्पिल का एक प्रकार है जिसका उपयोग अतिपरवलयिक सर्पिल के प्रारम्भिक निर्देशांकों को व्यवस्थित करने के लिए किया जाता है। इसका ध्रुवीय कोण लघुगणकीय सर्पिलों के स्थिर कोणों या आर्किमिडीयन सर्पिलों के न्यूनतम कोणों के विपरीत इसके केंद्र की दूरी के साथ बढ़ता है जैसे-जैसे यह वक्र चौड़ा होता जाता है यह एक स्पर्शोन्मुख रेखा के निकट हो जाता है।<ref>{{citation | ||
| last = R. C. | first = Jr. Kennicutt | | last = R. C. | first = Jr. Kennicutt | ||
| bibcode = 1981AJ.....86.1847K | | bibcode = 1981AJ.....86.1847K | ||
Line 21: | Line 19: | ||
| volume = 436| doi-access = free | | volume = 436| doi-access = free | ||
}}</ref> | }}</ref> | ||
[[File:Gustavino Spiral.jpg|thumb|260x260px|सेंट जॉन द डिवाइन के कैथेड्रल में एक सर्पिल में कई पेचदार वक्र इसकी छवि में अतिपरवलयिक सर्पिल की तरह दिखते हैं।]] | |||
दोनों निर्देशांकों के बीच वही संबंध है जो कार्तीय निर्देशांक के लिए एक अतिपरवलय का वर्णन करता है। इसे आर्किमिडीयन सर्पिल के वृत्त व्युत्क्रमण द्वारा भी उत्पन्न किया जा सकता है इसलिए इसे व्युत्क्रमण सर्पिल भी कहा जाता है। | दोनों निर्देशांकों के बीच वही संबंध है जो कार्तीय निर्देशांक के लिए एक अतिपरवलय का वर्णन करता है। इसे आर्किमिडीयन सर्पिल के वृत्त व्युत्क्रमण द्वारा भी उत्पन्न किया जा सकता है इसलिए इसे व्युत्क्रमण सर्पिल भी कहा जाता है। | ||
Line 30: | Line 28: | ||
आर्किमिडीयन और लघुगणकीय सर्पिल के साथ घूर्णन की धारणा पर मनोवैज्ञानिक प्रयोगों में अतिपरवलयिक सर्पिल का उपयोग किया गया है। | आर्किमिडीयन और लघुगणकीय सर्पिल के साथ घूर्णन की धारणा पर मनोवैज्ञानिक प्रयोगों में अतिपरवलयिक सर्पिल का उपयोग किया गया है। | ||
[[File:Men 200 m French Athletics Championships 2013 t161532.jpg|thumb|300x300px|14 जुलाई 2013 को पेरिस के स्टेड चार्लीटी में फ्रेंच एथलेटिक्स चैंपियनशिप 2013 के समय पुरुषों की 200 मीटर दौड़ की पहली श्रृंखला।]] | |||
== कार्तीय निर्देशांक == | == कार्तीय निर्देशांक == | ||
ध्रुवीय समीकरण के साथ अतिपरवलयिक सर्पिल <math>r=\frac a \varphi ,\quad \varphi \ne 0</math> कार्टेशियन निर्देशांक {{math|(''x'' {{=}} ''r'' cos ''φ'', ''y'' {{=}} ''r'' sin ''φ'')}} द्वारा दर्शाया जा सकता है। मानक ध्रुवीय समीकरण से कार्टेशियन रूपांतरणों को प्रयुक्त करके कार्टेशियन निर्देशांकों को {{math|(''x'' {{=}} ''r'' cos ''φ'', ''y'' {{=}} ''r'' sin ''φ'')}} द्वारा दर्शाया जा सकता है। इस वक्र के कार्टेशियन निर्देशांक के लिए एक पैरामीट्रिक समीकरण के निर्देशांक के अतिरिक्त पैरामीटर के रूप में माना जा सकता है: | ध्रुवीय समीकरण के साथ अतिपरवलयिक सर्पिल <math>r=\frac a \varphi ,\quad \varphi \ne 0</math> कार्टेशियन निर्देशांक {{math|(''x'' {{=}} ''r'' cos ''φ'', ''y'' {{=}} ''r'' sin ''φ'')}} द्वारा दर्शाया जा सकता है। मानक ध्रुवीय समीकरण से कार्टेशियन रूपांतरणों को प्रयुक्त करके कार्टेशियन निर्देशांकों को {{math|(''x'' {{=}} ''r'' cos ''φ'', ''y'' {{=}} ''r'' sin ''φ'')}} द्वारा दर्शाया जा सकता है। इस वक्र के कार्टेशियन निर्देशांक के लिए एक पैरामीट्रिक समीकरण के निर्देशांक के अतिरिक्त पैरामीटर के रूप में माना जा सकता है: | ||
:<math>x = a \frac{\cos \varphi} \varphi, \qquad y = a \frac{\sin \varphi} \varphi ,\quad \varphi \ne 0.</math> | :[[File:NGC 4622HSTFull.jpg|thumb|242x242px|एनजीसी 4622 एचएसटीफुल]]<math>x = a \frac{\cos \varphi} \varphi, \qquad y = a \frac{\sin \varphi} \varphi ,\quad \varphi \ne 0.</math> | ||
अतिपरवलयिक सर्पिल एक ट्रान्सेंडैंटल (पारलौकिक) वक्र है, जिसका अर्थ है कि इसे इसके कार्टेशियन निर्देशांक के बहुपद समीकरण से परिभाषित नहीं किया जा सकता है। हालाँकि कोई इन निर्देशांकों में एक त्रिकोणमितीय समीकरण {{mvar|rφ}} प्राप्त कर सकता है। इसके ध्रुवीय परिभाषित समीकरण को {{mvar|xy}} के रूप में प्रारंभ करके और इसके चरों को कार्टेशियन निर्देशांक के अनुसार ध्रुवीय रूपांतरण {{math|''φ'' → ±∞}} और {{math|''φ'' → ±0}} मे | [[File:Corinthian capital, AM of Epidauros, 202545.jpg|thumb|एपिडॉरस के पुरातत्व संग्रहालय में कोरिंथियन की राजधानी पर वोल्ट्स]] | ||
: <math>\frac{y}{x}=\tan\left(\frac{a}{\sqrt{x^2+y^2}}\right) . </math> | अतिपरवलयिक सर्पिल एक ट्रान्सेंडैंटल (पारलौकिक) वक्र है, जिसका अर्थ है कि इसे इसके कार्टेशियन निर्देशांक के बहुपद समीकरण से परिभाषित नहीं किया जा सकता है। हालाँकि कोई इन निर्देशांकों में एक त्रिकोणमितीय समीकरण {{mvar|rφ}} प्राप्त कर सकता है। इसके ध्रुवीय परिभाषित समीकरण को {{mvar|xy}} के रूप में प्रारंभ करके और इसके चरों को कार्टेशियन निर्देशांक के अनुसार ध्रुवीय रूपांतरण {{math|''φ'' → ±∞}} और {{math|''φ'' → ±0}} मे प्रतिस्थापित करके प्राप्त किया जा सकता है: | ||
: [[File:Hyperbol-spiral-2.svg|thumb|upright=1.2|अतिपरवलयिक सर्पिल के निर्देशांक]]<math>\frac{y}{x}=\tan\left(\frac{a}{\sqrt{x^2+y^2}}\right) . </math> | |||
==ज्यामितीय गुण == | ==ज्यामितीय गुण == | ||
Line 44: | Line 44: | ||
वक्र में समीकरण {{math|''y'' {{=}} ''a''}} के साथ एक स्पर्शोन्मुख रेखा है। | वक्र में समीकरण {{math|''y'' {{=}} ''a''}} के साथ एक स्पर्शोन्मुख रेखा है। | ||
=== ध्रुवीय समीकरण === | === ध्रुवीय समीकरण === | ||
[[File:Sektor-steigung-pk-def.svg|thumb| | [[File:Sektor-steigung-pk-def.svg|thumb|वृत्तखंड (नीला) और ध्रुवीय कोण {{mvar|α}} की परिभाषा ]]किसी भी वक्र की स्पर्शरेखा और उसके संगत ध्रुवीय वृत्त की स्पर्शरेखा के बीच ध्रुवीय कोण {{mvar|α}} के लिए {{math|tan ''α'' {{=}} {{sfrac|''r''′|''r''}}}} अतिपरवलयिक सर्पिल {{mvar|α}} के लिए ध्रुवीय कोण है: | ||
: <math>\tan\alpha=-\frac{1}{\varphi}.</math> | : <math>\tan\alpha=-\frac{1}{\varphi}.</math> | ||
=== वक्रता === | === वक्रता === | ||
Line 50: | Line 50: | ||
ध्रुवीय समीकरण {{math|''r'' {{=}} ''r''(''φ'')}} वाले किसी भी वक्र की वक्रता होती है: | ध्रुवीय समीकरण {{math|''r'' {{=}} ''r''(''φ'')}} वाले किसी भी वक्र की वक्रता होती है: | ||
:<math>\kappa = \frac{r^2 + 2(r')^2 - r\, r''}{\left(r^2+(r')^2\right)^\frac32} .</math> | :<math>\kappa = \frac{r^2 + 2(r')^2 - r\, r''}{\left(r^2+(r')^2\right)^\frac32} .</math> | ||
समीकरण {{math|''r'' {{=}} {{sfrac|''a''|''φ''}}}} और इसके व्युत्पन्न | समीकरण {{math|''r'' {{=}} {{sfrac|''a''|''φ''}}}} और इसके व्युत्पन्न {{math|''r''′ {{=}} −{{sfrac|''a''|''φ''<sup>2</sup>}}}} और {{math|''r''″ {{=}} {{sfrac|2''a''|''φ''<sup>3</sup>}}}} से एक अतिपरवलयिक सर्पिल की वक्रता प्राप्त होती है'':'' | ||
:<math>\kappa(\varphi) = \frac{\varphi^4}{a \left(\varphi^2 + 1\right)^\frac32}.</math> | :<math>\kappa(\varphi) = \frac{\varphi^4}{a \left(\varphi^2 + 1\right)^\frac32}.</math> | ||
=== व्युत्क्रम निर्देशांक === | === व्युत्क्रम निर्देशांक === | ||
[[File:Hyperbol-spiral-inv-arch-spir.svg|thumb| | [[File:Hyperbol-spiral-inv-arch-spir.svg|thumb|वृत्त व्युत्क्रम के साथ एक आर्किमिडीयन सर्पिल (हरा) की छवि के रूप में अतिपरवलयिक सर्पिल।]][[File:Hyperbol-spiral-1.svg|thumb|{{math|''φ'' > 0}} के लिए अतिपरवलयिक सर्पिल |284x284px]]ध्रुवीय निर्देशांक {{math|(''r'', ''φ'') ↦ ({{sfrac|1|''r''}}, ''φ'')}} में वृत्त व्युत्क्रम का सरल विवरण है। इस परिवर्तन के अंतर्गत एक आर्किमिडीयन सर्पिल {{math|''r'' {{=}} {{sfrac|''φ''|''a''}}}} के समीकरण {{math|''r'' {{=}} {{sfrac|''a''|''φ''}}}} के साथ अतिपरवलयिक सर्पिल है। दोनों वक्र इकाई वृत्त पर ध्रुवीय निर्देशांक {{math|''φ'' {{=}} ''a''}} वाले बिंदु पर प्रतिच्छेद करते हैं। आर्किमिडीज़ सर्पिल दोलन चक्र {{math|''r'' {{=}} {{sfrac|''φ''|''a''}}}} की मूल बिन्दु पर त्रिज्या {{math|''ρ''<sub>0</sub> {{=}} {{sfrac|1|2''a''}}}} और केंद्र {{math|(''0'', ''ρ''<sub>0</sub>)}} पर वृत्त की प्रतिबिम्ब रेखा {{math|''y'' {{=}} ''a''}} है। (वृत्त व्युत्क्रम देखें)। इसलिए आर्किमिडीयन सर्पिल के व्युत्क्रम निर्देशांक के साथ अतिपरवलयिक सर्पिल के स्पर्शोन्मुख के पूर्व प्रतिबिंब मे मूल आर्किमिडीयन सर्पिल का दोलन वृत्त है। | ||
आर्किमिडीज़ सर्पिल | |||
=== हेलिक्स का केंद्रीय प्रक्षेपण === | === हेलिक्स का केंद्रीय प्रक्षेपण === | ||
[[File:Schraublinie-hyp-spirale.svg|thumb|upright=0.8| | [[File:Schraublinie-hyp-spirale.svg|thumb|upright=0.8|हेलिक्स के केंद्रीय प्रक्षेपण के रूप में अतिपरवलयिक सर्पिल]]हेलिक्स की धुरी के लंबवत एक समतल पर हेलिक्स का केंद्रीय प्रक्षेपण उस बिन्दु का वर्णन करता है जो सर्पिल की धुरी पर एक दृष्टिकोण से ऊपर या नीचे देखने पर सर्पिल के निर्देशांकों को प्रदर्शित करता है।[[File:Schraublinie-hyp-spirale.svg|thumb|upright=0.8|हेलिक्स के केंद्रीय प्रक्षेपण के रूप में अतिपरवलयिक सर्पिल]]इस प्रक्षेपण को गणितीय रूप से मॉडल करने के लिए समतल प्रतिबिंब {{math|''z'' {{=}} 0}} पर बिंदु {{math|''C''<sub>0</sub> {{=}} (0, 0, ''d'')}} से केंद्रीय प्रक्षेपण पर विचार करें। यह एक बिंदु {{math|(''x'', ''y'', ''z'')}} को बिंदु {{math|{{sfrac|''d''|''d'' − ''z''}}(''x'', ''y'')}} पर चित्रित करता है। | ||
पैरामीट्रिक प्रतिनिधित्व के साथ हेलिक्स के इस प्रक्षेपण के अंतर्गत | पैरामीट्रिक प्रतिनिधित्व के साथ हेलिक्स के इस प्रक्षेपण के अंतर्गत प्रतिबिंब <math>(r\cos t, r\sin t, ct),\quad c\neq 0,</math> वक्र है: | ||
:<math>\frac{dr}{d-ct}(\cos t,\sin t)</math> | :<math>\frac{dr}{d-ct}(\cos t,\sin t)</math> | ||
ध्रुवीय समीकरण के साथ <math>\rho=\frac{dr}{d-ct},</math> एक अतिपरवलयिक सर्पिल का वर्णन करता है। | सामान्यतः यह ध्रुवीय समीकरण के साथ <math>\rho=\frac{dr}{d-ct},</math> एक अतिपरवलयिक सर्पिल का वर्णन करता है। | ||
=== चाप लंबाई === | === चाप लंबाई === | ||
बिंदु {{math|(''r''(''φ''<sub>1</sub>), ''φ''<sub>1</sub>)}} और {{math|(''r''(''φ''<sub>2</sub>), ''φ''<sub>2</sub>)}} के बीच एक अतिपरवलयिक सर्पिल के चाप की लंबाई की गणना निम्न समीकरण द्वारा की जा सकती है: | |||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 72: | Line 70: | ||
&= a\left[-\frac{\sqrt{1+\varphi^2}}{\varphi}+\ln\left(\varphi+\sqrt{1+\varphi^2}\right)\right]_{\varphi_1}^{\varphi_2} . | &= a\left[-\frac{\sqrt{1+\varphi^2}}{\varphi}+\ln\left(\varphi+\sqrt{1+\varphi^2}\right)\right]_{\varphi_1}^{\varphi_2} . | ||
\end{align}</math> | \end{align}</math> | ||
=== | === वृत्तखंड क्षेत्र === | ||
समीकरण {{math|''r'' {{=}} {{sfrac|''a''|''φ''}}}} के साथ एक अतिपरवलयिक सर्पिल के त्रिज्यखंड का क्षेत्रफल है: | समीकरण {{math|''r'' {{=}} {{sfrac|''a''|''φ''}}}} के साथ एक अतिपरवलयिक सर्पिल के त्रिज्यखंड का क्षेत्रफल है: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Line 80: | Line 78: | ||
&=\frac{a}{2}\bigl(r(\varphi_1)-r(\varphi_2)\bigr) . | &=\frac{a}{2}\bigl(r(\varphi_1)-r(\varphi_2)\bigr) . | ||
\end{align}</math> | \end{align}</math> | ||
अर्थात्, क्षेत्रफल | अर्थात्, क्षेत्रफल a/2 अनुपात के स्थिरांक के साथ त्रिज्या में अंतर के समानुपाती होता है। | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} |
Revision as of 10:03, 29 November 2023
अतिपरवलयिक सर्पिल एक समतल वक्र है, जिसे समीकरण द्वारा ध्रुवीय निर्देशांक में वर्णित किया जा सकता है। सामान्यतः इसे आर्कमेडीज सर्पिल (प्रसिद्ध यूनानी गणितज्ञ) के वृत्त व्युत्क्रम द्वारा उत्पन्न किया जा सकता है। इसलिए इसे लघुगणक सर्पिल भी कहा जाता है।[1][2] अतिपरवलयिक सर्पिल समतल वक्र की धुरी के ऊपर के भाग से संबधित सर्पिल का एक प्रकार है जिसका उपयोग अतिपरवलयिक सर्पिल के प्रारम्भिक निर्देशांकों को व्यवस्थित करने के लिए किया जाता है। इसका ध्रुवीय कोण लघुगणकीय सर्पिलों के स्थिर कोणों या आर्किमिडीयन सर्पिलों के न्यूनतम कोणों के विपरीत इसके केंद्र की दूरी के साथ बढ़ता है जैसे-जैसे यह वक्र चौड़ा होता जाता है यह एक स्पर्शोन्मुख रेखा के निकट हो जाता है।[3][4]
दोनों निर्देशांकों के बीच वही संबंध है जो कार्तीय निर्देशांक के लिए एक अतिपरवलय का वर्णन करता है। इसे आर्किमिडीयन सर्पिल के वृत्त व्युत्क्रमण द्वारा भी उत्पन्न किया जा सकता है इसलिए इसे व्युत्क्रमण सर्पिल भी कहा जाता है।
इतिहास और अनुप्रयोग
पियरे वेरिग्नन ने 1704 में इस वक्र का अध्ययन किया था।[5] बाद में जोहान बर्नौली और रोजर कोट्स ने भी इस वक्र पर कार्य किया था। पियरे वेरिग्नन ने पहली बार 1704 में ध्रुवीय वक्र पर बिंदुओं के ध्रुवीय निर्देशांक के रूप में दिए गए वक्र पर बिंदुओं के कार्टेशियन निर्देशांक की पुनर्व्याख्या करके एक अन्य वक्र से प्राप्त ध्रुवीय वक्र के उदाहरण के रूप में अतिपरवलयिक सर्पिल का अध्ययन किया था। पियरे वेरिग्नन और बाद में जेम्स क्लर्क मैक्सवेल ने वक्र पर एक बिंदु का अध्ययन करके प्राप्त रूलेट्स में रुचि रखते थे क्योंकि यह दूसरे वक्र के साथ घूर्णन करता है। उदाहरण के लिए जब एक अतिपरवलयिक सर्पिल एक समतल रेखा के साथ घूमता है तब इसका केंद्र एक ट्रैक्ट्रिक्स (प्रतिकेन्द्रज) का पता लगाता है।
आइजैक न्यूटन की खोज के संबंध में जोहान बर्नौली और रोजर कोट्स ने भी इस वक्र पर कार्य किया था कि व्युत्क्रम-वर्ग नियम के अंतर्गत चलने वाले पिंड जैसे कि न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम में शंकु खंड प्रक्षेपवक्र का अनुसरण करते हैं। न्यूटन, बर्नौली और कोट्स इस निहितार्थ को व्युत्क्रम और किसी दिए गए रूप के प्रक्षेपवक्र का उत्पादन करने के लिए आवश्यक गुरुत्वाकर्षण नियम के रूप को निर्धारित करने में रुचि रखते थे। न्यूटन ने दिखाया कि एक लघुगणकीय सर्पिल प्रक्षेपवक्र के लिए एक व्युत्क्रम-घन नियम की आवश्यकता होती है। बर्नौली ने इसे अतिपरवलयिक सर्पिल तक बढ़ाया और कोट्स ने सर्पिलों का एक समूह प्राप्त किया था जिसमें लघुगणक और अतिपरवलयिक सर्पिल सम्मिलित थे। इन सभी के लिए एक व्युत्क्रम-घन नियम की आवश्यकता थी।
आर्किमिडीयन और लघुगणकीय सर्पिल के साथ घूर्णन की धारणा पर मनोवैज्ञानिक प्रयोगों में अतिपरवलयिक सर्पिल का उपयोग किया गया है।
कार्तीय निर्देशांक
ध्रुवीय समीकरण के साथ अतिपरवलयिक सर्पिल कार्टेशियन निर्देशांक (x = r cos φ, y = r sin φ) द्वारा दर्शाया जा सकता है। मानक ध्रुवीय समीकरण से कार्टेशियन रूपांतरणों को प्रयुक्त करके कार्टेशियन निर्देशांकों को (x = r cos φ, y = r sin φ) द्वारा दर्शाया जा सकता है। इस वक्र के कार्टेशियन निर्देशांक के लिए एक पैरामीट्रिक समीकरण के निर्देशांक के अतिरिक्त पैरामीटर के रूप में माना जा सकता है:
अतिपरवलयिक सर्पिल एक ट्रान्सेंडैंटल (पारलौकिक) वक्र है, जिसका अर्थ है कि इसे इसके कार्टेशियन निर्देशांक के बहुपद समीकरण से परिभाषित नहीं किया जा सकता है। हालाँकि कोई इन निर्देशांकों में एक त्रिकोणमितीय समीकरण rφ प्राप्त कर सकता है। इसके ध्रुवीय परिभाषित समीकरण को xy के रूप में प्रारंभ करके और इसके चरों को कार्टेशियन निर्देशांक के अनुसार ध्रुवीय रूपांतरण φ → ±∞ और φ → ±0 मे प्रतिस्थापित करके प्राप्त किया जा सकता है:
ज्यामितीय गुण
अनंतस्पर्शी
अतिपरवलयिक सर्पिल के स्पर्शोन्मुख बिंदु के रूप में मूल निर्देशांक है:
वक्र में समीकरण y = a के साथ एक स्पर्शोन्मुख रेखा है।
ध्रुवीय समीकरण
किसी भी वक्र की स्पर्शरेखा और उसके संगत ध्रुवीय वृत्त की स्पर्शरेखा के बीच ध्रुवीय कोण α के लिए tan α = r′/r अतिपरवलयिक सर्पिल α के लिए ध्रुवीय कोण है:
वक्रता
ध्रुवीय समीकरण r = r(φ) वाले किसी भी वक्र की वक्रता होती है:
समीकरण r = a/φ और इसके व्युत्पन्न r′ = −a/φ2 और r″ = 2a/φ3 से एक अतिपरवलयिक सर्पिल की वक्रता प्राप्त होती है:
व्युत्क्रम निर्देशांक
ध्रुवीय निर्देशांक (r, φ) ↦ (1/r, φ) में वृत्त व्युत्क्रम का सरल विवरण है। इस परिवर्तन के अंतर्गत एक आर्किमिडीयन सर्पिल r = φ/a के समीकरण r = a/φ के साथ अतिपरवलयिक सर्पिल है। दोनों वक्र इकाई वृत्त पर ध्रुवीय निर्देशांक φ = a वाले बिंदु पर प्रतिच्छेद करते हैं। आर्किमिडीज़ सर्पिल दोलन चक्र r = φ/a की मूल बिन्दु पर त्रिज्या ρ0 = 1/2a और केंद्र (0, ρ0) पर वृत्त की प्रतिबिम्ब रेखा y = a है। (वृत्त व्युत्क्रम देखें)। इसलिए आर्किमिडीयन सर्पिल के व्युत्क्रम निर्देशांक के साथ अतिपरवलयिक सर्पिल के स्पर्शोन्मुख के पूर्व प्रतिबिंब मे मूल आर्किमिडीयन सर्पिल का दोलन वृत्त है।
हेलिक्स का केंद्रीय प्रक्षेपण
हेलिक्स की धुरी के लंबवत एक समतल पर हेलिक्स का केंद्रीय प्रक्षेपण उस बिन्दु का वर्णन करता है जो सर्पिल की धुरी पर एक दृष्टिकोण से ऊपर या नीचे देखने पर सर्पिल के निर्देशांकों को प्रदर्शित करता है।
इस प्रक्षेपण को गणितीय रूप से मॉडल करने के लिए समतल प्रतिबिंब z = 0 पर बिंदु C0 = (0, 0, d) से केंद्रीय प्रक्षेपण पर विचार करें। यह एक बिंदु (x, y, z) को बिंदु d/d − z(x, y) पर चित्रित करता है।
पैरामीट्रिक प्रतिनिधित्व के साथ हेलिक्स के इस प्रक्षेपण के अंतर्गत प्रतिबिंब वक्र है:
सामान्यतः यह ध्रुवीय समीकरण के साथ एक अतिपरवलयिक सर्पिल का वर्णन करता है।
चाप लंबाई
बिंदु (r(φ1), φ1) और (r(φ2), φ2) के बीच एक अतिपरवलयिक सर्पिल के चाप की लंबाई की गणना निम्न समीकरण द्वारा की जा सकती है:
वृत्तखंड क्षेत्र
समीकरण r = a/φ के साथ एक अतिपरवलयिक सर्पिल के त्रिज्यखंड का क्षेत्रफल है:
अर्थात्, क्षेत्रफल a/2 अनुपात के स्थिरांक के साथ त्रिज्या में अंतर के समानुपाती होता है।
संदर्भ
- ↑ Bowser, Edward Albert (1880), An Elementary Treatise on Analytic Geometry: Embracing Plane Geometry and an Introduction to Geometry of Three Dimensions (4th ed.), D. Van Nostrand, p. 232
- ↑ Lawrence, J. Dennis (2013), A Catalog of Special Plane Curves, Dover Books on Mathematics, Courier Dover Publications, p. 186, ISBN 9780486167664.
- ↑ R. C., Jr. Kennicutt (December 1981), "The shapes of spiral arms along the Hubble sequence", The Astronomical Journal, American Astronomical Society, 86: 1847, Bibcode:1981AJ.....86.1847K, doi:10.1086/113064
- ↑ Savchenko, S. S.; Reshetnikov, V. P. (September 2013), "Pitch angle variations in spiral galaxies", Monthly Notices of the Royal Astronomical Society, 436 (2): 1074–1083, doi:10.1093/mnras/stt1627
- ↑ Lawrence, J. Dennis (2013), A Catalog of Special Plane Curves, Dover Books on Mathematics, Courier Dover Publications, p. 186, ISBN 9780486167664.
- Hans-Jochen Bartsch, Michael Sachs: Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler, Carl Hanser Verlag, 2018, ISBN 3446457070, 9783446457072, S. 410.
- Kinko Tsuji, Stefan C. Müller: Spirals and Vortices: In Culture, Nature, and Science, Springer, 2019, ISBN 3030057984, 9783030057985, S. 96.
- Pierre Varignon: Nouvelle formation de Spirales – exemple II, Mémoires de l’Académie des sciences de l’Institut de France, 1704, pp. 94–103.
- Friedrich Grelle: Analytische Geometrie der Ebene, Verlag F. Brecke, 1861 hyperbolische Spirale, S. 215.
- Jakob Philipp Kulik: Lehrbuch der höhern Analysis, Band 2, In Commiss. bei Kronberger u. Rziwnatz, 1844, Spirallinien, S. 222.