फील्ड कॉइल: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Electromagnet used to generate a magnetic field in an electro-magnetic machine}} File:Universalmotor 3.JPG|thumb|वैक्यूम क्लीनर...")
 
No edit summary
Line 1: Line 1:
{{short description|Electromagnet used to generate a magnetic field in an electro-magnetic machine}}
{{short description|Electromagnet used to generate a magnetic field in an electro-magnetic machine}}
[[File:Universalmotor 3.JPG|thumb|वैक्यूम क्लीनर से आधुनिक कम लागत वाली सार्वभौमिक मोटर। फील्ड वाइंडिंग्स गहरे तांबे के रंग की होती हैं, दोनों तरफ पीछे की ओर। रोटर का लैमिनेटेड कोर ग्रे मैटेलिक है, जिसमें कॉइल को घुमावदार करने के लिए डार्क स्लॉट हैं। कम्यूटेटर (आंशिक रूप से छिपा हुआ) उपयोग से काला हो गया है; यह सामने की ओर है। अग्रभूमि में बड़ा भूरा ढाला-प्लास्टिक का टुकड़ा ब्रश गाइड और ब्रश (दोनों तरफ), साथ ही सामने मोटर असर का समर्थन करता है।]]एक फील्ड कॉइल एक इलेक्ट्रोमैग्नेट है जिसका उपयोग इलेक्ट्रो-मैग्नेटिक मशीन में एक चुंबकीय क्षेत्र उत्पन्न करने के लिए किया जाता है, आमतौर पर एक विद्युत मोटर या विद्युत जनरेटर जैसी एक घूर्णन विद्युत मशीन। इसमें तार का एक तार होता है जिसके माध्यम से करंट प्रवाहित होता है।
[[File:Universalmotor 3.JPG|thumb|वैक्यूम क्लीनर से आधुनिक कम लागत वाली सार्वभौमिक मोटर। फील्ड वाइंडिंग्स गहरे तांबे के रंग की होती हैं, दोनों तरफ पीछे की ओर। रोटर का लैमिनेटेड कोर ग्रे मैटेलिक है, जिसमें कॉइल को घुमावदार करने के लिए डार्क स्लॉट हैं। कम्यूटेटर (आंशिक रूप से छिपा हुआ) उपयोग से काला हो गया है; यह सामने की ओर है। अग्रभूमि में बड़ा भूरा ढाला-प्लास्टिक का टुकड़ा ब्रश गाइड और ब्रश (दोनों तरफ), साथ ही सामने मोटर असर का समर्थन करता है।]]फील्ड कॉइल इलेक्ट्रोमैग्नेट है जिसका उपयोग इलेक्ट्रो-मैग्नेटिक मशीन में चुंबकीय क्षेत्र उत्पन्न करने के लिए किया जाता है, आमतौर पर विद्युत मोटर या विद्युत जनरेटर जैसी घूर्णन विद्युत मशीन। इसमें तार का तार होता है जिसके माध्यम से करंट प्रवाहित होता है।


एक घूर्णन मशीन में, फ़ील्ड कॉइल लोहे के चुंबकीय कोर पर लपेटे जाते हैं जो चुंबकीय क्षेत्र रेखाओं का मार्गदर्शन करता है। चुंबकीय कोर दो भागों में है; एक स्टेटर जो स्थिर होता है, और एक रोटर (इलेक्ट्रिक), जो इसके भीतर घूमता है। चुंबकीय क्षेत्र रेखाएँ रोटर के माध्यम से स्टेटर से एक निरंतर लूप या चुंबकीय सर्किट में गुजरती हैं और फिर से स्टेटर के माध्यम से वापस आती हैं। फील्ड कॉइल्स स्टेटर या रोटर पर हो सकते हैं।
घूर्णन मशीन में, फ़ील्ड कॉइल लोहे के चुंबकीय कोर पर लपेटे जाते हैं जो चुंबकीय क्षेत्र रेखाओं का मार्गदर्शन करता है। चुंबकीय कोर दो भागों में है; स्टेटर जो स्थिर होता है, और रोटर (इलेक्ट्रिक), जो इसके भीतर घूमता है। चुंबकीय क्षेत्र रेखाएँ रोटर के माध्यम से स्टेटर से निरंतर लूप या चुंबकीय सर्किट में गुजरती हैं और फिर से स्टेटर के माध्यम से वापस आती हैं। फील्ड कॉइल्स स्टेटर या रोटर पर हो सकते हैं।


चुंबकीय पथ की विशेषता 'ध्रुव' है, जो रोटर के चारों ओर समान कोणों पर स्थित है, जिस पर चुंबकीय क्षेत्र रेखाएँ स्टेटर से रोटर या इसके विपरीत से गुजरती हैं। स्टेटर (और रोटर) को उनके ध्रुवों की संख्या से वर्गीकृत किया जाता है। अधिकांश व्यवस्थाएं प्रति पोल एक फील्ड कॉइल का उपयोग करती हैं। कुछ पुरानी या सरल व्यवस्थाओं में प्रत्येक सिरे पर एक पोल के साथ एक फील्ड कॉइल का उपयोग किया जाता है।
चुंबकीय पथ की विशेषता 'ध्रुव' है, जो रोटर के चारों ओर समान कोणों पर स्थित है, जिस पर चुंबकीय क्षेत्र रेखाएँ स्टेटर से रोटर या इसके विपरीत से गुजरती हैं। स्टेटर (और रोटर) को उनके ध्रुवों की संख्या से वर्गीकृत किया जाता है। अधिकांश व्यवस्थाएं प्रति पोल फील्ड कॉइल का उपयोग करती हैं। कुछ पुरानी या सरल व्यवस्थाओं में प्रत्येक सिरे पर पोल के साथ फील्ड कॉइल का उपयोग किया जाता है।


हालांकि फील्ड कॉइल आमतौर पर घूमने वाली मशीनों में पाए जाते हैं, उनका उपयोग भी किया जाता है, हालांकि हमेशा एक ही शब्दावली के साथ, कई अन्य विद्युत चुम्बकीय मशीनों में नहीं। इनमें मास स्पेक्ट्रोमीटर और परमाणु चुंबकीय अनुनाद जैसे जटिल प्रयोगशाला उपकरणों के माध्यम से सरल विद्युत चुम्बक शामिल हैं। हल्के स्थायी चुम्बकों की सामान्य उपलब्धता से पहले कभी लाउडस्पीकरों में फील्ड कॉइल का व्यापक रूप से उपयोग किया जाता था (अधिक के लिए फील्ड कॉइल लाउडस्पीकर देखें)।
हालांकि फील्ड कॉइल आमतौर पर घूमने वाली मशीनों में पाए जाते हैं, उनका उपयोग भी किया जाता है, हालांकि हमेशा ही शब्दावली के साथ, कई अन्य विद्युत चुम्बकीय मशीनों में नहीं। इनमें मास स्पेक्ट्रोमीटर और परमाणु चुंबकीय अनुनाद जैसे जटिल प्रयोगशाला उपकरणों के माध्यम से सरल विद्युत चुम्बक शामिल हैं। हल्के स्थायी चुम्बकों की सामान्य उपलब्धता से पहले कभी लाउडस्पीकरों में फील्ड कॉइल का व्यापक रूप से उपयोग किया जाता था (अधिक के लिए फील्ड कॉइल लाउडस्पीकर देखें)।


== फिक्स्ड और रोटेटिंग फील्ड्स ==
== फिक्स्ड और रोटेटिंग फील्ड्स ==
अधिकांश<ref group="note" name="Pedagogy, not ontology" >Field coils are found in a vast array of electrical machines and so any attempt to categorise them in a readable manner is likely to exclude some obscure examples.</ref> डायरेक्ट करंट फील्ड कॉइल एक स्थिर, स्थिर क्षेत्र उत्पन्न करते हैं। अधिकांश तीन चरण विद्युत शक्ति | तीन चरण एसी फील्ड कॉइल्स का उपयोग प्रेरण मोटर के हिस्से के रूप में घूर्णन क्षेत्र उत्पन्न करने के लिए किया जाता है। सिंगल-फेज अल्टरनेटिंग करंट मोटर्स इनमें से किसी भी पैटर्न का अनुसरण कर सकती हैं: छोटी मोटरें आमतौर पर यूनिवर्सल मोटर्स होती हैं, जैसे कि कम्यूटेटर के साथ ब्रश की गई डीसी मोटर, लेकिन एसी से चलती हैं। बड़े एसी मोटर्स आमतौर पर इंडक्शन मोटर्स होते हैं, चाहे ये तीन- या सिंगल-फेज हों।
अधिकांश<ref group="note" name="Pedagogy, not ontology" >Field coils are found in a vast array of electrical machines and so any attempt to categorise them in a readable manner is likely to exclude some obscure examples.</ref> डायरेक्ट करंट फील्ड कॉइल स्थिर, स्थिर क्षेत्र उत्पन्न करते हैं। अधिकांश तीन चरण विद्युत शक्ति | तीन चरण एसी फील्ड कॉइल्स का उपयोग प्रेरण मोटर के हिस्से के रूप में घूर्णन क्षेत्र उत्पन्न करने के लिए किया जाता है। सिंगल-फेज अल्टरनेटिंग करंट मोटर्स इनमें से किसी भी पैटर्न का अनुसरण कर सकती हैं: छोटी मोटरें आमतौर पर यूनिवर्सल मोटर्स होती हैं, जैसे कि कम्यूटेटर के साथ ब्रश की गई डीसी मोटर, लेकिन एसी से चलती हैं। बड़े एसी मोटर्स आमतौर पर इंडक्शन मोटर्स होते हैं, चाहे ये तीन- या सिंगल-फेज हों।


== स्टेटर और रोटर्स ==
== स्टेटर और रोटर्स ==
अनेक<ref group="note" name="Pedagogy, not ontology" />रोटरी इलेक्ट्रिकल मशीनों को आमतौर पर स्लाइडिंग संपर्कों के माध्यम से: एक कम्यूटेटर (इलेक्ट्रिक) या पर्ची के छल्ले के माध्यम से चलने वाले रोटर को (या उससे निकालने) के लिए वर्तमान की आवश्यकता होती है। ये संपर्क अक्सर ऐसी मशीन का सबसे जटिल और कम से कम विश्वसनीय हिस्सा होते हैं, और मशीन द्वारा संभाली जा सकने वाली अधिकतम धारा को भी सीमित कर सकते हैं। इस कारण से, जब मशीनों को वाइंडिंग के दो सेटों का उपयोग करना चाहिए, तो कम से कम करंट वाले वाइंडिंग्स को आमतौर पर रोटर पर रखा जाता है और स्टेटर पर उच्चतम करंट वाले।
अनेक<ref group="note" name="Pedagogy, not ontology" />रोटरी इलेक्ट्रिकल मशीनों को आमतौर पर स्लाइडिंग संपर्कों के माध्यम से: कम्यूटेटर (इलेक्ट्रिक) या पर्ची के छल्ले के माध्यम से चलने वाले रोटर को (या उससे निकालने) के लिए वर्तमान की आवश्यकता होती है। ये संपर्क अक्सर ऐसी मशीन का सबसे जटिल और कम से कम विश्वसनीय हिस्सा होते हैं, और मशीन द्वारा संभाली जा सकने वाली अधिकतम धारा को भी सीमित कर सकते हैं। इस कारण से, जब मशीनों को वाइंडिंग के दो सेटों का उपयोग करना चाहिए, तो कम से कम करंट वाले वाइंडिंग्स को आमतौर पर रोटर पर रखा जाता है और स्टेटर पर उच्चतम करंट वाले।


फ़ील्ड कॉइल्स को रोटर (इलेक्ट्रिक) या स्टेटर पर लगाया जा सकता है, जो इस बात पर निर्भर करता है कि डिवाइस डिज़ाइन के लिए कौन सी विधि सबसे अधिक लागत प्रभावी है।
फ़ील्ड कॉइल्स को रोटर (इलेक्ट्रिक) या स्टेटर पर लगाया जा सकता है, जो इस बात पर निर्भर करता है कि डिवाइस डिज़ाइन के लिए कौन सी विधि सबसे अधिक लागत प्रभावी है।


ब्रश डीसी मोटर में क्षेत्र स्थिर होता है लेकिन आर्मेचर करंट को कम्यूटेट किया जाना चाहिए, ताकि लगातार घूमता रहे। यह एक कम्यूटेटर (इलेक्ट्रिक) के माध्यम से रोटर पर आर्मेचर वाइंडिंग की आपूर्ति करके किया जाता है, जो घूमने वाली स्लिप रिंग और स्विच का एक संयोजन है। एसी इंडक्शन मोटर्स स्टेटर पर फील्ड कॉइल्स का भी उपयोग करते हैं, रोटर पर वर्तमान गिलहरी पिंजरे रोटर में प्रेरण द्वारा आपूर्ति की जा रही है।
ब्रश डीसी मोटर में क्षेत्र स्थिर होता है लेकिन आर्मेचर करंट को कम्यूटेट किया जाना चाहिए, ताकि लगातार घूमता रहे। यह कम्यूटेटर (इलेक्ट्रिक) के माध्यम से रोटर पर आर्मेचर वाइंडिंग की आपूर्ति करके किया जाता है, जो घूमने वाली स्लिप रिंग और स्विच का संयोजन है। एसी इंडक्शन मोटर्स स्टेटर पर फील्ड कॉइल्स का भी उपयोग करते हैं, रोटर पर वर्तमान गिलहरी पिंजरे रोटर में प्रेरण द्वारा आपूर्ति की जा रही है।


जनरेटर के लिए, फील्ड करंट आउटपुट करंट से छोटा होता है।<ref group="note" >Strictly it is the output [[electrical power|power]] that is greater than the field power, although in practice this usually implies that the current is greater too.</ref> तदनुसार, क्षेत्र को रोटर पर चढ़ाया जाता है और स्लिप रिंग के माध्यम से आपूर्ति की जाती है। हाई-करंट स्लिपरिंग की आवश्यकता से बचते हुए, स्टेटर से आउटपुट करंट लिया जाता है। डीसी जनरेटर में, जो अब आम तौर पर रेक्टिफायर वाले एसी जनरेटर के पक्ष में अप्रचलित हैं, कम्यूटेशन की आवश्यकता का मतलब है कि ब्रशगियर और कम्यूटेटर की अभी भी आवश्यकता हो सकती है। इलेक्ट्रोप्लेटिंग में उपयोग किए जाने वाले उच्च-वर्तमान, कम-वोल्टेज जनरेटर के लिए, इसके लिए विशेष रूप से बड़े और जटिल ब्रशगियर की आवश्यकता हो सकती है।
जनरेटर के लिए, फील्ड करंट आउटपुट करंट से छोटा होता है। तदनुसार, क्षेत्र को रोटर पर चढ़ाया जाता है और स्लिप रिंग के माध्यम से आपूर्ति की जाती है। हाई-करंट स्लिपरिंग की आवश्यकता से बचते हुए, स्टेटर से आउटपुट करंट लिया जाता है। डीसी जनरेटर में, जो अब आम तौर पर रेक्टिफायर वाले एसी जनरेटर के पक्ष में अप्रचलित हैं, कम्यूटेशन की आवश्यकता का मतलब है कि ब्रशगियर और कम्यूटेटर की अभी भी आवश्यकता हो सकती है। इलेक्ट्रोप्लेटिंग में उपयोग किए जाने वाले उच्च-वर्तमान, कम-वोल्टेज जनरेटर के लिए, इसके लिए विशेष रूप से बड़े और जटिल ब्रशगियर की आवश्यकता हो सकती है।


== द्विध्रुवी और बहुध्रुवीय क्षेत्र ==
== द्विध्रुवी और बहुध्रुवीय क्षेत्र ==
<!-- "bipolar field" redirects here -->
{|align="right"
{|align="right"
|-
|-
Line 30: Line 29:
|[[Image:Gramme Ring - Four Pole Stator Field Flow.jpg|thumb|center|Field lines of a four-pole stator passing through a Gramme ring or drum rotor.]]
|[[Image:Gramme Ring - Four Pole Stator Field Flow.jpg|thumb|center|Field lines of a four-pole stator passing through a Gramme ring or drum rotor.]]
|}
|}
जनरेटर के विकास के प्रारंभिक वर्षों में, स्टेटर क्षेत्र एक एकल द्विध्रुवी विद्युत मोटर क्षेत्र से बाद के मल्टीपोल डिजाइन में विकासवादी सुधार के माध्यम से चला गया।
जनरेटर के विकास के प्रारंभिक वर्षों में, स्टेटर क्षेत्र एकल द्विध्रुवी विद्युत मोटर क्षेत्र से बाद के मल्टीपोल डिजाइन में विकासवादी सुधार के माध्यम से चला गया।


1890 से पहले द्विध्रुवी जनरेटर सार्वभौमिक थे लेकिन बाद के वर्षों में इसे बहुध्रुवीय क्षेत्र चुम्बकों द्वारा बदल दिया गया। द्विध्रुवी जनरेटर तब केवल बहुत छोटे आकार में बनाए जाते थे।<ref name="Hawkins">''[[Hawkins Electrical Guide]]'', Volume 1, Copyright 1917, Theo. Audel & Co., Chapter 14, Classes of Dynamo, page 182</ref>
1890 से पहले द्विध्रुवी जनरेटर सार्वभौमिक थे लेकिन बाद के वर्षों में इसे बहुध्रुवीय क्षेत्र चुम्बकों द्वारा बदल दिया गया। द्विध्रुवी जनरेटर तब केवल बहुत छोटे आकार में बनाए जाते थे।<ref name="Hawkins">''[[Hawkins Electrical Guide]]'', Volume 1, Copyright 1917, Theo. Audel & Co., Chapter 14, Classes of Dynamo, page 182</ref>
इन दो प्रमुख प्रकारों के बीच कदम का पत्थर परिणामी-ध्रुव द्विध्रुवी जनरेटर था, जिसमें स्टेटर के चारों ओर एक रिंग में दो फील्ड कॉइल व्यवस्थित थे।
इन दो प्रमुख प्रकारों के बीच कदम का पत्थर परिणामी-ध्रुव द्विध्रुवी जनरेटर था, जिसमें स्टेटर के चारों ओर रिंग में दो फील्ड कॉइल व्यवस्थित थे।


यह परिवर्तन आवश्यक था क्योंकि उच्च वोल्टेज छोटे तारों पर अधिक कुशलता से शक्ति संचारित करते हैं। आउटपुट वोल्टेज को बढ़ाने के लिए, एक डायरेक्ट करंट जनरेटर को तेजी से घूमना चाहिए, लेकिन एक निश्चित गति से परे यह बहुत बड़े पावर ट्रांसमिशन जनरेटर के लिए अव्यावहारिक है।
यह परिवर्तन आवश्यक था क्योंकि उच्च वोल्टेज छोटे तारों पर अधिक कुशलता से शक्ति संचारित करते हैं। आउटपुट वोल्टेज को बढ़ाने के लिए, डायरेक्ट करंट जनरेटर को तेजी से घूमना चाहिए, लेकिन निश्चित गति से परे यह बहुत बड़े पावर ट्रांसमिशन जनरेटर के लिए अव्यावहारिक है।


ग्राम रिंग के चारों ओर ध्रुव चेहरों की संख्या में वृद्धि करके, अंगूठी को एक मूल दो-ध्रुव जनरेटर की तुलना में एक क्रांति में बल की अधिक चुंबकीय रेखाओं में कटौती करने के लिए बनाया जा सकता है। नतीजतन, एक चार-पोल जनरेटर दो-पोल जनरेटर के दो बार वोल्टेज का उत्पादन कर सकता है, एक छह-पोल जनरेटर दो-पोल के तीन गुना वोल्टेज का उत्पादन कर सकता है, और आगे भी। यह घूर्णी दर को बढ़ाए बिना आउटपुट वोल्टेज को बढ़ाने की अनुमति देता है।
ग्राम रिंग के चारों ओर ध्रुव चेहरों की संख्या में वृद्धि करके, अंगूठी को मूल दो-ध्रुव जनरेटर की तुलना में क्रांति में बल की अधिक चुंबकीय रेखाओं में कटौती करने के लिए बनाया जा सकता है। नतीजतन, चार-पोल जनरेटर दो-पोल जनरेटर के दो बार वोल्टेज का उत्पादन कर सकता है, छह-पोल जनरेटर दो-पोल के तीन गुना वोल्टेज का उत्पादन कर सकता है, और आगे भी। यह घूर्णी दर को बढ़ाए बिना आउटपुट वोल्टेज को बढ़ाने की अनुमति देता है।


एक बहुध्रुवीय जनरेटर में, आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) और फील्ड मैग्नेट एक गोलाकार फ्रेम या रिंग योक से घिरे होते हैं जिससे फील्ड मैग्नेट जुड़े होते हैं। इसमें शक्ति, सरलता, सममित रूप और न्यूनतम चुंबकीय रिसाव के फायदे हैं, क्योंकि ध्रुव के टुकड़ों में कम से कम संभव सतह होती है और चुंबकीय प्रवाह का मार्ग दो-ध्रुव डिजाइन की तुलना में छोटा होता है।<ref name="Hawkins" />
बहुध्रुवीय जनरेटर में, आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) और फील्ड मैग्नेट गोलाकार फ्रेम या रिंग योक से घिरे होते हैं जिससे फील्ड मैग्नेट जुड़े होते हैं। इसमें शक्ति, सरलता, सममित रूप और न्यूनतम चुंबकीय रिसाव के फायदे हैं, क्योंकि ध्रुव के टुकड़ों में कम से कम संभव सतह होती है और चुंबकीय प्रवाह का मार्ग दो-ध्रुव डिजाइन की तुलना में छोटा होता है।<ref name="Hawkins" />




== घुमावदार सामग्री ==
== घुमावदार सामग्री ==
{{main article|windings}}
{{main article|windings}}
कॉइल आमतौर पर चुंबक तार तांबे के तार से लिपटे होते हैं, जिसे कभी-कभी चुंबक तार भी कहा जाता है। फ़ील्ड कॉइल द्वारा खपत की गई शक्ति को कम करने के लिए घुमावदार सामग्री में कम प्रतिरोध होना चाहिए, लेकिन ओमिक हीटिंग द्वारा उत्पादित अपशिष्ट गर्मी को कम करने के लिए अधिक महत्वपूर्ण है। वाइंडिंग्स में अत्यधिक गर्मी विफलता का एक सामान्य कारण है। तांबे की बढ़ती लागत के कारण, एल्यूमीनियम वाइंडिंग्स का तेजी से उपयोग किया जाता है।
कॉइल आमतौर पर चुंबक तार तांबे के तार से लिपटे होते हैं, जिसे कभी-कभी चुंबक तार भी कहा जाता है। फ़ील्ड कॉइल द्वारा खपत की गई शक्ति को कम करने के लिए घुमावदार सामग्री में कम प्रतिरोध होना चाहिए, लेकिन ओमिक हीटिंग द्वारा उत्पादित अपशिष्ट गर्मी को कम करने के लिए अधिक महत्वपूर्ण है। वाइंडिंग्स में अत्यधिक गर्मी विफलता का सामान्य कारण है। तांबे की बढ़ती लागत के कारण, एल्यूमीनियम वाइंडिंग्स का तेजी से उपयोग किया जाता है।


तांबे की तुलना में एक बेहतर सामग्री, इसकी उच्च लागत को छोड़कर, चांदी होगी क्योंकि इसकी प्रतिरोधकता और भी कम है। चांदी का उपयोग दुर्लभ मामलों में किया गया है। द्वितीय विश्व युद्ध के दौरान मैनहट्टन परियोजना ने पहले परमाणु बम का निर्माण करने के लिए यूरेनियम संवर्धन के लिए कैल्यूट्रॉन के रूप में ज्ञात विद्युत चुम्बकीय उपकरणों का उपयोग किया। उनके मैग्नेट के लिए अत्यधिक कुशल कम-प्रतिरोध क्षेत्र कॉइल बनाने के लिए अमेरिकी ट्रेजरी रिजर्व से हजारों टन चांदी उधार ली गई थी।<ref>{{cite journal
तांबे की तुलना में बेहतर सामग्री, इसकी उच्च लागत को छोड़कर, चांदी होगी क्योंकि इसकी प्रतिरोधकता और भी कम है। चांदी का उपयोग दुर्लभ मामलों में किया गया है। द्वितीय विश्व युद्ध के दौरान मैनहट्टन परियोजना ने पहले परमाणु बम का निर्माण करने के लिए यूरेनियम संवर्धन के लिए कैल्यूट्रॉन के रूप में ज्ञात विद्युत चुम्बकीय उपकरणों का उपयोग किया। उनके मैग्नेट के लिए अत्यधिक कुशल कम-प्रतिरोध क्षेत्र कॉइल बनाने के लिए अमेरिकी ट्रेजरी रिजर्व से हजारों टन चांदी उधार ली गई थी।<ref>{{cite journal
  |title      = The Silver Lining of the Calutrons
  |title      = The Silver Lining of the Calutrons
  |year        = 2002
  |year        = 2002
Line 70: Line 69:
{{Reflist|group=note|liststyle=lower-roman}}
{{Reflist|group=note|liststyle=lower-roman}}
{{Reflist|colwidth=30em}}
{{Reflist|colwidth=30em}}
{{electric motor}}
[[Category: बिजली]] [[Category: विद्युत चुंबकत्व]]  
[[Category: बिजली]] [[Category: विद्युत चुंबकत्व]]  



Revision as of 05:49, 23 November 2023

वैक्यूम क्लीनर से आधुनिक कम लागत वाली सार्वभौमिक मोटर। फील्ड वाइंडिंग्स गहरे तांबे के रंग की होती हैं, दोनों तरफ पीछे की ओर। रोटर का लैमिनेटेड कोर ग्रे मैटेलिक है, जिसमें कॉइल को घुमावदार करने के लिए डार्क स्लॉट हैं। कम्यूटेटर (आंशिक रूप से छिपा हुआ) उपयोग से काला हो गया है; यह सामने की ओर है। अग्रभूमि में बड़ा भूरा ढाला-प्लास्टिक का टुकड़ा ब्रश गाइड और ब्रश (दोनों तरफ), साथ ही सामने मोटर असर का समर्थन करता है।

फील्ड कॉइल इलेक्ट्रोमैग्नेट है जिसका उपयोग इलेक्ट्रो-मैग्नेटिक मशीन में चुंबकीय क्षेत्र उत्पन्न करने के लिए किया जाता है, आमतौर पर विद्युत मोटर या विद्युत जनरेटर जैसी घूर्णन विद्युत मशीन। इसमें तार का तार होता है जिसके माध्यम से करंट प्रवाहित होता है।

घूर्णन मशीन में, फ़ील्ड कॉइल लोहे के चुंबकीय कोर पर लपेटे जाते हैं जो चुंबकीय क्षेत्र रेखाओं का मार्गदर्शन करता है। चुंबकीय कोर दो भागों में है; स्टेटर जो स्थिर होता है, और रोटर (इलेक्ट्रिक), जो इसके भीतर घूमता है। चुंबकीय क्षेत्र रेखाएँ रोटर के माध्यम से स्टेटर से निरंतर लूप या चुंबकीय सर्किट में गुजरती हैं और फिर से स्टेटर के माध्यम से वापस आती हैं। फील्ड कॉइल्स स्टेटर या रोटर पर हो सकते हैं।

चुंबकीय पथ की विशेषता 'ध्रुव' है, जो रोटर के चारों ओर समान कोणों पर स्थित है, जिस पर चुंबकीय क्षेत्र रेखाएँ स्टेटर से रोटर या इसके विपरीत से गुजरती हैं। स्टेटर (और रोटर) को उनके ध्रुवों की संख्या से वर्गीकृत किया जाता है। अधिकांश व्यवस्थाएं प्रति पोल फील्ड कॉइल का उपयोग करती हैं। कुछ पुरानी या सरल व्यवस्थाओं में प्रत्येक सिरे पर पोल के साथ फील्ड कॉइल का उपयोग किया जाता है।

हालांकि फील्ड कॉइल आमतौर पर घूमने वाली मशीनों में पाए जाते हैं, उनका उपयोग भी किया जाता है, हालांकि हमेशा ही शब्दावली के साथ, कई अन्य विद्युत चुम्बकीय मशीनों में नहीं। इनमें मास स्पेक्ट्रोमीटर और परमाणु चुंबकीय अनुनाद जैसे जटिल प्रयोगशाला उपकरणों के माध्यम से सरल विद्युत चुम्बक शामिल हैं। हल्के स्थायी चुम्बकों की सामान्य उपलब्धता से पहले कभी लाउडस्पीकरों में फील्ड कॉइल का व्यापक रूप से उपयोग किया जाता था (अधिक के लिए फील्ड कॉइल लाउडस्पीकर देखें)।

फिक्स्ड और रोटेटिंग फील्ड्स

अधिकांश[note 1] डायरेक्ट करंट फील्ड कॉइल स्थिर, स्थिर क्षेत्र उत्पन्न करते हैं। अधिकांश तीन चरण विद्युत शक्ति | तीन चरण एसी फील्ड कॉइल्स का उपयोग प्रेरण मोटर के हिस्से के रूप में घूर्णन क्षेत्र उत्पन्न करने के लिए किया जाता है। सिंगल-फेज अल्टरनेटिंग करंट मोटर्स इनमें से किसी भी पैटर्न का अनुसरण कर सकती हैं: छोटी मोटरें आमतौर पर यूनिवर्सल मोटर्स होती हैं, जैसे कि कम्यूटेटर के साथ ब्रश की गई डीसी मोटर, लेकिन एसी से चलती हैं। बड़े एसी मोटर्स आमतौर पर इंडक्शन मोटर्स होते हैं, चाहे ये तीन- या सिंगल-फेज हों।

स्टेटर और रोटर्स

अनेक[note 1]रोटरी इलेक्ट्रिकल मशीनों को आमतौर पर स्लाइडिंग संपर्कों के माध्यम से: कम्यूटेटर (इलेक्ट्रिक) या पर्ची के छल्ले के माध्यम से चलने वाले रोटर को (या उससे निकालने) के लिए वर्तमान की आवश्यकता होती है। ये संपर्क अक्सर ऐसी मशीन का सबसे जटिल और कम से कम विश्वसनीय हिस्सा होते हैं, और मशीन द्वारा संभाली जा सकने वाली अधिकतम धारा को भी सीमित कर सकते हैं। इस कारण से, जब मशीनों को वाइंडिंग के दो सेटों का उपयोग करना चाहिए, तो कम से कम करंट वाले वाइंडिंग्स को आमतौर पर रोटर पर रखा जाता है और स्टेटर पर उच्चतम करंट वाले।

फ़ील्ड कॉइल्स को रोटर (इलेक्ट्रिक) या स्टेटर पर लगाया जा सकता है, जो इस बात पर निर्भर करता है कि डिवाइस डिज़ाइन के लिए कौन सी विधि सबसे अधिक लागत प्रभावी है।

ब्रश डीसी मोटर में क्षेत्र स्थिर होता है लेकिन आर्मेचर करंट को कम्यूटेट किया जाना चाहिए, ताकि लगातार घूमता रहे। यह कम्यूटेटर (इलेक्ट्रिक) के माध्यम से रोटर पर आर्मेचर वाइंडिंग की आपूर्ति करके किया जाता है, जो घूमने वाली स्लिप रिंग और स्विच का संयोजन है। एसी इंडक्शन मोटर्स स्टेटर पर फील्ड कॉइल्स का भी उपयोग करते हैं, रोटर पर वर्तमान गिलहरी पिंजरे रोटर में प्रेरण द्वारा आपूर्ति की जा रही है।

जनरेटर के लिए, फील्ड करंट आउटपुट करंट से छोटा होता है। तदनुसार, क्षेत्र को रोटर पर चढ़ाया जाता है और स्लिप रिंग के माध्यम से आपूर्ति की जाती है। हाई-करंट स्लिपरिंग की आवश्यकता से बचते हुए, स्टेटर से आउटपुट करंट लिया जाता है। डीसी जनरेटर में, जो अब आम तौर पर रेक्टिफायर वाले एसी जनरेटर के पक्ष में अप्रचलित हैं, कम्यूटेशन की आवश्यकता का मतलब है कि ब्रशगियर और कम्यूटेटर की अभी भी आवश्यकता हो सकती है। इलेक्ट्रोप्लेटिंग में उपयोग किए जाने वाले उच्च-वर्तमान, कम-वोल्टेज जनरेटर के लिए, इसके लिए विशेष रूप से बड़े और जटिल ब्रशगियर की आवश्यकता हो सकती है।

द्विध्रुवी और बहुध्रुवीय क्षेत्र

File:Modern Consequent-Pole Four-Field Shunt-Wound DC Generator.jpg
Consequent field, four-pole, shunt-wound DC generator
File:Gramme Ring - Four Pole Stator Field Flow.jpg
Field lines of a four-pole stator passing through a Gramme ring or drum rotor.

जनरेटर के विकास के प्रारंभिक वर्षों में, स्टेटर क्षेत्र एकल द्विध्रुवी विद्युत मोटर क्षेत्र से बाद के मल्टीपोल डिजाइन में विकासवादी सुधार के माध्यम से चला गया।

1890 से पहले द्विध्रुवी जनरेटर सार्वभौमिक थे लेकिन बाद के वर्षों में इसे बहुध्रुवीय क्षेत्र चुम्बकों द्वारा बदल दिया गया। द्विध्रुवी जनरेटर तब केवल बहुत छोटे आकार में बनाए जाते थे।[1] इन दो प्रमुख प्रकारों के बीच कदम का पत्थर परिणामी-ध्रुव द्विध्रुवी जनरेटर था, जिसमें स्टेटर के चारों ओर रिंग में दो फील्ड कॉइल व्यवस्थित थे।

यह परिवर्तन आवश्यक था क्योंकि उच्च वोल्टेज छोटे तारों पर अधिक कुशलता से शक्ति संचारित करते हैं। आउटपुट वोल्टेज को बढ़ाने के लिए, डायरेक्ट करंट जनरेटर को तेजी से घूमना चाहिए, लेकिन निश्चित गति से परे यह बहुत बड़े पावर ट्रांसमिशन जनरेटर के लिए अव्यावहारिक है।

ग्राम रिंग के चारों ओर ध्रुव चेहरों की संख्या में वृद्धि करके, अंगूठी को मूल दो-ध्रुव जनरेटर की तुलना में क्रांति में बल की अधिक चुंबकीय रेखाओं में कटौती करने के लिए बनाया जा सकता है। नतीजतन, चार-पोल जनरेटर दो-पोल जनरेटर के दो बार वोल्टेज का उत्पादन कर सकता है, छह-पोल जनरेटर दो-पोल के तीन गुना वोल्टेज का उत्पादन कर सकता है, और आगे भी। यह घूर्णी दर को बढ़ाए बिना आउटपुट वोल्टेज को बढ़ाने की अनुमति देता है।

बहुध्रुवीय जनरेटर में, आर्मेचर (इलेक्ट्रिकल इंजीनियरिंग) और फील्ड मैग्नेट गोलाकार फ्रेम या रिंग योक से घिरे होते हैं जिससे फील्ड मैग्नेट जुड़े होते हैं। इसमें शक्ति, सरलता, सममित रूप और न्यूनतम चुंबकीय रिसाव के फायदे हैं, क्योंकि ध्रुव के टुकड़ों में कम से कम संभव सतह होती है और चुंबकीय प्रवाह का मार्ग दो-ध्रुव डिजाइन की तुलना में छोटा होता है।[1]


घुमावदार सामग्री

कॉइल आमतौर पर चुंबक तार तांबे के तार से लिपटे होते हैं, जिसे कभी-कभी चुंबक तार भी कहा जाता है। फ़ील्ड कॉइल द्वारा खपत की गई शक्ति को कम करने के लिए घुमावदार सामग्री में कम प्रतिरोध होना चाहिए, लेकिन ओमिक हीटिंग द्वारा उत्पादित अपशिष्ट गर्मी को कम करने के लिए अधिक महत्वपूर्ण है। वाइंडिंग्स में अत्यधिक गर्मी विफलता का सामान्य कारण है। तांबे की बढ़ती लागत के कारण, एल्यूमीनियम वाइंडिंग्स का तेजी से उपयोग किया जाता है।

तांबे की तुलना में बेहतर सामग्री, इसकी उच्च लागत को छोड़कर, चांदी होगी क्योंकि इसकी प्रतिरोधकता और भी कम है। चांदी का उपयोग दुर्लभ मामलों में किया गया है। द्वितीय विश्व युद्ध के दौरान मैनहट्टन परियोजना ने पहले परमाणु बम का निर्माण करने के लिए यूरेनियम संवर्धन के लिए कैल्यूट्रॉन के रूप में ज्ञात विद्युत चुम्बकीय उपकरणों का उपयोग किया। उनके मैग्नेट के लिए अत्यधिक कुशल कम-प्रतिरोध क्षेत्र कॉइल बनाने के लिए अमेरिकी ट्रेजरी रिजर्व से हजारों टन चांदी उधार ली गई थी।[2][3]


यह भी देखें

  • उत्तेजना (चुंबकीय)

संदर्भ

  1. 1.0 1.1 Field coils are found in a vast array of electrical machines and so any attempt to categorise them in a readable manner is likely to exclude some obscure examples.
  1. 1.0 1.1 Hawkins Electrical Guide, Volume 1, Copyright 1917, Theo. Audel & Co., Chapter 14, Classes of Dynamo, page 182
  2. "The Silver Lining of the Calutrons". ORNL Review. Oak Ridge National Lab. 2002. Archived from the original on 2008-12-06.
  3. Smith, D. Ray (2006). "Miller, key to obtaining 14,700 tons of silver Manhattan Project". Oak Ridger. Archived from the original on 2007-12-17.