ब्रह्माण्ड संबंधी विक्षोभ सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
* गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत हाइपर-सतहों के साथ अंतरिक्ष-समय को जोड़ने पर आधारित है, और
* गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत हाइपर-सतहों के साथ अंतरिक्ष-समय को जोड़ने पर आधारित है, और
* 1+3 सहसंयोजक गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत फ्रेम के साथ अंतरिक्ष-समय को पिरोने पर आधारित है
* 1+3 सहसंयोजक गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत फ्रेम के साथ अंतरिक्ष-समय को पिरोने पर आधारित है
*'''+3 सहसंयोजक गेज-अपरिवर्त'''
*'''+3 सहसंयोजक गेज-अपरिवर्तके साथ अंतरिक्ष-समय को पिरोने पर आधारित'''  


== न्यूटोनियन गड़बड़ी सिद्धांत ==
== न्यूटोनियन गड़बड़ी सिद्धांत ==
Line 15: Line 15:
:जहाँ <math>a</math> स्केल_फैक्टर_(ब्रह्मांड विज्ञान) और  <math>\vec v</math> विचित्र वेग है। चूँकि हम इसे स्पष्ट रूप से नहीं लिखते हैं, सभी चर का मूल्यांकन समय <math>t</math> पर किया जाता है और विचलन <math>\nabla</math> कोमोविंग निर्देशांक में है। दूसरा, संवेग संरक्षण हमें यूलर समीकरण देता है
:जहाँ <math>a</math> स्केल_फैक्टर_(ब्रह्मांड विज्ञान) और  <math>\vec v</math> विचित्र वेग है। चूँकि हम इसे स्पष्ट रूप से नहीं लिखते हैं, सभी चर का मूल्यांकन समय <math>t</math> पर किया जाता है और विचलन <math>\nabla</math> कोमोविंग निर्देशांक में है। दूसरा, संवेग संरक्षण हमें यूलर समीकरण देता है
:<math>\rho\frac{\text{d}\vec u}{\text{d}t} = \rho\left(\frac{\partial}{\partial t} + \frac{1}{a}\vec v \cdot \nabla\right)\vec u = -\frac{1}{a}\nabla P - \frac{1}{a}\rho \nabla \Phi~,</math>
:<math>\rho\frac{\text{d}\vec u}{\text{d}t} = \rho\left(\frac{\partial}{\partial t} + \frac{1}{a}\vec v \cdot \nabla\right)\vec u = -\frac{1}{a}\nabla P - \frac{1}{a}\rho \nabla \Phi~,</math>
कहाँ <math>\Phi</math> गुरुत्वाकर्षण क्षमता है. अंत में, हम जानते हैं कि न्यूटोनियन गुरुत्वाकर्षण के लिए, क्षमता पॉइसन समीकरण का पालन करती है
जहाँ <math>\Phi</math> गुरुत्वाकर्षण क्षमता है। अंत में, हम जानते हैं कि न्यूटोनियन गुरुत्वाकर्षण के लिए, क्षमता पॉइसन समीकरण का पालन करती है
:<math>\frac{1}{a^2}\nabla^2 \Phi = 4\pi G \rho~.</math> अब तक, हमारे समीकरण पूरी तरह से अरेखीय हैं, और सहज रूप से व्याख्या करना कठिन हो सकता है। इसलिए विक्षुब्ध विस्तार पर विचार करना और प्रत्येक आदेश की अलग से जांच करना उपयोगी है। हम निम्नलिखित अपघटन का उपयोग करते हैं
:<math>\frac{1}{a^2}\nabla^2 \Phi = 4\pi G \rho~.</math>  
:अब तक, हमारे समीकरण पूरी तरह से अरेखीय हैं, और सहज रूप से व्याख्या करना कठिन हो सकता है। इसलिए विक्षुब्ध विस्तार पर विचार करना और प्रत्येक आदेश की अलग से जांच करना उपयोगी है। हम निम्नलिखित अपघटन का उपयोग करते हैं
:<math>\rho = \bar\rho(1+\delta)~,~\vec u = Ha \vec x +\vec v~, ~ P = \bar P + \delta P ~, ~ \Phi = \bar \Phi + \delta \Phi~</math>
:<math>\rho = \bar\rho(1+\delta)~,~\vec u = Ha \vec x +\vec v~, ~ P = \bar P + \delta P ~, ~ \Phi = \bar \Phi + \delta \Phi~</math>
कहाँ <math>\vec x</math> गतिमान समन्वय है।
जहाँ <math>\vec x</math> गतिमान समन्वय है।


रैखिक क्रम में, निरंतरता समीकरण बन जाता है
रैखिक क्रम में, निरंतरता समीकरण बन जाता है
:<math>\dot \delta = -\frac{1}{a}\theta~,</math>
:<math>\dot \delta = -\frac{1}{a}\theta~,</math>
कहाँ <math>\theta\equiv \nabla \cdot \vec v</math> वेग विचलन है. और रैखिक यूलर समीकरण है
जहाँ <math>\theta\equiv \nabla \cdot \vec v</math> वेग विचलन है. और रैखिक यूलर समीकरण है
:<math>\bar\rho \left(\dot{\vec v} + H \vec v\right) = -\frac{1}{a} \nabla \delta P - \frac{1}{a}\bar\rho \nabla \delta \Phi~.</math>
:<math>\bar\rho \left(\dot{\vec v} + H \vec v\right) = -\frac{1}{a} \nabla \delta P - \frac{1}{a}\bar\rho \nabla \delta \Phi~.</math>
रैखिक निरंतरता, यूलर और पॉइसन समीकरणों को मिलाकर, हम विकास को नियंत्रित करने वाले सरल मास्टर समीकरण पर पहुंचते हैं
रैखिक निरंतरता, यूलर और पॉइसन समीकरणों को मिलाकर, हम विकास को नियंत्रित करने वाले सरल मास्टर समीकरण पर पहुंचते हैं
:<math>\left(\frac{\partial^2}{\partial^2 t} + 2H \frac{\partial}{\partial t} - c_s^2 \frac{1}{a}\nabla^2 - 4\pi G \bar \rho \right)\delta = 0~,</math>
:<math>\left(\frac{\partial^2}{\partial^2 t} + 2H \frac{\partial}{\partial t} - c_s^2 \frac{1}{a}\nabla^2 - 4\pi G \bar \rho \right)\delta = 0~,</math>
जहां हमने [[ध्वनि की गति]] को परिभाषित किया <math>c_s^2 \equiv \delta P / \bar \rho \delta~</math> हमें क्लोजर_(गणित) देने के लिए। यह मास्टर समीकरण तरंग समाधानों को स्वीकार करता है <math>\delta(\vec x, t)</math> जो हमें बताते हैं कि प्रतिस्पर्धी प्रभावों के संयोजन के कारण समय के साथ पदार्थ में उतार-चढ़ाव कैसे बढ़ता है - उतार-चढ़ाव का आत्म-गुरुत्वाकर्षण, दबाव बल, ब्रह्मांड का विस्तार और पृष्ठभूमि गुरुत्वाकर्षण क्षेत्र।
जहां हमने [[ध्वनि की गति]] <math>c_s^2 \equiv \delta P / \bar \rho \delta~</math> को परिभाषित किया हमें क्लोजर_(गणित) देने के लिए। यह मास्टर समीकरण <math>\delta(\vec x, t)</math> तरंग समाधानों को स्वीकार करता है जो हमें बताते हैं कि प्रतिस्पर्धी प्रभावों के संयोजन के कारण समय के साथ पदार्थ में उतार-चढ़ाव कैसे बढ़ता है - उतार-चढ़ाव का आत्म-गुरुत्वाकर्षण, दबाव बल, ब्रह्मांड का विस्तार और पृष्ठभूमि गुरुत्वाकर्षण क्षेत्र।


== गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत ==
== गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत ==

Revision as of 21:14, 29 November 2023

भौतिक ब्रह्माण्ड विज्ञान में, ब्रह्माण्ड संबंधी गड़बड़ी सिद्धांत [1][2][3][4][5] वह सिद्धांत है जिसके द्वारा महा विस्फोट मॉडल में संरचना के विकास को समझा जाता है। ब्रह्माण्ड संबंधी गड़बड़ी सिद्धांत को दो श्रेणियों में विभाजित किया जा सकता है: मौलिक यांत्रिकी या सामान्य सापेक्षता। प्रत्येक स्थिति गुरुत्वाकर्षण और दबाव बलों की गणना करने के लिए अपने शासी समीकरणों का उपयोग करता है जो छोटे गड़बड़ी को बढ़ने का कारण बनता है और अंततः स्टार संरचनाओं, क्वासर , आकाशगंगा निर्माण और आकाशगंगाओं के समूह के गठन का कारण बनता है। दोनों स्थितियाँ केवल उन स्थितियों पर प्रयुक्त होते हैं जहां ब्रह्मांड मुख्य रूप से सजातीय है, जैसे कि ब्रह्मांडीय इंफ्लेशन और बिग बैंग के बड़े भागो के समय। माना जाता है कि ब्रह्मांड अभी भी इतना सजातीय है कि सिद्धांत सबसे बड़े पैमाने पर अच्छा अनुमान है, किंतु छोटे पैमाने पर अधिक सम्मिलित विधियाँ, जैसे एन-बॉडी सिमुलेशन का उपयोग किया जाना चाहिए। गड़बड़ी सिद्धांत के लिए सामान्य सापेक्षता का उपयोग करने का निर्णय लेते समय, ध्यान दें कि न्यूटोनियन भौतिकी केवल कुछ स्थितियों में ही प्रयुक्त होती है जैसे कि हबल क्षितिज से छोटे पैमाने के लिए, जहां स्पेसटाइम पर्याप्त रूप से सपाट है, और जिसके लिए गति गैर-सापेक्षतावादी है।

सामान्य सापेक्षता के गेज अपरिवर्तनीयता के कारण, ब्रह्माण्ड संबंधी गड़बड़ी सिद्धांत का सही सूत्रीकरण सूक्ष्म है। विशेष रूप से, अमानवीय स्पेसटाइम का वर्णन करते समय, अधिकांशतः कोई इच्छानुसार समन्वय विकल्प नहीं होता है। वर्तमान में मौलिक सामान्य सापेक्षता में गड़बड़ी सिद्धांत के दो अलग-अलग दृष्टिकोण हैं:

  • गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत हाइपर-सतहों के साथ अंतरिक्ष-समय को जोड़ने पर आधारित है, और
  • 1+3 सहसंयोजक गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत फ्रेम के साथ अंतरिक्ष-समय को पिरोने पर आधारित है
  • +3 सहसंयोजक गेज-अपरिवर्तके साथ अंतरिक्ष-समय को पिरोने पर आधारित

न्यूटोनियन गड़बड़ी सिद्धांत

इस अनुभाग में, हम यूलर_समीकरण_(द्रव_गतिकी) में संरचना निर्माण पर पदार्थ के प्रभाव पर ध्यान केंद्रित करेंगे। यह व्यवस्था उपयोगी है क्योंकि ब्रह्मांड के अधिकांश इतिहास में गहरे द्रव्य संरचना विकास पर हावी रहा है। इस शासन में, हम उप-हबल पैमाने (जहाँ हबल पैरामीटर है) पर हैं इसलिए हम स्पेसटाइम को समतल मान सकते हैं, और सामान्य सापेक्षतावादी सुधारों को अनदेखा कर सकते हैं। किंतु ये पैमाने कट-ऑफ से ऊपर हैं, जैसे कि दबाव और घनत्व में गड़बड़ी पर्याप्त रूप से रैखिक है इसके बाद आगे हम निम्न दबाव मानते हैं जिससे हम विकिरण प्रभाव और कम गति की उपेक्षा कर सकें इसलिए हम गैर-सापेक्षवादी शासन में हैं।

पहला नियामक समीकरण पदार्थ संरक्षण से आता है - निरंतरता समीकरण[6]

जहाँ स्केल_फैक्टर_(ब्रह्मांड विज्ञान) और विचित्र वेग है। चूँकि हम इसे स्पष्ट रूप से नहीं लिखते हैं, सभी चर का मूल्यांकन समय पर किया जाता है और विचलन कोमोविंग निर्देशांक में है। दूसरा, संवेग संरक्षण हमें यूलर समीकरण देता है

जहाँ गुरुत्वाकर्षण क्षमता है। अंत में, हम जानते हैं कि न्यूटोनियन गुरुत्वाकर्षण के लिए, क्षमता पॉइसन समीकरण का पालन करती है

अब तक, हमारे समीकरण पूरी तरह से अरेखीय हैं, और सहज रूप से व्याख्या करना कठिन हो सकता है। इसलिए विक्षुब्ध विस्तार पर विचार करना और प्रत्येक आदेश की अलग से जांच करना उपयोगी है। हम निम्नलिखित अपघटन का उपयोग करते हैं

जहाँ गतिमान समन्वय है।

रैखिक क्रम में, निरंतरता समीकरण बन जाता है

जहाँ वेग विचलन है. और रैखिक यूलर समीकरण है

रैखिक निरंतरता, यूलर और पॉइसन समीकरणों को मिलाकर, हम विकास को नियंत्रित करने वाले सरल मास्टर समीकरण पर पहुंचते हैं

जहां हमने ध्वनि की गति को परिभाषित किया हमें क्लोजर_(गणित) देने के लिए। यह मास्टर समीकरण तरंग समाधानों को स्वीकार करता है जो हमें बताते हैं कि प्रतिस्पर्धी प्रभावों के संयोजन के कारण समय के साथ पदार्थ में उतार-चढ़ाव कैसे बढ़ता है - उतार-चढ़ाव का आत्म-गुरुत्वाकर्षण, दबाव बल, ब्रह्मांड का विस्तार और पृष्ठभूमि गुरुत्वाकर्षण क्षेत्र।

गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत

गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत बार्डीन (1980) के विकास पर आधारित है।[7] कोडामा योजना डी सासाकी (1984)[8] लाइफशिट्ज़ (1946) के काम पर निर्माण।[9] यह ब्रह्मांड विज्ञान के लिए सामान्य सापेक्षता के गड़बड़ी सिद्धांत का मानक दृष्टिकोण है।[10] ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि विकिरण में अनिसोट्रॉपियों की गणना के लिए इस दृष्टिकोण का व्यापक रूप से उपयोग किया जाता है[11] भौतिक ब्रह्माण्ड विज्ञान कार्यक्रम के भाग के रूप में और रेखीयकरण से उत्पन्न होने वाली भविष्यवाणियों पर ध्यान केंद्रित करता है जो फ्रीडमैन-लेमेत्रे-रॉबर्टसन-वॉकर (एफएलआरडब्ल्यू) मॉडल के संबंध में गेज अपरिवर्तनीयता को संरक्षित करता है। यह दृष्टिकोण एनालॉग की तरह न्यूटोनियनवाद के उपयोग पर भारी पड़ता है और आमतौर पर इसका शुरुआती बिंदु एफआरडब्ल्यू पृष्ठभूमि होता है जिसके आसपास गड़बड़ी विकसित होती है। दृष्टिकोण गैर-स्थानीय है और समन्वय पर निर्भर है किंतु गेज अपरिवर्तनीय है क्योंकि परिणामी रैखिक ढांचा पृष्ठभूमि हाइपर-सतहों के निर्दिष्ट परिवार से बनाया गया है जो अंतरिक्ष-समय को फोलेट करने के लिए गेज संरक्षित मैपिंग से जुड़े हुए हैं। हालांकि सहज ज्ञान युक्त यह दृष्टिकोण सामान्य सापेक्षता के लिए स्वाभाविक गैर-रैखिकताओं से अच्छी तरह निपट नहीं पाता है।

1+3 सहसंयोजक गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत

सापेक्षतावादी ब्रह्माण्ड विज्ञान में एहलर्स (1971) के लैग्रेन्जियन थ्रेडिंग डायनामिक्स का उपयोग करते हुए[12] और एलिस (1971)[13] हॉकिंग (1966) द्वारा विकसित गेज-अपरिवर्तनीय सहसंयोजक गड़बड़ी सिद्धांत का उपयोग करना सामान्य है[14] और एलिस और ब्रूनी (1989)।[15] यहां पृष्ठभूमि से शुरू करने और उस पृष्ठभूमि से विचलित होने के बजाय, व्यक्ति पूर्ण सामान्य सापेक्षता से शुरू करता है और व्यवस्थित रूप से सिद्धांत को विशेष पृष्ठभूमि के आसपास रैखिक तक कम कर देता है।[16] दृष्टिकोण स्थानीय है और दोनों सहसंयोजक और साथ ही गेज अपरिवर्तनीय है, किंतु गैर-रैखिक हो सकता है क्योंकि दृष्टिकोण स्थानीय कॉमोविंग पर्यवेक्षक फ्रेम ( फ़्रेम बंडल देखें) के आसपास बनाया गया है जिसका उपयोग पूरे अंतरिक्ष-समय को थ्रेड करने के लिए किया जाता है। गड़बड़ी सिद्धांत के प्रति यह दृष्टिकोण विभेदक समीकरणों का निर्माण करता है जो स्वतंत्रता की वास्तविक भौतिक डिग्री का वर्णन करने के लिए आवश्यक सही क्रम के होते हैं और इस तरह कोई गैर-भौतिक गेज मोड मौजूद नहीं होता है। सिद्धांत को समन्वय मुक्त ढंग से व्यक्त करना सामान्य बात है। गैसों के गतिज सिद्धांत के अनुप्रयोगों के लिए, क्योंकि पूर्ण स्पर्शरेखा बंडल का उपयोग करना आवश्यक है, सापेक्षतावादी ब्रह्मांड विज्ञान के टेट्राड (सामान्य सापेक्षता) सूत्रीकरण का उपयोग करना सुविधाजनक हो जाता है। ब्रह्मांडीय माइक्रोवेव पृष्ठभूमि विकिरण में अनिसोट्रॉपियों की गणना के लिए इस दृष्टिकोण का अनुप्रयोग[17] थॉर्न (1980) द्वारा विकसित पूर्ण सापेक्षतावादी गतिज सिद्धांत के रैखिककरण की आवश्यकता है[18] और एलिस, मैट्रावर्स और ट्रेसियोकास (1983)।[19]

गेज स्वतंत्रता और फ्रेम फिक्सिंग

सापेक्षतावादी ब्रह्माण्ड विज्ञान में थ्रेडिंग फ्रेम के चुनाव से जुड़ी स्वतंत्रता है; यह फ़्रेम चयन निर्देशांक से संबंधित चयन से भिन्न है। इस फ़्रेम को चुनना एक-दूसरे में मैप की गई समय-समान विश्व रेखाओं की पसंद को ठीक करने के बराबर है। इससे गेज की स्वतंत्रता कम हो जाती है; यह गेज को ठीक नहीं करता है किंतु शेष गेज स्वतंत्रता के तहत सिद्धांत गेज अपरिवर्तनीय रहता है। गेज को ठीक करने के लिए वास्तविक ब्रह्मांड (परेशान) और पृष्ठभूमि ब्रह्मांड में समय सतहों के बीच पत्राचार के विनिर्देश की आवश्यकता होती है, साथ ही पृष्ठभूमि और वास्तविक ब्रह्मांड में प्रारंभिक अंतरिक्ष जैसी सतहों पर बिंदुओं के बीच पत्राचार की आवश्यकता होती है। यह गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत और गेज-अपरिवर्तनीय सहसंयोजक गड़बड़ी सिद्धांत के बीच की कड़ी है। गेज अपरिवर्तनीयता की गारंटी केवल तभी होती है जब फ्रेम का चयन पृष्ठभूमि के साथ बिल्कुल मेल खाता हो; आमतौर पर यह सुनिश्चित करना मामूली बात है क्योंकि भौतिक फ़्रेमों में यह गुण होता है।

न्यूटोनियन जैसे समीकरण

न्यूटोनियन-जैसे समीकरण न्यूटोनियन गेज की पसंद के साथ परेशान सामान्य सापेक्षता से उभरते हैं; न्यूटोनियन गेज आमतौर पर गेज-अपरिवर्तनीय गड़बड़ी सिद्धांत में उपयोग किए जाने वाले चर और अधिक सामान्य गेज-अपरिवर्तनीय सहसंयोजक गड़बड़ी सिद्धांत से उत्पन्न होने वाले चर के बीच सीधा लिंक प्रदान करता है।

यह भी देखें

  • प्रारंभिक उतार-चढ़ाव
  • कॉस्मिक माइक्रोवेव पृष्ठभूमि वर्णक्रमीय विकृतियाँ

संदर्भ

  1. Fry, J. N. (April 1984). "गड़बड़ी सिद्धांत में गैलेक्सी सहसंबंध पदानुक्रम". The Astrophysical Journal. 279: 499. Bibcode:1984ApJ...279..499F. doi:10.1086/161913.
  2. Bharadwaj, Somnath (June 1994). "Perturbative growth of cosmological clustering. I: Formalism". The Astrophysical Journal (in English). 428: 419. Bibcode:1994ApJ...428..419B. doi:10.1086/174254. ISSN 0004-637X.
  3. Bharadwaj, Somnath (March 1996). "ब्रह्माण्ड संबंधी क्लस्टरिंग का क्रमिक विकास। द्वितीय. दो-बिंदु सहसंबंध". The Astrophysical Journal. 460: 28–50. arXiv:astro-ph/9511085. Bibcode:1996ApJ...460...28B. doi:10.1086/176950. S2CID 17179734.
  4. Bharadwaj, Somnath (20 November 1996). "ज़ेल्डोविच सन्निकटन में सहसंबंध कार्यों का विकास और गड़बड़ी सिद्धांत की वैधता के लिए इसके निहितार्थ". The Astrophysical Journal. 472 (1): 1–13. arXiv:astro-ph/9606121. Bibcode:1996ApJ...472....1B. doi:10.1086/178036.
  5. Dodelson, Scott; Schmidt, Fabian (2020). आधुनिक ब्रह्माण्ड विज्ञान (2 ed.). Academic Press. Bibcode:2020moco.book.....D. doi:10.1016/C2017-0-01943-2. ISBN 978-0-12-815948-4. S2CID 241570171.
  6. Baumann, Daniel (2022). ब्रह्मांड विज्ञान. Cambridge University Press. doi:10.1017/9781108937092. ISBN 9781108838078.
  7. Bardeen, James M. (1980-10-15). "गेज-अपरिवर्तनीय ब्रह्माण्ड संबंधी गड़बड़ी". Physical Review D. American Physical Society (APS). 22 (8): 1882–1905. Bibcode:1980PhRvD..22.1882B. doi:10.1103/physrevd.22.1882. ISSN 0556-2821.
  8. Kodama, Hideo; Sasaki, Misao (1984). "ब्रह्माण्ड संबंधी गड़बड़ी सिद्धांत". Progress of Theoretical Physics Supplement. Oxford University Press (OUP). 78: 1–166. Bibcode:1984PThPS..78....1K. doi:10.1143/ptps.78.1. ISSN 0375-9687.
  9. Lifshitz E M (1946) J. Phys. (USSR), 10, 116
  10. Mukhanov, V (1992). "ब्रह्माण्ड संबंधी गड़बड़ी का सिद्धांत". Physics Reports. Elsevier BV. 215 (5–6): 203–333. Bibcode:1992PhR...215..203M. doi:10.1016/0370-1573(92)90044-z. ISSN 0370-1573.
  11. Hu W, Sugiyama N (1995). "सीएमबी अनिसोट्रॉपियों और उनके प्रभावों को समझने की दिशा में". Physical Review D. 51 (6): 2599–2630. arXiv:astro-ph/9411008. Bibcode:1995PhRvD..51.2599H. doi:10.1103/PhysRevD.51.2599. PMID 10018735. S2CID 12811112.
  12. Ehlers J (1971) General Relativity and Cosmology (Varenna), R K Sachs (Academic Press NY)
  13. Ellis G F R, (1971) General Relativity and Cosmology(Varenna), R K Sachs (Academic Press NY)
  14. Hawking S W (1966) ApJ. 145, 44
  15. Ellis, G. F. R.; Bruni, M. (1989-09-15). "ब्रह्माण्ड संबंधी घनत्व में उतार-चढ़ाव के लिए सहसंयोजक और गेज-अपरिवर्तनीय दृष्टिकोण". Physical Review D. American Physical Society (APS). 40 (6): 1804–1818. Bibcode:1989PhRvD..40.1804E. doi:10.1103/physrevd.40.1804. ISSN 0556-2821. PMID 10012011.
  16. Tsagas, C. G.; Challinor, A; Maartens, R (2008). "सापेक्षतावादी ब्रह्माण्ड विज्ञान और बड़े पैमाने की संरचना". Physics Reports. 465 (2–3): 61–147. arXiv:0705.4397. Bibcode:2008PhR...465...61T. doi:10.1016/j.physrep.2008.03.003. ISSN 0370-1573. S2CID 119121482.
  17. Maartens R, Gebbie T, Ellis GF (1999). "Cosmic microwave background anisotropies: Nonlinear dynamics". Physical Review D. 59 (8): 083506. arXiv:astro-ph/9808163. Bibcode:1999PhRvD..59h3506M. doi:10.1103/PhysRevD.59.083506. S2CID 119444449.
  18. Thorne, Kip S. (1980-04-01). "गुरुत्वीय विकिरण का बहुध्रुवीय विस्तार" (PDF). Reviews of Modern Physics. American Physical Society (APS). 52 (2): 299–339. Bibcode:1980RvMP...52..299T. doi:10.1103/revmodphys.52.299. ISSN 0034-6861.
  19. Ellis, G.F.R; Treciokas, R; Matravers, D.R (1983). "आइंस्टीन-बोल्ट्ज़मैन समीकरणों के अनिसोट्रोपिक समाधान। द्वितीय. समीकरणों के कुछ सटीक गुण". Annals of Physics. Elsevier BV. 150 (2): 487–503. Bibcode:1983AnPhy.150..487E. doi:10.1016/0003-4916(83)90024-6. ISSN 0003-4916.

ग्रन्थसूची

See physical cosmology textbooks.

बाहरी संबंध

  • Ellis, George F. R.; van Elst, Henk (1999). "Cosmological models". In Marc Lachièze-Rey (ed.). Theoretical and Observational Cosmology: Proceedings of the NATO Advanced Study Institute on Theoretical and Observational Cosmology. Cargèse Lectures 1998. NATO Science Series: Series C. Vol. 541. Kluwer Academic. pp. 1–116. arXiv:gr-qc/9812046. Bibcode:1999ASIC..541....1E.