एर्गोडिक प्रक्रिया: Difference between revisions
(Created page with "{{broader|Ergodicity}} भौतिकी, सांख्यिकी, अर्थमिति और संकेत आगे बढ़ाना में, ए...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{broader| | {{broader|एर्गोडिसिटी}} | ||
भौतिकी, सांख्यिकी, [[अर्थमिति]] और [[ संकेत आगे बढ़ाना ]] में, एक स्टोकेस्टिक प्रक्रिया को एर्गोडिक शासन में कहा जाता है यदि एक अवलोकन योग्य का औसत समय औसत के बराबर होता है।<ref>{{citation|title=Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes|year=2013|author1= Cherstvy, Andrey |author2=Chechkin, Aleksei V|author3=Metzler, Ralf |journal=New J. Phys. |volume=15|pages=083039 |doi=10.1088/1367-2630/15/8/083039|doi-access=free}}</ref> इस व्यवस्था में, किसी प्रक्रिया से यादृच्छिक नमूनों के किसी भी संग्रह को संपूर्ण व्यवस्था के औसत सांख्यिकीय गुणों का प्रतिनिधित्व करना चाहिए। इसके विपरीत, एक प्रक्रिया जो एर्गोडिक शासन में नहीं है, उसे गैर-एर्गोडिक शासन में कहा जाता है।<ref>Originally due to L. Boltzmann. See part 2 of {{cite book|title=Vorlesungen über Gastheorie|year= 1898 |location=Leipzig|publisher=J. A. Barth|url=https://archive.org/details/vorlesungenberg02boltgoog |oclc=01712811}} ('Ergoden' on p. 89 in the 1923 reprint.) It was used to prove equipartition of energy in the kinetic theory of gases</ref> | भौतिकी, सांख्यिकी, [[अर्थमिति]] और [[ संकेत आगे बढ़ाना ]] में, एक स्टोकेस्टिक प्रक्रिया को एर्गोडिक शासन में कहा जाता है यदि एक अवलोकन योग्य का औसत समय औसत के बराबर होता है।<ref>{{citation|title=Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes|year=2013|author1= Cherstvy, Andrey |author2=Chechkin, Aleksei V|author3=Metzler, Ralf |journal=New J. Phys. |volume=15|pages=083039 |doi=10.1088/1367-2630/15/8/083039|doi-access=free}}</ref> इस व्यवस्था में, किसी प्रक्रिया से यादृच्छिक नमूनों के किसी भी संग्रह को संपूर्ण व्यवस्था के औसत सांख्यिकीय गुणों का प्रतिनिधित्व करना चाहिए। इसके विपरीत, एक प्रक्रिया जो एर्गोडिक शासन में नहीं है, उसे गैर-एर्गोडिक शासन में कहा जाता है।<ref>Originally due to L. Boltzmann. See part 2 of {{cite book|title=Vorlesungen über Gastheorie|year= 1898 |location=Leipzig|publisher=J. A. Barth|url=https://archive.org/details/vorlesungenberg02boltgoog |oclc=01712811}} ('Ergoden' on p. 89 in the 1923 reprint.) It was used to prove equipartition of energy in the kinetic theory of gases</ref> | ||
== विशिष्ट परिभाषाएँ == | == विशिष्ट परिभाषाएँ == | ||
कोई स्टोकेस्टिक प्रक्रिया के विभिन्न आँकड़ों की क्षरणशीलता पर चर्चा कर सकता है। उदाहरण के लिए, एक व्यापक अर्थ वाली स्थिर प्रक्रिया <math>X(t)</math> निरंतर माध्य है | कोई स्टोकेस्टिक प्रक्रिया के विभिन्न आँकड़ों की क्षरणशीलता पर चर्चा कर सकता है। उदाहरण के लिए, एक व्यापक अर्थ वाली स्थिर प्रक्रिया <math>X(t)</math> निरंतर माध्य है | ||
Line 15: | Line 13: | ||
प्रक्रिया <math>X(t)</math> मीन-एर्गोडिक कहा जाता है<ref>Papoulis, p. 428</ref> या पहले क्षण में माध्य-वर्ग एर्गोडिक<ref name="porat">Porat, p. 14</ref> | प्रक्रिया <math>X(t)</math> मीन-एर्गोडिक कहा जाता है<ref>Papoulis, p. 428</ref> या पहले क्षण में माध्य-वर्ग एर्गोडिक<ref name="porat">Porat, p. 14</ref> | ||
यदि समय औसत अनुमान | यदि समय औसत अनुमान | ||
Line 21: | Line 20: | ||
वैसे ही, | वैसे ही, | ||
इस प्रक्रिया को ऑटोकोवेरिएंस-एर्गोडिक या डी मोमेंट कहा जाता है<ref name="porat"/> | इस प्रक्रिया को ऑटोकोवेरिएंस-एर्गोडिक या डी मोमेंट कहा जाता है<ref name="porat" /> | ||
यदि समय औसत अनुमान | यदि समय औसत अनुमान | ||
:<math>\hat{r}_X(\tau) = \frac{1}{T} \int_0^T [X(t+\tau)-\mu_X] [X(t)-\mu_X] \, dt</math> | :<math>\hat{r}_X(\tau) = \frac{1}{T} \int_0^T [X(t+\tau)-\mu_X] [X(t)-\mu_X] \, dt</math> | ||
वर्ग माध्य में समुच्चय औसत में अभिसरण होता है <math>r_X(\tau)</math>, जैसा <math>T \rightarrow \infty</math>. | वर्ग माध्य में समुच्चय औसत में अभिसरण होता है <math>r_X(\tau)</math>, जैसा <math>T \rightarrow \infty</math>. | ||
एक प्रक्रिया जो माध्य और ऑटोकोवेरिएंस में एर्गोडिक है, उसे कभी-कभी व्यापक अर्थ में एर्गोडिक कहा जाता है। | एक प्रक्रिया जो माध्य और ऑटोकोवेरिएंस में एर्गोडिक है, उसे कभी-कभी व्यापक अर्थ में एर्गोडिक कहा जाता है। | ||
Line 31: | Line 32: | ||
एर्गोडिसिटी की धारणा अलग-अलग समय की यादृच्छिक प्रक्रियाओं पर भी लागू होती है | एर्गोडिसिटी की धारणा अलग-अलग समय की यादृच्छिक प्रक्रियाओं पर भी लागू होती है | ||
<math>X[n]</math> पूर्णांक के लिए <math>n</math>. | <math>X[n]</math> पूर्णांक के लिए <math>n</math>. | ||
Line 38: | Line 40: | ||
माध्य में अभिसरण | माध्य में अभिसरण | ||
समुच्चय औसत के लिए <math>E[X]</math>, | समुच्चय औसत के लिए <math>E[X]</math>, | ||
जैसा <math>N \rightarrow \infty</math>. | जैसा <math>N \rightarrow \infty</math>. | ||
Line 57: | Line 60: | ||
==गैर-एर्गोडिक यादृच्छिक प्रक्रियाओं के उदाहरण== | ==गैर-एर्गोडिक यादृच्छिक प्रक्रियाओं के उदाहरण== | ||
* एक रैंडम वॉक | * एक रैंडम वॉक एक-आयामी रैंडम वॉक नॉन-एर्गोडिक है। इसका प्रत्याशा मूल्य हर समय शून्य है, जबकि इसका समय औसत भिन्न भिन्नता वाला एक यादृच्छिक चर है। | ||
* मान लीजिए कि हमारे पास दो सिक्के हैं: एक सिक्का उचित है और दूसरे में दो सिक्के हैं। हम पहले सिक्कों में से एक को (यादृच्छिक रूप से) चुनते हैं, और फिर अपने चयनित सिक्के को स्वतंत्र रूप से उछालने का क्रम करते हैं। मान लीजिए कि X[n] nवें टॉस के परिणाम को दर्शाता है, जिसमें चित के लिए 1 और पट के लिए 0 है। फिर संयोजन औसत है {{frac|1|2}} ({{frac|1|2}} + 1) = {{frac|3|4}}; फिर भी दीर्घकालिक औसत है {{frac|1|2}} निष्पक्ष सिक्के के लिए और 1 दो सिर वाले सिक्के के लिए। तो दीर्घकालिक समय-औसत या तो 1/2 या 1 है। इसलिए, यह यादृच्छिक प्रक्रिया माध्य में अर्गोडिक नहीं है। | * मान लीजिए कि हमारे पास दो सिक्के हैं: एक सिक्का उचित है और दूसरे में दो सिक्के हैं। हम पहले सिक्कों में से एक को (यादृच्छिक रूप से) चुनते हैं, और फिर अपने चयनित सिक्के को स्वतंत्र रूप से उछालने का क्रम करते हैं। मान लीजिए कि X[n] nवें टॉस के परिणाम को दर्शाता है, जिसमें चित के लिए 1 और पट के लिए 0 है। फिर संयोजन औसत है {{frac|1|2}} ({{frac|1|2}} + 1) = {{frac|3|4}}; फिर भी दीर्घकालिक औसत है {{frac|1|2}} निष्पक्ष सिक्के के लिए और 1 दो सिर वाले सिक्के के लिए। तो दीर्घकालिक समय-औसत या तो 1/2 या 1 है। इसलिए, यह यादृच्छिक प्रक्रिया माध्य में अर्गोडिक नहीं है। | ||
Line 70: | Line 73: | ||
== टिप्पणियाँ == | == टिप्पणियाँ == | ||
{{reflist}} | {{reflist}} | ||
== संदर्भ == | == संदर्भ == | ||
* {{cite book | * {{cite book | ||
| last = | | last = पोराट | ||
| first = B. | | first = B. | ||
| title = | | title = यादृच्छिक संकेतों का डिजिटल प्रसंस्करण: सिद्धांत और तरीके | ||
| date = 1994 | | date = 1994 | ||
| publisher = | | publisher = शागिर्द कक्ष | ||
| isbn = 0-13-063751-3 | | isbn = 0-13-063751-3 | ||
| pages = 14 }} | | pages = 14 }} | ||
* {{cite book | * {{cite book | ||
|author= | |author=पापोलिस, अथानासियोस | ||
|title= | |title=संभाव्यता, यादृच्छिक चर और स्टोकेस्टिक प्रक्रियाएं | ||
|publisher= | |publisher=मैकग्रा-हिल | ||
|location= | |location=न्यूयॉर्क | ||
|year=1991 | |year=1991 | ||
|pages=427–442 | |pages=427–442 |
Revision as of 16:09, 28 November 2023
भौतिकी, सांख्यिकी, अर्थमिति और संकेत आगे बढ़ाना में, एक स्टोकेस्टिक प्रक्रिया को एर्गोडिक शासन में कहा जाता है यदि एक अवलोकन योग्य का औसत समय औसत के बराबर होता है।[1] इस व्यवस्था में, किसी प्रक्रिया से यादृच्छिक नमूनों के किसी भी संग्रह को संपूर्ण व्यवस्था के औसत सांख्यिकीय गुणों का प्रतिनिधित्व करना चाहिए। इसके विपरीत, एक प्रक्रिया जो एर्गोडिक शासन में नहीं है, उसे गैर-एर्गोडिक शासन में कहा जाता है।[2]
विशिष्ट परिभाषाएँ
कोई स्टोकेस्टिक प्रक्रिया के विभिन्न आँकड़ों की क्षरणशीलता पर चर्चा कर सकता है। उदाहरण के लिए, एक व्यापक अर्थ वाली स्थिर प्रक्रिया निरंतर माध्य है
यह केवल अंतराल पर निर्भर करता है और समय पर नहीं . गुण और समूह औसत हैं (सभी संभावित नमूना कार्यों पर गणना की जाती है ), समय का औसत नहीं।
प्रक्रिया मीन-एर्गोडिक कहा जाता है[3] या पहले क्षण में माध्य-वर्ग एर्गोडिक[4]
यदि समय औसत अनुमान
समुच्चय औसत के माध्य में अभिसरण जैसा .
वैसे ही, इस प्रक्रिया को ऑटोकोवेरिएंस-एर्गोडिक या डी मोमेंट कहा जाता है[4]
यदि समय औसत अनुमान
वर्ग माध्य में समुच्चय औसत में अभिसरण होता है , जैसा .
एक प्रक्रिया जो माध्य और ऑटोकोवेरिएंस में एर्गोडिक है, उसे कभी-कभी व्यापक अर्थ में एर्गोडिक कहा जाता है।
असतत-समय यादृच्छिक प्रक्रियाएं
एर्गोडिसिटी की धारणा अलग-अलग समय की यादृच्छिक प्रक्रियाओं पर भी लागू होती है
पूर्णांक के लिए .
एक अलग-समय की यादृच्छिक प्रक्रिया यदि का मतलब एर्गोडिक है
माध्य में अभिसरण समुच्चय औसत के लिए ,
जैसा .
उदाहरण
एर्गोडिसिटी का मतलब है कि समग्र औसत समय के औसत के बराबर है। इस सिद्धांत को स्पष्ट करने के लिए निम्नलिखित उदाहरण हैं।
कॉल सेंटर
कॉल सेंटर में प्रत्येक ऑपरेटर बारी-बारी से टेलीफोन पर बोलने और सुनने में समय व्यतीत करता है, साथ ही कॉल के बीच में ब्रेक भी लेता है। प्रत्येक ब्रेक और प्रत्येक कॉल की लंबाई अलग-अलग होती है, जैसे कि बोलने और सुनने के प्रत्येक 'विस्फोट' की अवधि होती है, और वास्तव में किसी भी समय भाषण की तीव्रता भी अलग-अलग होती है, जिसे प्रत्येक को एक यादृच्छिक प्रक्रिया के रूप में तैयार किया जा सकता है।
- एन कॉल सेंटर ऑपरेटरों को लें (एन एक बहुत बड़ा पूर्णांक होना चाहिए) और लंबी अवधि (कई पारियों) में प्रत्येक ऑपरेटर के लिए प्रति मिनट बोले गए शब्दों की संख्या को प्लॉट करें। प्रत्येक ऑपरेटर के लिए आपके पास बिंदुओं की एक श्रृंखला होगी, जिन्हें 'वेवफॉर्म' बनाने के लिए लाइनों के साथ जोड़ा जा सकता है।
- तरंगरूप में उन बिंदुओं के औसत मूल्य की गणना करें; इससे आपको औसत समय मिलता है.
- एन वेवफॉर्म और एन ऑपरेटर हैं। इन एन तरंगरूपों को एक समूह के रूप में जाना जाता है।
- अब उन सभी तरंगों में समय का एक विशेष क्षण लें और प्रति मिनट बोले गए शब्दों की संख्या का औसत मान ज्ञात करें। यह आपको उस पल के लिए समग्र औसत देता है।
- यदि संयोजन औसत हमेशा समय औसत के बराबर होता है, तो सिस्टम एर्गोडिक है।
इलेक्ट्रॉनिक्स
प्रत्येक अवरोधक में एक संबद्ध थर्मल शोर होता है जो तापमान पर निर्भर करता है। एन प्रतिरोधक लें (एन बहुत बड़ा होना चाहिए) और लंबी अवधि के लिए उन प्रतिरोधकों पर वोल्टेज प्लॉट करें। प्रत्येक अवरोधक के लिए आपके पास एक तरंगरूप होगा। उस तरंगरूप के औसत मूल्य की गणना करें; इससे आपको औसत समय मिलता है. जैसे N प्रतिरोधक होते हैं वैसे ही N तरंगरूप भी होते हैं। इन एन प्लॉट्स को एक समूह के रूप में जाना जाता है। अब उन सभी प्लॉटों में समय का एक विशेष क्षण लें और वोल्टेज का औसत मान ज्ञात करें। यह आपको प्रत्येक कथानक के लिए समग्र औसत देता है। यदि संयोजन औसत और समय औसत समान हैं तो यह एर्गोडिक है।
गैर-एर्गोडिक यादृच्छिक प्रक्रियाओं के उदाहरण
- एक रैंडम वॉक एक-आयामी रैंडम वॉक नॉन-एर्गोडिक है। इसका प्रत्याशा मूल्य हर समय शून्य है, जबकि इसका समय औसत भिन्न भिन्नता वाला एक यादृच्छिक चर है।
- मान लीजिए कि हमारे पास दो सिक्के हैं: एक सिक्का उचित है और दूसरे में दो सिक्के हैं। हम पहले सिक्कों में से एक को (यादृच्छिक रूप से) चुनते हैं, और फिर अपने चयनित सिक्के को स्वतंत्र रूप से उछालने का क्रम करते हैं। मान लीजिए कि X[n] nवें टॉस के परिणाम को दर्शाता है, जिसमें चित के लिए 1 और पट के लिए 0 है। फिर संयोजन औसत है 1⁄2 (1⁄2 + 1) = 3⁄4; फिर भी दीर्घकालिक औसत है 1⁄2 निष्पक्ष सिक्के के लिए और 1 दो सिर वाले सिक्के के लिए। तो दीर्घकालिक समय-औसत या तो 1/2 या 1 है। इसलिए, यह यादृच्छिक प्रक्रिया माध्य में अर्गोडिक नहीं है।
यह भी देखें
- एर्गोडिक परिकल्पना
- एर्गोडिसिटी
- एर्गोडिक सिद्धांत, गणित की एक शाखा जो एर्गोडिकिटी के अधिक सामान्य सूत्रीकरण से संबंधित है
- लॉस्च्मिड्ट का विरोधाभास
- पोंकारे पुनरावृत्ति प्रमेय
टिप्पणियाँ
- ↑ Cherstvy, Andrey; Chechkin, Aleksei V; Metzler, Ralf (2013), "Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes", New J. Phys., 15: 083039, doi:10.1088/1367-2630/15/8/083039
- ↑ Originally due to L. Boltzmann. See part 2 of Vorlesungen über Gastheorie. Leipzig: J. A. Barth. 1898. OCLC 01712811. ('Ergoden' on p. 89 in the 1923 reprint.) It was used to prove equipartition of energy in the kinetic theory of gases
- ↑ Papoulis, p. 428
- ↑ 4.0 4.1 Porat, p. 14
संदर्भ
- पोराट, B. (1994). यादृच्छिक संकेतों का डिजिटल प्रसंस्करण: सिद्धांत और तरीके. शागिर्द कक्ष. p. 14. ISBN 0-13-063751-3.
- पापोलिस, अथानासियोस (1991). संभाव्यता, यादृच्छिक चर और स्टोकेस्टिक प्रक्रियाएं. न्यूयॉर्क: मैकग्रा-हिल. pp. 427–442. ISBN 0-07-048477-5.