स्रोत क्षेत्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:
<math>\delta J=\int \mathcal{D}\phi ~ e^{-i\int dt ~ J(t)\phi(t)}</math>.
<math>\delta J=\int \mathcal{D}\phi ~ e^{-i\int dt ~ J(t)\phi(t)}</math>.


इसके अतिरिक्त, एक स्रोत स्पेसटाइम के क्षेत्र में प्रभावी रूप से कार्य करता है।<ref name=":2">{{Cite book |last=Toms |first=David J. |url=https://www.cambridge.org/core/product/identifier/9780511585913/type/book |title=श्विंगर एक्शन सिद्धांत और प्रभावी कार्रवाई|date=2007-11-15 |publisher=Cambridge University Press |isbn=978-0-521-87676-6 |edition=1 |doi=10.1017/cbo9780511585913.008}}</ref> जैसा कि नीचे दिए गए उदाहरणों में देखा जा सकता है, स्रोत क्षेत्र <math>\phi</math> के लिए गति के समीकरणों (सामान्यतः दूसरे क्रम के आंशिक अंतर समीकरण) के दाईं ओर दिखाई देता है . जब क्षेत्र <math>\phi</math> [[विद्युत चुम्बकीय क्षमता]] या [[मीट्रिक टेंसर]] है, स्रोत क्षेत्र क्रमशः [[विद्युत प्रवाह]] या तनाव-ऊर्जा टेंसर है।<ref name=":3">{{Cite book |last=Zee |first=A. |title=संक्षेप में क्वांटम क्षेत्र सिद्धांत|date=2010 |publisher=Princeton University Press |isbn=978-0-691-14034-6 |edition=2nd |location=Princeton, N.J. |oclc=318585662}}</ref><ref>{{Cite journal |last=Weinberg |first=Steven |date=1965-05-24 |title=Photons and Gravitons in Perturbation Theory: Derivation of Maxwell's and Einstein's Equations |url=https://link.aps.org/doi/10.1103/PhysRev.138.B988 |journal=Physical Review |language=en |volume=138 |issue=4B |pages=B988–B1002 |doi=10.1103/PhysRev.138.B988 |issn=0031-899X}}</ref>
इसके अतिरिक्त, एक स्रोत स्पेसटाइम के क्षेत्र में प्रभावी रूप से कार्य करता है।<ref name=":2">{{Cite book |last=Toms |first=David J. |url=https://www.cambridge.org/core/product/identifier/9780511585913/type/book |title=श्विंगर एक्शन सिद्धांत और प्रभावी कार्रवाई|date=2007-11-15 |publisher=Cambridge University Press |isbn=978-0-521-87676-6 |edition=1 |doi=10.1017/cbo9780511585913.008}}</ref> जैसा कि नीचे दिए गए उदाहरणों में देखा जा सकता है, स्रोत क्षेत्र <math>\phi</math> के लिए गति के समीकरणों (सामान्यतः दूसरे क्रम के आंशिक अंतर समीकरण) के दाईं ओर दिखाई देता है. जब क्षेत्र <math>\phi</math> [[विद्युत चुम्बकीय क्षमता]] या [[मीट्रिक टेंसर]] है, स्रोत क्षेत्र क्रमशः [[विद्युत प्रवाह]] या तनाव-ऊर्जा टेंसर है।<ref name=":3">{{Cite book |last=Zee |first=A. |title=संक्षेप में क्वांटम क्षेत्र सिद्धांत|date=2010 |publisher=Princeton University Press |isbn=978-0-691-14034-6 |edition=2nd |location=Princeton, N.J. |oclc=318585662}}</ref><ref>{{Cite journal |last=Weinberg |first=Steven |date=1965-05-24 |title=Photons and Gravitons in Perturbation Theory: Derivation of Maxwell's and Einstein's Equations |url=https://link.aps.org/doi/10.1103/PhysRev.138.B988 |journal=Physical Review |language=en |volume=138 |issue=4B |pages=B988–B1002 |doi=10.1103/PhysRev.138.B988 |issn=0031-899X}}</ref>


सांख्यिकीय और गैर-सापेक्षतावादी अनुप्रयोगों के संदर्भ में, श्विंगर का स्रोत सूत्रीकरण कई गैर-संतुलन प्रणालियों को समझने में महत्वपूर्ण नियम निभाता है।<ref>{{Cite journal |last=Schwinger |first=Julian |date=May 1961 |title=क्वांटम ऑसिलेटर की ब्राउनियन गति|url=https://pubs.aip.org/aip/jmp/article/2/3/407-432/224719 |journal=Journal of Mathematical Physics |language=en |volume=2 |issue=3 |pages=407–432 |doi=10.1063/1.1703727 |issn=0022-2488}}</ref><ref>{{Cite book |last=Kamenev |first=Alex |title=गैर-संतुलन प्रणालियों का क्षेत्र सिद्धांत|date=2011 |isbn=978-1-139-11485-1 |location=Cambridge |oclc=760413528}}</ref> स्रोत सिद्धांत सैद्धांतिक रूप से महत्वपूर्ण है क्योंकि इसमें न तो विचलन नियमितीकरण और न ही पुनर्सामान्यीकरण की आवश्यकता है।<ref name=":0" />
सांख्यिकीय और गैर-सापेक्षतावादी अनुप्रयोगों के संदर्भ में, श्विंगर का स्रोत सूत्रीकरण कई गैर-संतुलन प्रणालियों को समझने में महत्वपूर्ण नियम निभाता है।<ref>{{Cite journal |last=Schwinger |first=Julian |date=May 1961 |title=क्वांटम ऑसिलेटर की ब्राउनियन गति|url=https://pubs.aip.org/aip/jmp/article/2/3/407-432/224719 |journal=Journal of Mathematical Physics |language=en |volume=2 |issue=3 |pages=407–432 |doi=10.1063/1.1703727 |issn=0022-2488}}</ref><ref>{{Cite book |last=Kamenev |first=Alex |title=गैर-संतुलन प्रणालियों का क्षेत्र सिद्धांत|date=2011 |isbn=978-1-139-11485-1 |location=Cambridge |oclc=760413528}}</ref> स्रोत सिद्धांत सैद्धांतिक रूप से महत्वपूर्ण है क्योंकि इसमें न तो विचलन नियमितीकरण और न ही पुनर्सामान्यीकरण की आवश्यकता है।<ref name=":0" />
Line 15: Line 15:


== पथ अभिन्न सूत्रीकरण और स्रोत सूत्रीकरण के बीच संबंध ==
== पथ अभिन्न सूत्रीकरण और स्रोत सूत्रीकरण के बीच संबंध ==
फेनमैन के पथ में सामान्यीकरण <math>\mathcal{N}\equiv Z[J=0]</math> [[विभाजन फलन (क्वांटम क्षेत्र सिद्धांत)]] के साथ अभिन्न सूत्रीकरण,<ref>{{Cite book |last=Ryder |first=Lewis |title=क्वांटम क्षेत्र सिद्धांत|publisher=Cambridge University Press |year=1996 |isbn=9780521478144 |edition=2nd |pages=175}}</ref>
फेनमैन के पथ में सामान्यीकरण <math>\mathcal{N}\equiv Z[J=0]</math> [[विभाजन फलन (क्वांटम क्षेत्र सिद्धांत)]] के साथ अभिन्न सूत्रीकरण,<ref>{{Cite book |last=Ryder |first=Lewis |title=क्वांटम क्षेत्र सिद्धांत|publisher=Cambridge University Press |year=1996 |isbn=9780521478144 |edition=2nd |pages=175}}</ref>


<math>Z[J]=\mathcal{N}\int \mathcal{D}\phi ~ e^{-i\int dt ~ [\mathcal{L}(t;\phi,\dot{\phi})+J(t)\phi(t)]}</math>
<math>Z[J]=\mathcal{N}\int \mathcal{D}\phi ~ e^{-i\int dt ~ [\mathcal{L}(t;\phi,\dot{\phi})+J(t)\phi(t)]}</math>
Line 27: Line 27:
<math>\mathcal{H}=E\hat{a}^{\dagger}\hat{a}-\frac{1}{\sqrt{2E}}(J\hat{a}^{\dagger}+J^{*}a)</math> जहाँ <math>E^2=m^2+\vec{p}^2 </math>.
<math>\mathcal{H}=E\hat{a}^{\dagger}\hat{a}-\frac{1}{\sqrt{2E}}(J\hat{a}^{\dagger}+J^{*}a)</math> जहाँ <math>E^2=m^2+\vec{p}^2 </math>.


वास्तव में, धारा वास्तविक है, अर्थात् <math>J=J^{*}</math>.<ref>{{Cite book |last=Nastase |first=Horatiu |url=https://www.cambridge.org/highereducation/product/9781108624992/book |title=क्वांटम क्षेत्र सिद्धांत का परिचय|date=2019-10-17 |publisher=Cambridge University Press |isbn=978-1-108-62499-2 |edition=1 |doi=10.1017/9781108624992.009|s2cid=241983970 }}</ref> और लैग्रेंजियन <math>\mathcal{L}=i\hat{a}^{\dagger}\partial_0(\hat{a})-\mathcal{H}</math> है . अब से हम टोपी और तारांकन हटा देते हैं। याद रखें कि विहित परिमाणीकरण या वास्तविक अदिश क्षेत्र <math>\phi\sim (a^{\dagger}+a)</math> दर्शाता है . विभाजन फलन और उसके सहसंबंधकों के बीच संबंध के प्रकाश में, निर्वात आयाम की भिन्नता मिलती है
वास्तव में, धारा वास्तविक है, अर्थात् <math>J=J^{*}</math>.<ref>{{Cite book |last=Nastase |first=Horatiu |url=https://www.cambridge.org/highereducation/product/9781108624992/book |title=क्वांटम क्षेत्र सिद्धांत का परिचय|date=2019-10-17 |publisher=Cambridge University Press |isbn=978-1-108-62499-2 |edition=1 |doi=10.1017/9781108624992.009|s2cid=241983970 }}</ref> और लैग्रेंजियन <math>\mathcal{L}=i\hat{a}^{\dagger}\partial_0(\hat{a})-\mathcal{H}</math> है . अब से हम टोपी और तारांकन हटा देते हैं। इस प्रकार से याद रखें कि विहित परिमाणीकरण या वास्तविक अदिश क्षेत्र <math>\phi\sim (a^{\dagger}+a)</math> दर्शाता है . विभाजन फलन और उसके सहसंबंधकों के बीच संबंध के प्रकाश में, निर्वात आयाम की भिन्नता मिलती है


<math>\delta_J\langle0,x'_0|0,x''_0\rangle_J=i\Big\langle0,x'_0\Big|\int^{x'_0}_{x''_0}dx_0 ~ \delta J\Big(a^{\dagger}+a\Big) \Big|0,x''_0~\Big\rangle_J</math>, जहाँ <math>x_0'>x_0> x_0''</math> .
<math>\delta_J\langle0,x'_0|0,x''_0\rangle_J=i\Big\langle0,x'_0\Big|\int^{x'_0}_{x''_0}dx_0 ~ \delta J\Big(a^{\dagger}+a\Big) \Big|0,x''_0~\Big\rangle_J</math>, जहाँ <math>x_0'>x_0> x_0''</math> .
Line 35: Line 35:
<math>\langle0,x'_0|0,x''_0\rangle_J=\exp{\Big[\frac{i}{2\pi}\int df ~ J(f)\frac{1}{f-E}J(-f)\Big]}</math>.
<math>\langle0,x'_0|0,x''_0\rangle_J=\exp{\Big[\frac{i}{2\pi}\int df ~ J(f)\frac{1}{f-E}J(-f)\Big]}</math>.


यह ध्यान करना सरल है कि <math>f=E</math> यहां विलक्षणता है . फिर, हम   <math>i\epsilon</math>-प्रिस्क्रिप्शन इसका फायदा उठा सकते हैं और पोल <math>f-E+i\epsilon</math> को इस तरह स्थानांतरित कर सकते हैं कि <math>x_0> x_0'</math> के लिए ग्रीन का कार्य प्राप्त होː
यह ध्यान करना सरल है कि <math>f=E</math> यहां विलक्षणता है . फिर, हम <math>i\epsilon</math>-प्रिस्क्रिप्शन इसका फायदा उठा सकते हैं और पोल <math>f-E+i\epsilon</math> को इस प्रकार स्थानांतरित कर सकते हैं कि <math>x_0> x_0'</math> के लिए ग्रीन का कार्य प्राप्त होː


<math>\begin{align}
<math>\begin{align}
Line 42: Line 42:
\end{align} </math>
\end{align} </math>


अंतिम परिणाम अदिश क्षेत्रों की परस्पर क्रिया के लिए श्विंगर का स्रोत सिद्धांत है और इसे किसी भी स्पेसटाइम क्षेत्र में सामान्यीकृत किया जा सकता है।<ref name=":2" /> इस प्रकार से नीचे विचार किए गए उदाहरण मीट्रिक <math>\eta_{\mu\nu}=\text{diag}(1,-1,-1,-1) </math> का अनुसरण करते हैं .
चूंकि अंतिम परिणाम अदिश क्षेत्रों की परस्पर क्रिया के लिए श्विंगर का स्रोत सिद्धांत है और इसे किसी भी स्पेसटाइम क्षेत्र में सामान्यीकृत किया जा सकता है।<ref name=":2" /> इस प्रकार से नीचे विचार किए गए उदाहरण मीट्रिक <math>\eta_{\mu\nu}=\text{diag}(1,-1,-1,-1) </math> का अनुसरण करते हैं .


== अदिश क्षेत्रों के लिए स्रोत सिद्धांत ==
== अदिश क्षेत्रों के लिए स्रोत सिद्धांत ==
कारण क्षोभ सिद्धांत दर्शाता है कि स्रोत कैसे वीक विधि से कार्य करते हैं। स्पिन-0 कण <math>J_e</math> उत्सर्जित करने वाले एक वीक स्रोत के लिए निर्वात अवस्था पर संभाव्यता आयाम <math>\langle 0|0\rangle_{J_{e}}\sim1</math> के साथ कार्य करके गति <math>p</math> और आयाम <math>\langle p|0\rangle_{J_{e}}</math> के साथ एक एकल कण निश्चित स्पेसटाइम क्षेत्र <math>x'</math> के अन्दर बनाया जाता है, फिर, एक अन्य वीक स्रोत <math>J_a</math> उस एकल कण को दूसरे स्पेसटाइम के अन्दर अवशोषित कर लेता है। क्षेत्र <math>x</math> इस प्रकार है कि आयाम <math>\langle 0|p\rangle_{J_{a}}</math> हो जाता है इस प्रकार, पूर्ण निर्वात आयाम द्वारा दिया जाता है<ref name=":0" />
इस प्रकार कारण क्षोभ सिद्धांत दर्शाता है कि स्रोत कैसे वीक विधि से कार्य करते हैं। स्पिन-0 कण <math>J_e</math> उत्सर्जित करने वाले एक वीक स्रोत के लिए निर्वात अवस्था पर संभाव्यता आयाम <math>\langle 0|0\rangle_{J_{e}}\sim1</math> के साथ कार्य करके गति <math>p</math> और आयाम <math>\langle p|0\rangle_{J_{e}}</math> के साथ एक एकल कण निश्चित स्पेसटाइम क्षेत्र <math>x'</math> के अन्दर बनाया जाता है, फिर, एक अन्य वीक स्रोत <math>J_a</math> उस एकल कण को दूसरे स्पेसटाइम के अन्दर अवशोषित कर लेता है। क्षेत्र <math>x</math> इस प्रकार है कि आयाम <math>\langle 0|p\rangle_{J_{a}}</math> हो जाता है इस तरह, पूर्ण निर्वात आयाम द्वारा दिया जाता हैː<ref name=":0" />


<math>\langle 0|0\rangle_{J_{e}+J_{a}}\sim1+\frac{i}{2}\int dx~dx'J_a(x)\Delta(x-x')J_e(x') </math>
<math>\langle 0|0\rangle_{J_{e}+J_{a}}\sim1+\frac{i}{2}\int dx~dx'J_a(x)\Delta(x-x')J_e(x') </math>


जहाँ <math>\Delta(x-x') </math> सूत्रों का प्रचारक (सहसंबंधक) है। अंतिम आयाम का दूसरा पद विभाजन फलन (क्वांटम क्षेत्र सिद्धांत) या मुक्त सिद्धांतों को परिभाषित करता है। और कुछ अंतःक्रिया सिद्धांत के लिए, अदिश क्षेत्र <math>\phi</math>का धारा <math>J</math> से लैग्रेंजियन इस प्रकार दिया जाता हैː<ref>{{Cite book |last=Ramond |first=Pierre |title=Field Theory: A Modern Primer |publisher=Routledge |year=2020 |isbn=978-0367154912 |edition=2nd}}</ref>
जहाँ <math>\Delta(x-x') </math> सूत्रों का प्रचारक (सहसंबंधक) है। अंतिम आयाम का दूसरा पद विभाजन फलन (क्वांटम क्षेत्र सिद्धांत) या मुक्त सिद्धांतों को परिभाषित करता है। और कुछ अंतःक्रिया सिद्धांत के लिए, अदिश क्षेत्र <math>\phi</math>का धारा <math>J</math> से लैग्रेंजियन इस प्रकार दिया जाता हैː<ref>{{Cite book |last=Ramond |first=Pierre |title=Field Theory: A Modern Primer |publisher=Routledge |year=2020 |isbn=978-0367154912 |edition=2nd}}</ref>


<math>\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{2}m^2\phi^2+J\phi.</math>
<math>\mathcal{L}=\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi-\frac{1}{2}m^2\phi^2+J\phi.</math>


यदि कोई द्रव्यमान पद में <math>-i\epsilon</math> जोड़ता है तो फूरियर <math>J</math> और <math>\phi</math> दोनों को संवेग स्थान में रूपांतरित करता है, निर्वात आयाम बन जाता हैː
यदि कोई द्रव्यमान पद में <math>-i\epsilon</math> जोड़ता है तो फूरियर <math>J</math> और <math>\phi</math> दोनों को संवेग स्थान में रूपांतरित करता है, निर्वात आयाम बन जाता हैː


<math>\langle 0|0\rangle=\exp{\left(\frac{i}{2}\int \frac{d^4p}{(2\pi)^4}\left[\tilde{\phi}(p)(p_{\mu}p^{\mu}-m^2+i\epsilon)\tilde{\phi}(-p)+J(p)\frac{1}{p_{\mu}p^{\mu}-m^2+i\epsilon}J(-p)\right]\right)} </math>,
<math>\langle 0|0\rangle=\exp{\left(\frac{i}{2}\int \frac{d^4p}{(2\pi)^4}\left[\tilde{\phi}(p)(p_{\mu}p^{\mu}-m^2+i\epsilon)\tilde{\phi}(-p)+J(p)\frac{1}{p_{\mu}p^{\mu}-m^2+i\epsilon}J(-p)\right]\right)} </math>,


जहाँ <math>\tilde{\phi}(p)=\phi(p)+\frac{J(p)}{p_{\mu}p^{\mu}-m^2+i\epsilon}. </math> यह नोटिस करना सरल है कि उपरोक्त आयाम में <math>\tilde{\phi}(p)(p_{\mu}p^{\mu}-m^2+i\epsilon)\tilde{\phi}(-p) </math>पद फूरियर को <math>\tilde{\phi}(x)(\Box+m^2)\tilde{\phi}(x)=\tilde{\phi}(x)J(x) </math>   अर्थात, <math>(\Box+m^2)\tilde{\phi}=J </math>. में रूपांतरित किया जा सकता है।
जहाँ <math>\tilde{\phi}(p)=\phi(p)+\frac{J(p)}{p_{\mu}p^{\mu}-m^2+i\epsilon}. </math> यह नोटिस करना सरल है कि उपरोक्त आयाम में <math>\tilde{\phi}(p)(p_{\mu}p^{\mu}-m^2+i\epsilon)\tilde{\phi}(-p) </math>पद फूरियर को <math>\tilde{\phi}(x)(\Box+m^2)\tilde{\phi}(x)=\tilde{\phi}(x)J(x) </math> अर्थात, <math>(\Box+m^2)\tilde{\phi}=J </math>. में रूपांतरित किया जा सकता है।


इस प्रकार, विभाजन फलन (क्वांटम क्षेत्र सिद्धांत) '''स्केलर''' सिद्धांत विभाजन फलन से निम्नानुसार प्राप्त किया जाता है।<ref name=":3" /> अंतिम परिणाम हमें विभाजन फलन को इस प्रकार पढ़ने की अनुमति देता है
इस प्रकार, विभाजन फलन (क्वांटम क्षेत्र सिद्धांत) '''स्केलर''' सिद्धांत विभाजन फलन से निम्नानुसार प्राप्त किया जाता है।<ref name=":3" /> अंतिम परिणाम हमें विभाजन फलन को इस प्रकार पढ़ने की अनुमति देता है


<math>Z[J]=Z[0]e^{\frac{i}{2}\langle J(y)\Delta(y-y')J(y')\rangle} </math>, जहाँ <math>Z[0]=\int \mathcal{D}\tilde{\phi} ~ e^{-i\int dt ~ [\frac{1}{2}\partial_{\mu}\tilde{\phi}\partial^{\mu}\tilde{\phi}-\frac{1}{2}(m^2-i\epsilon)\tilde{\phi}^2]}</math>, और <math>\langle J(y)\Delta(y-y')J(y')\rangle </math> स्रोत <math>\langle0|0\rangle_{J} </math> द्वारा प्राप्त निर्वात आयाम है . परिणामस्वारूप , प्रचारक को विभाजन फलन को निम्नानुसार अलग करके परिभाषित किया गया है।
<math>Z[J]=Z[0]e^{\frac{i}{2}\langle J(y)\Delta(y-y')J(y')\rangle} </math>, जहाँ <math>Z[0]=\int \mathcal{D}\tilde{\phi} ~ e^{-i\int dt ~ [\frac{1}{2}\partial_{\mu}\tilde{\phi}\partial^{\mu}\tilde{\phi}-\frac{1}{2}(m^2-i\epsilon)\tilde{\phi}^2]}</math>, और <math>\langle J(y)\Delta(y-y')J(y')\rangle </math> स्रोत <math>\langle0|0\rangle_{J} </math> द्वारा प्राप्त निर्वात आयाम है . परिणामस्वारूप , प्रचारक को विभाजन फलन को निम्नानुसार अलग करके परिभाषित किया गया है।


<math>\begin{align}
<math>\begin{align}
Line 75: Line 75:
श्विंगर के स्रोत सिद्धांत के आधार पर, [[स्टीवन वेनबर्ग]] ने प्रभावी क्षेत्र सिद्धांत की नींव स्थापित की, जिसे भौतिकविदों के बीच व्यापक रूप से सराहा गया है। जूलियन श्विंगर कैरियर के अतिरिक्त, वेनबर्ग ने इस सैद्धांतिक ढांचे को उत्प्रेरित करने का श्रेय श्विंगर को दिया।<ref>{{Cite journal |last=Weinberg |first=Steven |date=1979 |title=फेनोमेनोलॉजिकल लैग्रेन्जियंस|url=https://linkinghub.elsevier.com/retrieve/pii/0378437179902231 |journal=Physica A: Statistical Mechanics and Its Applications |language= |volume=96 |issue=1–2 |pages=327–340 |doi=10.1016/0378-4371(79)90223-1}}</ref>
श्विंगर के स्रोत सिद्धांत के आधार पर, [[स्टीवन वेनबर्ग]] ने प्रभावी क्षेत्र सिद्धांत की नींव स्थापित की, जिसे भौतिकविदों के बीच व्यापक रूप से सराहा गया है। जूलियन श्विंगर कैरियर के अतिरिक्त, वेनबर्ग ने इस सैद्धांतिक ढांचे को उत्प्रेरित करने का श्रेय श्विंगर को दिया।<ref>{{Cite journal |last=Weinberg |first=Steven |date=1979 |title=फेनोमेनोलॉजिकल लैग्रेन्जियंस|url=https://linkinghub.elsevier.com/retrieve/pii/0378437179902231 |journal=Physica A: Statistical Mechanics and Its Applications |language= |volume=96 |issue=1–2 |pages=327–340 |doi=10.1016/0378-4371(79)90223-1}}</ref>


ग्रीन के सभी कार्यों को औपचारिक रूप से विभाजन राशि के [[टेलर विस्तार]] के माध्यम से स्रोत क्षेत्रों के फलन के रूप में माना जा सकता है। यह विधि सामान्यतः [[क्वांटम क्षेत्र सिद्धांत]] के पथ अभिन्न सूत्रीकरण में उपयोग की जाती है। सामान्य विधि जिसके द्वारा ऐसे स्रोत क्षेत्रों का उपयोग क्वांटम, सांख्यिकीय-यांत्रिकी और अन्य प्रणालियों दोनों में प्रचारक प्राप्त करने के लिए किया जाता है, निम्नानुसार उल्लिखित है। विक-घुमाए गए आयाम <math>W[J]=-i\ln(\langle 0|0 \rangle_{J}) </math> के संदर्भ में विभाजन फलन को फिर से परिभाषित करने पर , विभाजन फलन <math>Z[J]=e^{iW[J]} </math> बन जाता है . कोई <math>F[J]=iW[J] </math> परिचय करा सकता है , जो [[थर्मल क्वांटम क्षेत्र सिद्धांत]] में मुक्त ऊर्जा के रूप में व्यवहार करता है,<ref name=":4">{{Cite book |last=Fradkin |first=Eduardo |title=Quantum Field Theory: An Integrated Approach |publisher=Princeton University Press |year=2021 |isbn=9780691149080 |pages=331–341}}</ref> सम्मिश्र संख्या को अवशोषित करने के लिए, और इसलिए <math>\ln Z[J]=F[J] </math>. फलन <math>F[J] </math> इसे घटी हुई क्वांटम क्रिया भी कहा जाता है।<ref name=":5">{{Cite book |last=Zeidler |first=Eberhard |title=Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists |publisher=Springer |year=2006 |isbn=9783540347620 |pages=455}}</ref> और [[पौराणिक परिवर्तन]] की सहायता से, हम नई प्रभावी ऊर्जा कार्यात्मकता या प्रभावी क्षेत्र, का आविष्कार कर सकते हैं,<ref>{{Cite book |last1=Kleinert |first1=Hagen |title=Critical Properties of phi^4-Theories |last2=Schulte-Frohlinde |first2=Verena |publisher=World Scientific Publishing Co |year=2001 |isbn=9789812799944 |pages=68–70}}</ref> जैसे
ग्रीन के सभी कार्यों को औपचारिक रूप से विभाजन राशि के [[टेलर विस्तार]] के माध्यम से स्रोत क्षेत्रों के फलन के रूप में माना जा सकता है। यह विधि सामान्यतः [[क्वांटम क्षेत्र सिद्धांत]] के पथ अभिन्न सूत्रीकरण में उपयोग की जाती है। सामान्य विधि जिसके द्वारा ऐसे स्रोत क्षेत्रों का उपयोग क्वांटम, सांख्यिकीय-यांत्रिकी और अन्य प्रणालियों दोनों में प्रचारक प्राप्त करने के लिए किया जाता है, निम्नानुसार उल्लिखित है। विक-घुमाए गए आयाम <math>W[J]=-i\ln(\langle 0|0 \rangle_{J}) </math> के संदर्भ में विभाजन फलन को फिर से परिभाषित करने पर , विभाजन फलन <math>Z[J]=e^{iW[J]} </math> बन जाता है . कोई <math>F[J]=iW[J] </math> परिचय करा सकता है , जो [[थर्मल क्वांटम क्षेत्र सिद्धांत]] में मुक्त ऊर्जा के रूप में व्यवहार करता है,<ref name=":4">{{Cite book |last=Fradkin |first=Eduardo |title=Quantum Field Theory: An Integrated Approach |publisher=Princeton University Press |year=2021 |isbn=9780691149080 |pages=331–341}}</ref> सम्मिश्र संख्या को अवशोषित करने के लिए, और इसलिए <math>\ln Z[J]=F[J] </math>. फलन <math>F[J] </math> इसे घटी हुई क्वांटम क्रिया भी कहा जाता है।<ref name=":5">{{Cite book |last=Zeidler |first=Eberhard |title=Quantum Field Theory I: Basics in Mathematics and Physics: A Bridge between Mathematicians and Physicists |publisher=Springer |year=2006 |isbn=9783540347620 |pages=455}}</ref> और [[पौराणिक परिवर्तन]] की सहायता से, हम नई प्रभावी ऊर्जा कार्यात्मकता या प्रभावी क्षेत्र, का आविष्कार कर सकते हैं,<ref>{{Cite book |last1=Kleinert |first1=Hagen |title=Critical Properties of phi^4-Theories |last2=Schulte-Frohlinde |first2=Verena |publisher=World Scientific Publishing Co |year=2001 |isbn=9789812799944 |pages=68–70}}</ref>  


 
जैसेː<math>\Gamma[\bar{\phi}]=W[J]-\int d^4x J(x)\bar{{\phi}}(x) </math>, परिवर्तनों के साथ<ref>{{Cite journal |last=Jona-Lasinio |first=G. |date=1964-12-01 |title=समरूपता-तोड़ने वाले समाधानों के साथ सापेक्ष क्षेत्र सिद्धांत|url=https://doi.org/10.1007/BF02750573 |journal=Il Nuovo Cimento (1955-1965) |language=en |volume=34 |issue=6 |pages=1790–1795 |doi=10.1007/BF02750573 |s2cid=121276897 |issn=1827-6121}}</ref>
<math>\Gamma[\bar{\phi}]=W[J]-\int d^4x J(x)\bar{{\phi}}(x) </math>, परिवर्तनों के साथ<ref>{{Cite journal |last=Jona-Lasinio |first=G. |date=1964-12-01 |title=समरूपता-तोड़ने वाले समाधानों के साथ सापेक्ष क्षेत्र सिद्धांत|url=https://doi.org/10.1007/BF02750573 |journal=Il Nuovo Cimento (1955-1965) |language=en |volume=34 |issue=6 |pages=1790–1795 |doi=10.1007/BF02750573 |s2cid=121276897 |issn=1827-6121}}</ref>


<math>\frac{\delta W}{\delta J} =\bar{\phi}~,~\frac{\delta W}{\delta J}\Bigg|_{J=0} =\langle\phi\rangle~,~\frac{\delta \Gamma[\bar{\phi}]}{\delta \bar{\phi}}\Bigg|_{J} =-J~,~\frac{\delta \Gamma[\bar{\phi}]}{\delta \bar{\phi}}\Bigg|_{\bar{\phi}=\langle\phi\rangle} =0. </math>
<math>\frac{\delta W}{\delta J} =\bar{\phi}~,~\frac{\delta W}{\delta J}\Bigg|_{J=0} =\langle\phi\rangle~,~\frac{\delta \Gamma[\bar{\phi}]}{\delta \bar{\phi}}\Bigg|_{J} =-J~,~\frac{\delta \Gamma[\bar{\phi}]}{\delta \bar{\phi}}\Bigg|_{\bar{\phi}=\langle\phi\rangle} =0. </math>


प्रभावी क्षेत्र की परिभाषा में एकीकरण को <math>\phi</math> से अधिक योग के साथ प्रतिस्थापित करने की अनुमति है , अर्थात।,
प्रभावी क्षेत्र की परिभाषा में एकीकरण को <math>\phi</math> से अधिक योग के साथ प्रतिस्थापित करने की अनुमति है , अर्थात।,


<math>\Gamma[\bar{\phi}]=W[J]-J_a(x)\bar{{\phi}}^a(x) </math>.<ref name=":6">{{Cite book |last1=Esposito |first1=Giampiero |url=http://link.springer.com/10.1007/978-94-011-5806-0 |title=सीमा के साथ मैनिफोल्ड्स पर यूक्लिडियन क्वांटम गुरुत्वाकर्षण|last2=Kamenshchik |first2=Alexander Yu. |last3=Pollifrone |first3=Giuseppe |date=1997 |publisher=Springer Netherlands |isbn=978-94-010-6452-1 |location=Dordrecht |language=en |doi=10.1007/978-94-011-5806-0}}</ref>
<math>\Gamma[\bar{\phi}]=W[J]-J_a(x)\bar{{\phi}}^a(x) </math>.<ref name=":6">{{Cite book |last1=Esposito |first1=Giampiero |url=http://link.springer.com/10.1007/978-94-011-5806-0 |title=सीमा के साथ मैनिफोल्ड्स पर यूक्लिडियन क्वांटम गुरुत्वाकर्षण|last2=Kamenshchik |first2=Alexander Yu. |last3=Pollifrone |first3=Giuseppe |date=1997 |publisher=Springer Netherlands |isbn=978-94-010-6452-1 |location=Dordrecht |language=en |doi=10.1007/978-94-011-5806-0}}</ref>
Line 96: Line 95:
जहाँ <math>S[\phi]</math> मुक्त लैग्रेन्जियन की क्रिया है। अंतिम दो अभिन्न अंग किसी भी प्रभावी क्षेत्र सिद्धांत के स्तंभ हैं।<ref name=":6" /> यह निर्माण प्रकीर्णन (एलएसजेड कटौती सूत्र), सहज समरूपता टूटने, <ref>{{Cite journal |last=Jona-Lasinio |first=G. |date=1964-12-01 |title=समरूपता-तोड़ने वाले समाधानों के साथ सापेक्ष क्षेत्र सिद्धांत|url=https://doi.org/10.1007/BF02750573 |journal=Il Nuovo Cimento (1955-1965) |language=en |volume=34 |issue=6 |pages=1790–1795 |doi=10.1007/BF02750573 |s2cid=121276897 |issn=1827-6121}}</ref><ref>{{Citation |last1=Farhi |first1=E. |title=Dynamical Gauge Symmetry Breaking |date=January 1982 |url=https://www.worldscientific.com/doi/10.1142/9789814412698_0001 |work= |pages=1–14 |access-date=2023-05-17 |publisher=WORLD SCIENTIFIC |doi=10.1142/9789814412698_0001 |isbn=978-9971-950-24-8 |last2=Jackiw |first2=R.}}</ref> वार्ड पहचान, गैर-रेखीय सिग्मा मॉडल, और कम-ऊर्जा प्रभावी सिद्धांतों का अध्ययन करने में अपरिहार्य है।<ref name=":4" /> इसके अतिरिक्त, यह सैद्धांतिक रूप क्वांटम गुरुत्व के लिए [[विहित क्वांटम गुरुत्व]] प्रभावी सिद्धांत विकसित करने पर विचारों की श्रृंखला प्रारंभ करता है, जिसे मुख्य रूप से [[ब्राइस डेविट]] द्वारा प्रचारित किया गया था जो श्विंगर के पीएचडी छात्र थे।<ref>{{Cite book |title=Quantum theory of gravity: essays in honor of the 60. birthday of Bryce S. DeWitt |date=1984 |publisher=Hilger |isbn=978-0-85274-755-1 |editor-last=Christensen |editor-first=Steven M. |location=Bristol |editor-last2=DeWitt |editor-first2=Bryce S.}}</ref>
जहाँ <math>S[\phi]</math> मुक्त लैग्रेन्जियन की क्रिया है। अंतिम दो अभिन्न अंग किसी भी प्रभावी क्षेत्र सिद्धांत के स्तंभ हैं।<ref name=":6" /> यह निर्माण प्रकीर्णन (एलएसजेड कटौती सूत्र), सहज समरूपता टूटने, <ref>{{Cite journal |last=Jona-Lasinio |first=G. |date=1964-12-01 |title=समरूपता-तोड़ने वाले समाधानों के साथ सापेक्ष क्षेत्र सिद्धांत|url=https://doi.org/10.1007/BF02750573 |journal=Il Nuovo Cimento (1955-1965) |language=en |volume=34 |issue=6 |pages=1790–1795 |doi=10.1007/BF02750573 |s2cid=121276897 |issn=1827-6121}}</ref><ref>{{Citation |last1=Farhi |first1=E. |title=Dynamical Gauge Symmetry Breaking |date=January 1982 |url=https://www.worldscientific.com/doi/10.1142/9789814412698_0001 |work= |pages=1–14 |access-date=2023-05-17 |publisher=WORLD SCIENTIFIC |doi=10.1142/9789814412698_0001 |isbn=978-9971-950-24-8 |last2=Jackiw |first2=R.}}</ref> वार्ड पहचान, गैर-रेखीय सिग्मा मॉडल, और कम-ऊर्जा प्रभावी सिद्धांतों का अध्ययन करने में अपरिहार्य है।<ref name=":4" /> इसके अतिरिक्त, यह सैद्धांतिक रूप क्वांटम गुरुत्व के लिए [[विहित क्वांटम गुरुत्व]] प्रभावी सिद्धांत विकसित करने पर विचारों की श्रृंखला प्रारंभ करता है, जिसे मुख्य रूप से [[ब्राइस डेविट]] द्वारा प्रचारित किया गया था जो श्विंगर के पीएचडी छात्र थे।<ref>{{Cite book |title=Quantum theory of gravity: essays in honor of the 60. birthday of Bryce S. DeWitt |date=1984 |publisher=Hilger |isbn=978-0-85274-755-1 |editor-last=Christensen |editor-first=Steven M. |location=Bristol |editor-last2=DeWitt |editor-first2=Bryce S.}}</ref>


क्रियाओं के ग्रीन फलन पर वापस जाएँ। तब से <math>\Gamma[\bar{\phi}]</math> ,<math>F[J]</math>का लीजेंड्रे रूपांतरण है , और <math>F[J]</math> एन-पॉइंट [[उर्सेल समारोह|उर्सेल फलन]] सहसंबंधक <math>G^{N,~c}_{F[J]}=\frac{\delta F[J]}{\delta J(x_1)\cdots \delta J(x_N)}\Big|_{J=0}</math> को परिभाषित करता है तो <math>F[J]</math> , से प्राप्त संबंधित सहसंबंधक से प्राप्त किया गया , जिसे [[शीर्ष फ़ंक्शन|शीर्ष फलन]] के रूप में जाना जाता है, <math>G^{N,~c}_{\Gamma[J]}=\frac{\delta \Gamma[\bar{\phi}]}{\delta \bar{\phi}(x_1)\cdots \delta\bar{\phi}(x_N)}\Big|_{\bar{\phi}=\langle\phi\rangle}</math>द्वारा दिया जाता है. परिणामस्वारूप , एक कण इरेड्यूसिबल ग्राफ़   
क्रियाओं के ग्रीन फलन पर वापस जाएँ। तब से <math>\Gamma[\bar{\phi}]</math> ,<math>F[J]</math>का लीजेंड्रे रूपांतरण है , और <math>F[J]</math> एन-पॉइंट [[उर्सेल समारोह|उर्सेल फलन]] सहसंबंधक <math>G^{N,~c}_{F[J]}=\frac{\delta F[J]}{\delta J(x_1)\cdots \delta J(x_N)}\Big|_{J=0}</math> को परिभाषित करता है तो <math>F[J]</math> , से प्राप्त संबंधित सहसंबंधक से प्राप्त किया गया , जिसे [[शीर्ष फ़ंक्शन|शीर्ष फलन]] के रूप में जाना जाता है, <math>G^{N,~c}_{\Gamma[J]}=\frac{\delta \Gamma[\bar{\phi}]}{\delta \bar{\phi}(x_1)\cdots \delta\bar{\phi}(x_N)}\Big|_{\bar{\phi}=\langle\phi\rangle}</math>द्वारा दिया जाता है. परिणामस्वारूप , एक कण इरेड्यूसिबल ग्राफ़   


(सामान्यतः 11पीआई के रूप में संक्षिप्त) में, जुड़े हुए 2-बिंदु <math>F </math>-सहसंबंधक को 2-बिंदु <math>\Gamma </math>-सहसंबंधक, के व्युत्क्रम के रूप में परिभाषित किया गया है अर्थात, सामान्य रूप से कम किया गया सहसंबंध <math>G^{(2)}_{F[J]}=\frac{\delta \bar{\phi}(x_1)}{\delta J(x_2)}\Big|_{J=0}=\frac{1}{p_{\mu}p^{\mu}-m^2} </math> है ,  
(सामान्यतः 11पीआई के रूप में संक्षिप्त) में, जुड़े हुए 2-बिंदु <math>F </math>-सहसंबंधक को 2-बिंदु <math>\Gamma </math>-सहसंबंधक, के व्युत्क्रम के रूप में परिभाषित किया गया है अर्थात, सामान्य रूप से कम किया गया सहसंबंध <math>G^{(2)}_{F[J]}=\frac{\delta \bar{\phi}(x_1)}{\delta J(x_2)}\Big|_{J=0}=\frac{1}{p_{\mu}p^{\mu}-m^2} </math> है ,  


और प्रभावी सहसंबंध हैː
और प्रभावी सहसंबंध हैː
Line 105: Line 104:


== सदिश क्षेत्रों के लिए स्रोत सिद्धांत ==
== सदिश क्षेत्रों के लिए स्रोत सिद्धांत ==
एक वीक स्रोत के लिए जो सामान्य धारा <math>J=J_e+J_a</math> के साथ [[प्रोका क्रिया]] मिसिव स्पिन-1 कण उत्पन्न करता है विभिन्न कारण अंतरिक्ष-समय बिंदुओं <math>x_0> x_0'</math> पर कार्य करना , निर्वात आयाम है
एक वीक स्रोत के लिए जो सामान्य धारा <math>J=J_e+J_a</math> के साथ [[प्रोका क्रिया]] मिसिव स्पिन-1 कण उत्पन्न करता है विभिन्न कारण अंतरिक्ष-समय बिंदुओं <math>x_0> x_0'</math> पर कार्य करना , निर्वात आयाम है


<math>\langle 0|0\rangle_{J}=\exp{\left(\frac{i}{2}\int dx~dx'\left[J_{\mu}(x)\Delta(x-x')J^{\mu}(x')+\frac{1}{m^2}\partial_{\mu
<math>\langle 0|0\rangle_{J}=\exp{\left(\frac{i}{2}\int dx~dx'\left[J_{\mu}(x)\Delta(x-x')J^{\mu}(x')+\frac{1}{m^2}\partial_{\mu
}J^{\mu}(x)\Delta(x-x')\partial'_{\nu}J^{\nu}(x')\right]\right)} </math>
}J^{\mu}(x)\Delta(x-x')\partial'_{\nu}J^{\nu}(x')\right]\right)} </math>


संवेग स्थान में, स्पिन-1 कण विश्राम द्रव्यमान <math>m </math> के साथ निश्चित गति <math>p_{\mu}=(m,0,0,0) </math> है इसके बाकी फ्रेम में, अर्थात <math>p_{\mu}p^{\mu}=m^2 </math>. फिर, आयाम देता है<ref name=":0" />
संवेग स्थान में, स्पिन-1 कण विश्राम द्रव्यमान <math>m </math> के साथ निश्चित गति <math>p_{\mu}=(m,0,0,0) </math> है इसके बाकी फ्रेम में, अर्थात <math>p_{\mu}p^{\mu}=m^2 </math>. फिर, आयाम देता है<ref name=":0" />


<math>\begin{alignat}{2}  
<math>\begin{alignat}{2}  
Line 126: Line 125:
}p_{\nu}}{p_{\sigma}p^{\sigma}-\xi m^2}\right]e^{ip^{\mu}(x_{\mu}-x'_{\mu})} </math> .
}p_{\nu}}{p_{\sigma}p^{\sigma}-\xi m^2}\right]e^{ip^{\mu}(x_{\mu}-x'_{\mu})} </math> .


कब <math>\xi=1 </math>, चुना हुआ फेनमैन-'टी हूफ्ट प्रोपेगेटर गेज-फिक्सिंग स्पिन- 1 को द्रव्यमानहीन बनाता है। और जब <math>\xi=0 </math>, चयनित लैंडौ [[गेज फिक्सिंग]]| स्पिन-1 को बड़े माप पर बनाती है।<ref>{{Cite book |last=Bogoli︠u︡bov |first=N. N. |title=क्वांटम फ़ील्ड|date=1982 |publisher=Benjamin/Cummings Pub. Co., Advanced Book Program/World Science Division |others=D. V. Shirkov |isbn=0-8053-0983-7 |location=Reading, MA |oclc=8388186}}</ref> [[क्वांटम इलेक्ट्रोडायनामिक्स]] में अध्ययन के अनुसार द्रव्यमान रहित स्तिथि स्पष्ट है। यह विशाल स्तिथि अधिक रुचि है क्योंकि वर्तमान को संरक्षित करने की मांग नहीं की गई है। चूंकि, करंट को उसी तरह से सुधारा जा सकता है जैसे बेलिनफेंटे-रोसेनफेल्ड तनाव-ऊर्जा टेंसर बेलिनफेंटे-रोसेनफेल्ड टेंसर में सुधार किया जाता है जिससे यह संरक्षित रहे। और विशाल सदिश के लिए गति का समीकरण प्राप्त करने के लिए, कोई परिभाषित कर सकता है<ref name=":0" />
जब <math>\xi=1 </math>, चुना हुआ फेनमैन-'टी हूफ्ट प्रोपेगेटर गेज-फिक्सिंग स्पिन- 1 को द्रव्यमानहीन बनाता है। और जब <math>\xi=0 </math>, चयनित लैंडौ [[गेज फिक्सिंग]]| स्पिन-1 को बड़े माप पर बनाती है।<ref>{{Cite book |last=Bogoli︠u︡bov |first=N. N. |title=क्वांटम फ़ील्ड|date=1982 |publisher=Benjamin/Cummings Pub. Co., Advanced Book Program/World Science Division |others=D. V. Shirkov |isbn=0-8053-0983-7 |location=Reading, MA |oclc=8388186}}</ref> [[क्वांटम इलेक्ट्रोडायनामिक्स]] में अध्ययन के अनुसार द्रव्यमान रहित स्तिथि स्पष्ट है। यह विशाल स्तिथि अधिक रुचि है क्योंकि वर्तमान को संरक्षित करने की मांग नहीं की गई है। चूंकि, करंट को उसी तरह से सुधारा जा सकता है जैसे बेलिनफेंटे-रोसेनफेल्ड तनाव-ऊर्जा टेंसर बेलिनफेंटे-रोसेनफेल्ड टेंसर में सुधार किया जाता है जिससे यह संरक्षित रहे। और विशाल सदिश के लिए गति का समीकरण प्राप्त करने के लिए, कोई परिभाषित कर सकता है<ref name=":0" />


<math>W[J]=-i\ln(\langle 0|0\rangle_{J})=\frac{1}{2}\int dx~dx'\left[J_{\mu}(x)\Delta(x-x')J^{\mu}(x')+\frac{1}{m^2}\partial_{\mu
<math>W[J]=-i\ln(\langle 0|0\rangle_{J})=\frac{1}{2}\int dx~dx'\left[J_{\mu}(x)\Delta(x-x')J^{\mu}(x')+\frac{1}{m^2}\partial_{\mu
Line 147: Line 146:


== उच्च माप पर पूर्णतः सममित स्पिन-2 क्षेत्र के लिए स्रोत सिद्धांत ==
== उच्च माप पर पूर्णतः सममित स्पिन-2 क्षेत्र के लिए स्रोत सिद्धांत ==
एक समतल मिन्कोव्स्की अंतरिक्ष में वीक स्रोत के लिए, सामान्य पुनर्परिभाषित ऊर्जा-संवेग टेंसर के साथ विशाल गुरुत्वाकर्षण मिसाइल स्पिन -2 कण को ​​अवशोषित करना, जो वर्तमान के रूप में कार्य करता है, <math>\bar{T}^{\mu\nu}=T^{\mu\nu}-\frac{1}{3}\eta_{\mu\alpha}\bar{\eta}_{\nu\beta}T^{\alpha\beta}</math>,  
एक समतल मिन्कोव्स्की अंतरिक्ष में वीक स्रोत के लिए, सामान्य पुनर्परिभाषित ऊर्जा-संवेग टेंसर के साथ विशाल गुरुत्वाकर्षण मिसाइल स्पिन -2 कण को ​​अवशोषित करना, जो वर्तमान के रूप में कार्य करता है, <math>\bar{T}^{\mu\nu}=T^{\mu\nu}-\frac{1}{3}\eta_{\mu\alpha}\bar{\eta}_{\nu\beta}T^{\alpha\beta}</math>,  




Line 230: Line 229:
\end{align} </math>
\end{align} </math>


संबंधित विचलन स्थिति पढ़ी जाती है <math>\partial^{\mu}h_{\mu\nu}-\partial_{\nu}h=\frac{1}{m^2}\partial^{\mu}T_{\mu\nu}</math>, जहां वर्तमान <math>\partial^{\mu}T_{\mu\nu}</math> आवश्यक रूप से संरक्षित नहीं है (यह द्रव्यमान रहित स्यिथि की तरह गेज की स्थिति नहीं है)। किन्तु बेलिनफेंटे-रोसेनफेल्ड निर्माण के अनुसार ऊर्जा-संवेग टेंसर को <math>\mathfrak{T}_{\mu\nu}=T_{\mu\nu}-\frac{1}{4}\eta_{\mu\nu}\mathfrak{T}</math> जैसे <math>\partial^{\mu}\mathfrak{T}_{\mu\nu}=0</math> उत्तम बनाया जा सकता है । इस प्रकार, गति का समीकरण
संबंधित विचलन स्थिति पढ़ी जाती है <math>\partial^{\mu}h_{\mu\nu}-\partial_{\nu}h=\frac{1}{m^2}\partial^{\mu}T_{\mu\nu}</math>, जहां वर्तमान <math>\partial^{\mu}T_{\mu\nu}</math> आवश्यक रूप से संरक्षित नहीं है (यह द्रव्यमान रहित स्यिथि की तरह गेज की स्थिति नहीं है)। किन्तु बेलिनफेंटे-रोसेनफेल्ड निर्माण के अनुसार ऊर्जा-संवेग टेंसर को <math>\mathfrak{T}_{\mu\nu}=T_{\mu\nu}-\frac{1}{4}\eta_{\mu\nu}\mathfrak{T}</math> जैसे <math>\partial^{\mu}\mathfrak{T}_{\mu\nu}=0</math> उत्तम बनाया जा सकता है । इस प्रकार, गति का समीकरण


<math>\left(  \square+m^{2}\right)  h_{\mu\nu}=T_{\mu\nu}+\dfrac{1}{m^{2}}\left(
<math>\left(  \square+m^{2}\right)  h_{\mu\nu}=T_{\mu\nu}+\dfrac{1}{m^{2}}\left(
Line 246: Line 245:
\mathfrak{T}.</math>
\mathfrak{T}.</math>


कोई गैर-भौतिक क्षेत्रों <math>\partial^{\mu}h_{\mu\nu}</math> और <math>h</math>, को अलग करने के लिए विचलन स्थिति का उपयोग कर सकता है इसलिए गति के समीकरण को सरल बनाया गया हैː<ref>{{Cite journal |last1=Van Kortryk |first1=Thomas |last2=Curtright |first2=Thomas |last3=Alshal |first3=Hassan |date=2021 |title=एन्सेलाडियन फील्ड्स पर|url=http://www.bjp-bg.com/paper1.php?id=1247 |journal=Bulgarian Journal of Physics |volume=48 |issue=2 |pages=138–145}}</ref>
कोई गैर-भौतिक क्षेत्रों <math>\partial^{\mu}h_{\mu\nu}</math> और <math>h</math>, को अलग करने के लिए विचलन स्थिति का उपयोग कर सकता है इसलिए गति के समीकरण को सरल बनाया गया हैː<ref>{{Cite journal |last1=Van Kortryk |first1=Thomas |last2=Curtright |first2=Thomas |last3=Alshal |first3=Hassan |date=2021 |title=एन्सेलाडियन फील्ड्स पर|url=http://www.bjp-bg.com/paper1.php?id=1247 |journal=Bulgarian Journal of Physics |volume=48 |issue=2 |pages=138–145}}</ref>


<math>\left( \square+M^{2}\right) h_{\mu\nu}=\mathfrak{T}_{\mu\nu}-\frac{1}{3}
<math>\left( \square+M^{2}\right) h_{\mu\nu}=\mathfrak{T}_{\mu\nu}-\frac{1}{3}
Line 257: Line 256:
<math>x^{\mu_1}\cdots x^{\mu_{\ell}} \Pi_{\mu_1\cdots\mu_{\ell}\nu_1\cdots\nu_{\ell}}(p) x'^{\nu_1}\cdots x'^{\nu_{\ell}}=\frac{2^\ell(\ell!)^2}{(2\ell) !}\frac{4\pi}{2\ell+ 1}\sum\limits^{\ell}_{m=-\ell}Y_{\ell,m}(x)Y_{\ell,m}^{*}(x') </math> .
<math>x^{\mu_1}\cdots x^{\mu_{\ell}} \Pi_{\mu_1\cdots\mu_{\ell}\nu_1\cdots\nu_{\ell}}(p) x'^{\nu_1}\cdots x'^{\nu_{\ell}}=\frac{2^\ell(\ell!)^2}{(2\ell) !}\frac{4\pi}{2\ell+ 1}\sum\limits^{\ell}_{m=-\ell}Y_{\ell,m}(x)Y_{\ell,m}^{*}(x') </math> .


इसके अतिरिक्त, वृत्ताकार हार्मोनिक्स या डिग्री के सम्मिश्र-मूल्यवान [[सजातीय बहुपद|सजातीय बहुपदो]] के स्थान के प्रतिनिधित्व सिद्धांत के साथ संबंध <math>\ell </math> इकाई (एन-1)-क्षेत्र पर ध्रुवीकरण टेंसर को इस प्रकार परिभाषित करता है<ref>{{Citation |last1=Gallier |first1=Jean |title=Spherical Harmonics and Linear Representations of Lie Groups |date=2020 |url=http://link.springer.com/10.1007/978-3-030-46047-1_7 |work=Differential Geometry and Lie Groups |volume=13 |pages=265–360 |access-date=2023-05-08 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-46047-1_7 |isbn=978-3-030-46046-4 |last2=Quaintance |first2=Jocelyn|series=Geometry and Computing |s2cid=122806576 }}</ref><math>e_{(m)}(x_1,\dots,x_n) = \sum_{i_1\dots i_\ell} e_{(m)i_1\dots i_\ell}x_{i_1}\cdots x_{i_\ell},~ \forall x_i\in S^{N-1}.</math>फिर, सामान्यीकृत ध्रुवीकरण सदिश <math>e^{\mu_{1}\cdots\mu_{\ell}}(p)~ x_{\mu_{1}}\cdots x_{\mu_{\ell}}=\sqrt{\frac{2^\ell(\ell!)^2}{(2\ell) !}\frac{4\pi}{2\ell+ 1}}~~Y_{\ell,m}(x) </math> है .
इसके अतिरिक्त, वृत्ताकार हार्मोनिक्स या डिग्री के सम्मिश्र-मूल्यवान [[सजातीय बहुपद|सजातीय बहुपदो]] के स्थान के प्रतिनिधित्व सिद्धांत के साथ संबंध <math>\ell </math> इकाई (एन-1)-क्षेत्र पर ध्रुवीकरण टेंसर को इस प्रकार परिभाषित करता है<ref>{{Citation |last1=Gallier |first1=Jean |title=Spherical Harmonics and Linear Representations of Lie Groups |date=2020 |url=http://link.springer.com/10.1007/978-3-030-46047-1_7 |work=Differential Geometry and Lie Groups |volume=13 |pages=265–360 |access-date=2023-05-08 |place=Cham |publisher=Springer International Publishing |language=en |doi=10.1007/978-3-030-46047-1_7 |isbn=978-3-030-46046-4 |last2=Quaintance |first2=Jocelyn|series=Geometry and Computing |s2cid=122806576 }}</ref><math>e_{(m)}(x_1,\dots,x_n) = \sum_{i_1\dots i_\ell} e_{(m)i_1\dots i_\ell}x_{i_1}\cdots x_{i_\ell},~ \forall x_i\in S^{N-1}.</math>फिर, सामान्यीकृत ध्रुवीकरण सदिश <math>e^{\mu_{1}\cdots\mu_{\ell}}(p)~ x_{\mu_{1}}\cdots x_{\mu_{\ell}}=\sqrt{\frac{2^\ell(\ell!)^2}{(2\ell) !}\frac{4\pi}{2\ell+ 1}}~~Y_{\ell,m}(x) </math> है .


और प्रोजेक्शन ऑपरेटर को <math>\Pi^{\mu_1\cdots\mu_{\ell}\nu_1\cdots\nu_{\ell}}(p)=\sum\limits^{\ell}_{m=-\ell}[e^{\mu_1\cdots \mu_{\ell}}_{m}(p)]~[e^{\nu_1\cdots \nu_{\ell}}_{m}(p)]^* </math> इस प्रकार परिभाषित किया जा सकता है .
और प्रोजेक्शन ऑपरेटर को <math>\Pi^{\mu_1\cdots\mu_{\ell}\nu_1\cdots\nu_{\ell}}(p)=\sum\limits^{\ell}_{m=-\ell}[e^{\mu_1\cdots \mu_{\ell}}_{m}(p)]~[e^{\nu_1\cdots \nu_{\ell}}_{m}(p)]^* </math> इस प्रकार परिभाषित किया जा सकता है .


प्रक्षेपण ऑपरेटर के सममित गुण संवेग स्थान में निर्वात आयाम से निपटना सरल बनाते हैं। इसलिए हम इसे कॉन्फ़िगरेशन स्थान में सहसंबंधक <math>\Delta(x-x') </math> के रूप में व्यक्त करते हैं , हम लिखते हैंː
प्रक्षेपण ऑपरेटर के सममित गुण संवेग स्थान में निर्वात आयाम से निपटना सरल बनाते हैं। इसलिए हम इसे कॉन्फ़िगरेशन स्थान में सहसंबंधक <math>\Delta(x-x') </math> के रूप में व्यक्त करते हैं , हम लिखते हैंː




Line 267: Line 266:


== मिश्रित सममित एकपक्षीय स्पिन क्षेत्रों के लिए स्रोत सिद्धांत ==
== मिश्रित सममित एकपक्षीय स्पिन क्षेत्रों के लिए स्रोत सिद्धांत ==
इसके अतिरिक्त, कल्ब-रेमोंड क्षेत्र और एकपक्षीय आयामों और उच्च-स्पिन सिद्धांत में मिश्रित सममित गुणों के साथ काल्पनिक गेज क्षेत्रों का वर्णन करने के लिए स्रोत सिद्धांत को सामान्य बनाना सैद्धांतिक रूप से सुसंबंधित है। किन्तु सिद्धांत में स्वतंत्रता की अभौतिक डिग्री का ध्यान रखना चाहिए। उदाहरण के लिए एन-आयामों में और [[कर्टराइट फ़ील्ड|कर्टराइट क्षेत्र]] <math>T_{[\mu\nu]\lambda}</math> और स्रोत के मिश्रित सममित द्रव्यमान रहित संस्करण के लिए<math>S_{[\mu\nu]\lambda}=\partial_{\alpha}\partial^{\alpha}T_{[\mu\nu]\lambda}</math> , निर्वात आयाम है
इसके अतिरिक्त, कल्ब-रेमोंड क्षेत्र और एकपक्षीय आयामों और उच्च-स्पिन सिद्धांत में मिश्रित सममित गुणों के साथ काल्पनिक गेज क्षेत्रों का वर्णन करने के लिए स्रोत सिद्धांत को सामान्य बनाना सैद्धांतिक रूप से सुसंबंधित है। किन्तु सिद्धांत में स्वतंत्रता की अभौतिक डिग्री का ध्यान रखना चाहिए। उदाहरण के लिए एन-आयामों में और [[कर्टराइट फ़ील्ड|कर्टराइट क्षेत्र]] <math>T_{[\mu\nu]\lambda}</math> और स्रोत के मिश्रित सममित द्रव्यमान रहित संस्करण के लिए<math>S_{[\mu\nu]\lambda}=\partial_{\alpha}\partial^{\alpha}T_{[\mu\nu]\lambda}</math> , निर्वात आयाम है


<math>\langle 0|0\rangle_{S}=\exp{\left(-\frac{1}{2}\int dx~dx'\left[S_{[\mu\nu]\lambda}(x)\Delta(x-x')S_{[\mu\nu]\lambda}(x')+\frac{2}{3-N}S_{[\mu\alpha]\alpha}(x)\Delta(x-x')S_{[\mu\beta]\beta}(x')\right]\right)} </math> जो N=4 में सिद्धांत के लिए स्रोत को अंततः प्रकट करता है कि यह गैर भौतिक क्षेत्र का सिद्धांत है।<ref>{{Cite journal |last=Curtright |first=Thomas |date=1985-12-26 |title=सामान्यीकृत गेज फ़ील्ड|url=https://dx.doi.org/10.1016/0370-2693%2885%2991235-3 |journal=Physics Letters B |language=en |volume=165 |issue=4 |pages=304–308 |doi=10.1016/0370-2693(85)91235-3 |issn=0370-2693}}</ref> चूंकि, [[दोहरा गुरुत्व|दोहरा गुरुत्वा]]कर्षण N≥5 में बचता है।
<math>\langle 0|0\rangle_{S}=\exp{\left(-\frac{1}{2}\int dx~dx'\left[S_{[\mu\nu]\lambda}(x)\Delta(x-x')S_{[\mu\nu]\lambda}(x')+\frac{2}{3-N}S_{[\mu\alpha]\alpha}(x)\Delta(x-x')S_{[\mu\beta]\beta}(x')\right]\right)} </math> जो N=4 में सिद्धांत के लिए स्रोत को अंततः प्रकट करता है कि यह गैर भौतिक क्षेत्र का सिद्धांत है।<ref>{{Cite journal |last=Curtright |first=Thomas |date=1985-12-26 |title=सामान्यीकृत गेज फ़ील्ड|url=https://dx.doi.org/10.1016/0370-2693%2885%2991235-3 |journal=Physics Letters B |language=en |volume=165 |issue=4 |pages=304–308 |doi=10.1016/0370-2693(85)91235-3 |issn=0370-2693}}</ref> चूंकि, [[दोहरा गुरुत्व|दोहरा गुरुत्वा]]कर्षण N≥5 में बचता है।


== एकपक्षीय अर्ध-पूर्णांक स्पिन क्षेत्र के लिए स्रोत सिद्धांत ==
== एकपक्षीय अर्ध-पूर्णांक स्पिन क्षेत्र के लिए स्रोत सिद्धांत ==
जैसा कि ऊपर परिभाषित किया गया है,स्पिन- <math>\frac{1}{2}</math> के लिए फर्मियन प्रोपेगेटर 1⁄2 <math>S(x-x')=(p \!\!\!/+m)\Delta(x-x')</math> और वर्तमान <math>J=J_e+J_a</math> निर्वात आयाम है<ref name=":0" />
जैसा कि ऊपर परिभाषित किया गया है,स्पिन- <math>\frac{1}{2}</math> के लिए फर्मियन प्रोपेगेटर 1⁄2 <math>S(x-x')=(p \!\!\!/+m)\Delta(x-x')</math> और वर्तमान <math>J=J_e+J_a</math> निर्वात आयाम है<ref name=":0" />


<math>\begin{align}
<math>\begin{align}
Line 292: Line 291:
\end{align}</math>
\end{align}</math>


यदि स्रोत <math>J_{\mu} </math> से प्रतिस्थापित कर दिया गया है तो कोई कम की गई मीट्रिक <math>\bar{\eta}_{\mu\nu} </math> सामान्य के साथ <math>\eta_{\mu\nu} </math> को प्रतिस्थापित कर सकता है  
यदि स्रोत <math>J_{\mu} </math> से प्रतिस्थापित कर दिया गया है तो कोई कम की गई मीट्रिक <math>\bar{\eta}_{\mu\nu} </math> सामान्य के साथ <math>\eta_{\mu\nu} </math> को प्रतिस्थापित कर सकता है  


<math>\bar{J}_{\mu}(p)=\frac{2}{5}\gamma^{\alpha}\Pi_{\mu\alpha\nu\beta}\gamma^{\beta}J^{\nu}(p). </math>
<math>\bar{J}_{\mu}(p)=\frac{2}{5}\gamma^{\alpha}\Pi_{\mu\alpha\nu\beta}\gamma^{\beta}J^{\nu}(p). </math>
Line 299: Line 298:


  <math>W^{j+\frac{1}{2}}=-\frac{j+1}{2j+3}\int \frac{d^4p}{(2\pi)^4}~J^{\mu_1\cdots\mu_j}(-p)~\Big[\gamma^0\frac{~\gamma^{\alpha}~\Pi_{\mu_1\cdots\mu_j\alpha\nu_1\cdots\nu_j\beta}~\gamma^{\beta}}{p^2-m^2}\Big]~J^{\nu_1\cdots\nu_j}(p).</math>
  <math>W^{j+\frac{1}{2}}=-\frac{j+1}{2j+3}\int \frac{d^4p}{(2\pi)^4}~J^{\mu_1\cdots\mu_j}(-p)~\Big[\gamma^0\frac{~\gamma^{\alpha}~\Pi_{\mu_1\cdots\mu_j\alpha\nu_1\cdots\nu_j\beta}~\gamma^{\beta}}{p^2-m^2}\Big]~J^{\nu_1\cdots\nu_j}(p).</math>
कारण <math>\frac{j+1}{2j+3}</math> प्रक्षेपण ऑपरेटर के गुणों, धारा की ट्रेसलेसनेस और ऑपरेटर द्वारा प्रक्षेपित किए जाने के बाद धारा के संरक्षण से प्राप्त किया जाता है।<ref name=":0" /> ये स्थितियाँ को क्षेत्र पर फ़िर्ज़-पॉली से <ref>{{Cite journal |date=1939-11-28 |title=विद्युत चुम्बकीय क्षेत्र में मनमाने स्पिन के कणों के लिए सापेक्ष तरंग समीकरणों पर|url=https://royalsocietypublishing.org/doi/10.1098/rspa.1939.0140 |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |language=en |volume=173 |issue=953 |pages=211–232 |doi=10.1098/rspa.1939.0140 |s2cid=123189221 |issn=0080-4630}}</ref> और फैंग-फ्रॉन्सडाल<ref>{{Cite journal |last=Fronsdal |first=Christian |date=1978-11-15 |title=पूर्णांक स्पिन के साथ द्रव्यमान रहित फ़ील्ड|url=https://link.aps.org/doi/10.1103/PhysRevD.18.3624 |journal=Physical Review D |volume=18 |issue=10 |pages=3624–3629 |doi=10.1103/PhysRevD.18.3624}}</ref><ref>{{Cite journal |last1=Fang |first1=J. |last2=Fronsdal |first2=C. |date=1978-11-15 |title=अर्ध-अभिन्न स्पिन के साथ द्रव्यमान रहित क्षेत्र|url=https://link.aps.org/doi/10.1103/PhysRevD.18.3630 |journal=Physical Review D |volume=18 |issue=10 |pages=3630–3633 |doi=10.1103/PhysRevD.18.3630}}</ref> स्थितियाँ स्वयं प्राप्त की जा सकती हैं। विशाल क्षेत्रों के लैग्रेंजियन फॉर्मूलेशन और उनकी स्थितियों का अध्ययन लंबोदर सिंह और सी. आर. हेगन द्वारा किया गया था।<ref>{{Cite journal |last1=Singh |first1=L. P. S. |last2=Hagen |first2=C. R. |date=1974-02-15 |title=मनमाना स्पिन के लिए लैग्रेंजियन फॉर्मूलेशन। I. बोसोन मामला|url=https://link.aps.org/doi/10.1103/PhysRevD.9.898 |journal=Physical Review D |language=en |volume=9 |issue=4 |pages=898–909 |doi=10.1103/PhysRevD.9.898 |issn=0556-2821}}</ref><ref>{{Cite journal |last1=Singh |first1=L. P. S. |last2=Hagen |first2=C. R. |date=1974-02-15 |title=मनमाना स्पिन के लिए लैग्रेंजियन फॉर्मूलेशन। द्वितीय. फर्मियन केस|url=https://link.aps.org/doi/10.1103/PhysRevD.9.910 |journal=Physical Review D |language=en |volume=9 |issue=4 |pages=910–920 |doi=10.1103/PhysRevD.9.910 |issn=0556-2821}}</ref> प्रोजेक्शन ऑपरेटरों का गैर-सापेक्ष संस्करण, चार्ल्स ज़ेमाच द्वारा विकसित, जो श्विंगर का अन्य छात्र है,<ref>{{Cite journal |last=Zemach |first=Charles |date=1965-10-11 |title=कोणीय-मोमेंटम टेंसर का उपयोग|url=https://link.aps.org/doi/10.1103/PhysRev.140.B97 |journal=Physical Review |volume=140 |issue=1B |pages=B97–B108 |doi=10.1103/PhysRev.140.B97}}</ref> हैड्रॉन स्पेक्ट्रोस्कोपी में इसका भारी उपयोग किया जाता है। सहसंयोजक प्रक्षेपण ऑपरेटरों को प्रस्तुत करने के लिए ज़ेमाच की विधि को सापेक्षिक रूप से उत्तम बनाया जा सकता है।<ref>{{Cite journal |last1=Filippini |first1=V. |last2=Fontana |first2=A. |last3=Rotondi |first3=A. |date=1995-03-01 |title=मेसन स्पेक्ट्रोस्कोपी में सहसंयोजक स्पिन टेंसर|url=https://link.aps.org/doi/10.1103/PhysRevD.51.2247 |journal=Physical Review D |volume=51 |issue=5 |pages=2247–2261 |doi=10.1103/PhysRevD.51.2247|pmid=10018695 }}</ref><ref>{{Cite journal |last=Chung |first=S. U. |date=1998-01-01 |title=सहसंयोजक हेलीसिटी-युग्मन आयामों का सामान्य सूत्रीकरण|url=https://link.aps.org/doi/10.1103/PhysRevD.57.431 |journal=Physical Review D |volume=57 |issue=1 |pages=431–442 |doi=10.1103/PhysRevD.57.431}}</ref>
कारण <math>\frac{j+1}{2j+3}</math> प्रक्षेपण ऑपरेटर के गुणों, धारा की ट्रेसलेसनेस और ऑपरेटर द्वारा प्रक्षेपित किए जाने के बाद धारा के संरक्षण से प्राप्त किया जाता है।<ref name=":0" /> ये स्थितियाँ को क्षेत्र पर फ़िर्ज़-पॉली से <ref>{{Cite journal |date=1939-11-28 |title=विद्युत चुम्बकीय क्षेत्र में मनमाने स्पिन के कणों के लिए सापेक्ष तरंग समीकरणों पर|url=https://royalsocietypublishing.org/doi/10.1098/rspa.1939.0140 |journal=Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences |language=en |volume=173 |issue=953 |pages=211–232 |doi=10.1098/rspa.1939.0140 |s2cid=123189221 |issn=0080-4630}}</ref> और फैंग-फ्रॉन्सडाल<ref>{{Cite journal |last=Fronsdal |first=Christian |date=1978-11-15 |title=पूर्णांक स्पिन के साथ द्रव्यमान रहित फ़ील्ड|url=https://link.aps.org/doi/10.1103/PhysRevD.18.3624 |journal=Physical Review D |volume=18 |issue=10 |pages=3624–3629 |doi=10.1103/PhysRevD.18.3624}}</ref><ref>{{Cite journal |last1=Fang |first1=J. |last2=Fronsdal |first2=C. |date=1978-11-15 |title=अर्ध-अभिन्न स्पिन के साथ द्रव्यमान रहित क्षेत्र|url=https://link.aps.org/doi/10.1103/PhysRevD.18.3630 |journal=Physical Review D |volume=18 |issue=10 |pages=3630–3633 |doi=10.1103/PhysRevD.18.3630}}</ref> स्थितियाँ स्वयं प्राप्त की जा सकती हैं। विशाल क्षेत्रों के लैग्रेंजियन फॉर्मूलेशन और उनकी स्थितियों का अध्ययन लंबोदर सिंह और सी. आर. हेगन द्वारा किया गया था।<ref>{{Cite journal |last1=Singh |first1=L. P. S. |last2=Hagen |first2=C. R. |date=1974-02-15 |title=मनमाना स्पिन के लिए लैग्रेंजियन फॉर्मूलेशन। I. बोसोन मामला|url=https://link.aps.org/doi/10.1103/PhysRevD.9.898 |journal=Physical Review D |language=en |volume=9 |issue=4 |pages=898–909 |doi=10.1103/PhysRevD.9.898 |issn=0556-2821}}</ref><ref>{{Cite journal |last1=Singh |first1=L. P. S. |last2=Hagen |first2=C. R. |date=1974-02-15 |title=मनमाना स्पिन के लिए लैग्रेंजियन फॉर्मूलेशन। द्वितीय. फर्मियन केस|url=https://link.aps.org/doi/10.1103/PhysRevD.9.910 |journal=Physical Review D |language=en |volume=9 |issue=4 |pages=910–920 |doi=10.1103/PhysRevD.9.910 |issn=0556-2821}}</ref> प्रोजेक्शन ऑपरेटरों का गैर-सापेक्ष संस्करण, चार्ल्स ज़ेमाच द्वारा विकसित, जो श्विंगर का अन्य छात्र है,<ref>{{Cite journal |last=Zemach |first=Charles |date=1965-10-11 |title=कोणीय-मोमेंटम टेंसर का उपयोग|url=https://link.aps.org/doi/10.1103/PhysRev.140.B97 |journal=Physical Review |volume=140 |issue=1B |pages=B97–B108 |doi=10.1103/PhysRev.140.B97}}</ref> हैड्रॉन स्पेक्ट्रोस्कोपी में इसका भारी उपयोग किया जाता है। सहसंयोजक प्रक्षेपण ऑपरेटरों को प्रस्तुत करने के लिए ज़ेमाच की विधि को सापेक्षिक रूप से उत्तम बनाया जा सकता है।<ref>{{Cite journal |last1=Filippini |first1=V. |last2=Fontana |first2=A. |last3=Rotondi |first3=A. |date=1995-03-01 |title=मेसन स्पेक्ट्रोस्कोपी में सहसंयोजक स्पिन टेंसर|url=https://link.aps.org/doi/10.1103/PhysRevD.51.2247 |journal=Physical Review D |volume=51 |issue=5 |pages=2247–2261 |doi=10.1103/PhysRevD.51.2247|pmid=10018695 }}</ref><ref>{{Cite journal |last=Chung |first=S. U. |date=1998-01-01 |title=सहसंयोजक हेलीसिटी-युग्मन आयामों का सामान्य सूत्रीकरण|url=https://link.aps.org/doi/10.1103/PhysRevD.57.431 |journal=Physical Review D |volume=57 |issue=1 |pages=431–442 |doi=10.1103/PhysRevD.57.431}}</ref>





Revision as of 11:08, 30 November 2023

सैद्धांतिक भौतिकी में, स्रोत क्षेत्र एक पृष्ठभूमि क्षेत्र है जो मूल क्षेत्र से जुड़ा हुआ हैː

.

यह शब्द फेनमैन के पथ अभिन्न सूत्रीकरण में क्रिया में प्रकट होता है और सिद्धांत अंतःक्रियाओं के लिए उत्तरदायी है। श्विंगर के सूत्रीकरण में स्रोत कणों को बनाने या नष्ट करने (पता लगाने) के लिए उत्तरदायी है। टकराव की प्रतिक्रिया में स्रोत टकराव में अन्य कणों को सम्मिलित कर सकता है।[1] इसलिए, स्रोत सिद्धांत के सहसंबंध फलन (क्वांटम क्षेत्र सिद्धांत) पर दोनों ओर से अभिनय करने वाले वैक्यूम आयाम में दिखाई देता है।

इस प्रकार से श्विंगर का स्रोत सिद्धांत श्विंगर के क्वांटम क्रिया सिद्धांत से उत्पन्न होता है और पथ अभिन्न सूत्रीकरण से संबंधित हो सकता है क्योंकि प्रति से स्रोत के संबंध में भिन्नता क्षेत्र से मेल खाती है अर्थात।[2]

.

इसके अतिरिक्त, एक स्रोत स्पेसटाइम के क्षेत्र में प्रभावी रूप से कार्य करता है।[3] जैसा कि नीचे दिए गए उदाहरणों में देखा जा सकता है, स्रोत क्षेत्र के लिए गति के समीकरणों (सामान्यतः दूसरे क्रम के आंशिक अंतर समीकरण) के दाईं ओर दिखाई देता है. जब क्षेत्र विद्युत चुम्बकीय क्षमता या मीट्रिक टेंसर है, स्रोत क्षेत्र क्रमशः विद्युत प्रवाह या तनाव-ऊर्जा टेंसर है।[4][5]

सांख्यिकीय और गैर-सापेक्षतावादी अनुप्रयोगों के संदर्भ में, श्विंगर का स्रोत सूत्रीकरण कई गैर-संतुलन प्रणालियों को समझने में महत्वपूर्ण नियम निभाता है।[6][7] स्रोत सिद्धांत सैद्धांतिक रूप से महत्वपूर्ण है क्योंकि इसमें न तो विचलन नियमितीकरण और न ही पुनर्सामान्यीकरण की आवश्यकता है।[1]


पथ अभिन्न सूत्रीकरण और स्रोत सूत्रीकरण के बीच संबंध

फेनमैन के पथ में सामान्यीकरण विभाजन फलन (क्वांटम क्षेत्र सिद्धांत) के साथ अभिन्न सूत्रीकरण,[8]

प्रोपेगेटर ग्रीन के कार्य (सहसंबंध कार्य (क्वांटम क्षेत्र सिद्धांत)) उत्पन्न करता हैː

.

यह समझने के लिए कि , का एक बाहरी ड्राइविंग स्रोत है, क्वांटम वैरिएबल पद्धति को प्रयुक्त करता है। संभाव्यता सिद्धांत के दृष्टिकोण से, को फलन के अपेक्षित मूल्य के रूप में देखा जा सकता है। यह एक टॉय मॉडल के रूप में फोर्स्ड हार्मोनिक ऑसिलेटर के हैमिल्टनियन पर विचार करने के लिए प्रेरित करता है।

जहाँ .

वास्तव में, धारा वास्तविक है, अर्थात् .[9] और लैग्रेंजियन है . अब से हम टोपी और तारांकन हटा देते हैं। इस प्रकार से याद रखें कि विहित परिमाणीकरण या वास्तविक अदिश क्षेत्र दर्शाता है . विभाजन फलन और उसके सहसंबंधकों के बीच संबंध के प्रकाश में, निर्वात आयाम की भिन्नता मिलती है

, जहाँ .

चूंकि अभिन्न अंग समय क्षेत्र में है, कोई फूरियर इसे निर्माण/विनाश ऑपरेटरों के साथ मिलकर रूपांतरित कर सकता है, जैसे कि आयाम अंततः बन जाता है[2]

.

यह ध्यान करना सरल है कि यहां विलक्षणता है . फिर, हम -प्रिस्क्रिप्शन इसका फायदा उठा सकते हैं और पोल को इस प्रकार स्थानांतरित कर सकते हैं कि के लिए ग्रीन का कार्य प्राप्त होː

चूंकि अंतिम परिणाम अदिश क्षेत्रों की परस्पर क्रिया के लिए श्विंगर का स्रोत सिद्धांत है और इसे किसी भी स्पेसटाइम क्षेत्र में सामान्यीकृत किया जा सकता है।[3] इस प्रकार से नीचे विचार किए गए उदाहरण मीट्रिक का अनुसरण करते हैं .

अदिश क्षेत्रों के लिए स्रोत सिद्धांत

इस प्रकार कारण क्षोभ सिद्धांत दर्शाता है कि स्रोत कैसे वीक विधि से कार्य करते हैं। स्पिन-0 कण उत्सर्जित करने वाले एक वीक स्रोत के लिए निर्वात अवस्था पर संभाव्यता आयाम के साथ कार्य करके गति और आयाम के साथ एक एकल कण निश्चित स्पेसटाइम क्षेत्र के अन्दर बनाया जाता है, फिर, एक अन्य वीक स्रोत उस एकल कण को दूसरे स्पेसटाइम के अन्दर अवशोषित कर लेता है। क्षेत्र इस प्रकार है कि आयाम हो जाता है इस तरह, पूर्ण निर्वात आयाम द्वारा दिया जाता हैː[1]

जहाँ सूत्रों का प्रचारक (सहसंबंधक) है। अंतिम आयाम का दूसरा पद विभाजन फलन (क्वांटम क्षेत्र सिद्धांत) या मुक्त सिद्धांतों को परिभाषित करता है। और कुछ अंतःक्रिया सिद्धांत के लिए, अदिश क्षेत्र का धारा से लैग्रेंजियन इस प्रकार दिया जाता हैː[10]

यदि कोई द्रव्यमान पद में जोड़ता है तो फूरियर और दोनों को संवेग स्थान में रूपांतरित करता है, निर्वात आयाम बन जाता हैː

,

जहाँ यह नोटिस करना सरल है कि उपरोक्त आयाम में पद फूरियर को अर्थात, . में रूपांतरित किया जा सकता है।

इस प्रकार, विभाजन फलन (क्वांटम क्षेत्र सिद्धांत) स्केलर सिद्धांत विभाजन फलन से निम्नानुसार प्राप्त किया जाता है।[4] अंतिम परिणाम हमें विभाजन फलन को इस प्रकार पढ़ने की अनुमति देता है

, जहाँ , और स्रोत द्वारा प्राप्त निर्वात आयाम है . परिणामस्वारूप , प्रचारक को विभाजन फलन को निम्नानुसार अलग करके परिभाषित किया गया है।

यह नीचे माध्य क्षेत्र सन्निकटन पर विचार करने को प्रेरित करता है।

प्रभावी क्रिया, माध्य क्षेत्र सन्निकटन, और शीर्ष फलन

श्विंगर के स्रोत सिद्धांत के आधार पर, स्टीवन वेनबर्ग ने प्रभावी क्षेत्र सिद्धांत की नींव स्थापित की, जिसे भौतिकविदों के बीच व्यापक रूप से सराहा गया है। जूलियन श्विंगर कैरियर के अतिरिक्त, वेनबर्ग ने इस सैद्धांतिक ढांचे को उत्प्रेरित करने का श्रेय श्विंगर को दिया।[11]

ग्रीन के सभी कार्यों को औपचारिक रूप से विभाजन राशि के टेलर विस्तार के माध्यम से स्रोत क्षेत्रों के फलन के रूप में माना जा सकता है। यह विधि सामान्यतः क्वांटम क्षेत्र सिद्धांत के पथ अभिन्न सूत्रीकरण में उपयोग की जाती है। सामान्य विधि जिसके द्वारा ऐसे स्रोत क्षेत्रों का उपयोग क्वांटम, सांख्यिकीय-यांत्रिकी और अन्य प्रणालियों दोनों में प्रचारक प्राप्त करने के लिए किया जाता है, निम्नानुसार उल्लिखित है। विक-घुमाए गए आयाम के संदर्भ में विभाजन फलन को फिर से परिभाषित करने पर , विभाजन फलन बन जाता है . कोई परिचय करा सकता है , जो थर्मल क्वांटम क्षेत्र सिद्धांत में मुक्त ऊर्जा के रूप में व्यवहार करता है,[12] सम्मिश्र संख्या को अवशोषित करने के लिए, और इसलिए . फलन इसे घटी हुई क्वांटम क्रिया भी कहा जाता है।[13] और पौराणिक परिवर्तन की सहायता से, हम नई प्रभावी ऊर्जा कार्यात्मकता या प्रभावी क्षेत्र, का आविष्कार कर सकते हैं,[14]

जैसेː, परिवर्तनों के साथ[15]

प्रभावी क्षेत्र की परिभाषा में एकीकरण को से अधिक योग के साथ प्रतिस्थापित करने की अनुमति है , अर्थात।,

.[16]

 h> को माध्य-क्षेत्र सिद्धांत स्पष्ट रूप से इसलिए कहा जाता है क्योंकि , जबकि  पृष्ठभूमि क्षेत्र विधि है.[13]एक क्षेत्र  मौलिक भाग  और उतार-चढ़ाव वाला भाग , अर्थात।, ,में विघटित हो गया है इसलिए निर्वात आयाम को इस रूप में पुनः प्रस्तुत किया जा सकता है

,

और कोई भी फलन परिभाषित किया जाता है

,

जहाँ मुक्त लैग्रेन्जियन की क्रिया है। अंतिम दो अभिन्न अंग किसी भी प्रभावी क्षेत्र सिद्धांत के स्तंभ हैं।[16] यह निर्माण प्रकीर्णन (एलएसजेड कटौती सूत्र), सहज समरूपता टूटने, [17][18] वार्ड पहचान, गैर-रेखीय सिग्मा मॉडल, और कम-ऊर्जा प्रभावी सिद्धांतों का अध्ययन करने में अपरिहार्य है।[12] इसके अतिरिक्त, यह सैद्धांतिक रूप क्वांटम गुरुत्व के लिए विहित क्वांटम गुरुत्व प्रभावी सिद्धांत विकसित करने पर विचारों की श्रृंखला प्रारंभ करता है, जिसे मुख्य रूप से ब्राइस डेविट द्वारा प्रचारित किया गया था जो श्विंगर के पीएचडी छात्र थे।[19]

क्रियाओं के ग्रीन फलन पर वापस जाएँ। तब से ,का लीजेंड्रे रूपांतरण है , और एन-पॉइंट उर्सेल फलन सहसंबंधक को परिभाषित करता है तो , से प्राप्त संबंधित सहसंबंधक से प्राप्त किया गया , जिसे शीर्ष फलन के रूप में जाना जाता है, द्वारा दिया जाता है. परिणामस्वारूप , एक कण इरेड्यूसिबल ग्राफ़

(सामान्यतः 11पीआई के रूप में संक्षिप्त) में, जुड़े हुए 2-बिंदु -सहसंबंधक को 2-बिंदु -सहसंबंधक, के व्युत्क्रम के रूप में परिभाषित किया गया है अर्थात, सामान्य रूप से कम किया गया सहसंबंध है ,

और प्रभावी सहसंबंध हैː

.

सदिश क्षेत्रों के लिए स्रोत सिद्धांत

एक वीक स्रोत के लिए जो सामान्य धारा के साथ प्रोका क्रिया मिसिव स्पिन-1 कण उत्पन्न करता है विभिन्न कारण अंतरिक्ष-समय बिंदुओं पर कार्य करना , निर्वात आयाम है

संवेग स्थान में, स्पिन-1 कण विश्राम द्रव्यमान के साथ निश्चित गति है इसके बाकी फ्रेम में, अर्थात . फिर, आयाम देता है[1]

जहाँ और , का स्थानांतरण है . अंतिम परिणाम कॉन्फ़िगरेशन स्थान में वैक्यूम आयाम में प्रयुक्त प्रोपेगेटर से मेल खाता है, अर्थात,

.

जब , चुना हुआ फेनमैन-'टी हूफ्ट प्रोपेगेटर गेज-फिक्सिंग स्पिन- 1 को द्रव्यमानहीन बनाता है। और जब , चयनित लैंडौ गेज फिक्सिंग| स्पिन-1 को बड़े माप पर बनाती है।[20] क्वांटम इलेक्ट्रोडायनामिक्स में अध्ययन के अनुसार द्रव्यमान रहित स्तिथि स्पष्ट है। यह विशाल स्तिथि अधिक रुचि है क्योंकि वर्तमान को संरक्षित करने की मांग नहीं की गई है। चूंकि, करंट को उसी तरह से सुधारा जा सकता है जैसे बेलिनफेंटे-रोसेनफेल्ड तनाव-ऊर्जा टेंसर बेलिनफेंटे-रोसेनफेल्ड टेंसर में सुधार किया जाता है जिससे यह संरक्षित रहे। और विशाल सदिश के लिए गति का समीकरण प्राप्त करने के लिए, कोई परिभाषित कर सकता है[1]

विशाल स्पिन-1 क्षेत्र की परिभाषा प्राप्त करने के लिए कोई दूसरे पद पर भाग द्वारा एकीकरण प्रयुक्त कर सकता है और फिर को एकल कर सकता है

इसके अतिरिक्त, उपरोक्त समीकरण यह कहता है कि . इस प्रकार, गति का समीकरण निम्नलिखित में से किसी भी रूप में लिखा जा सकता है



उच्च माप पर पूर्णतः सममित स्पिन-2 क्षेत्र के लिए स्रोत सिद्धांत

एक समतल मिन्कोव्स्की अंतरिक्ष में वीक स्रोत के लिए, सामान्य पुनर्परिभाषित ऊर्जा-संवेग टेंसर के साथ विशाल गुरुत्वाकर्षण मिसाइल स्पिन -2 कण को ​​अवशोषित करना, जो वर्तमान के रूप में कार्य करता है, ,


जहाँ वैक्यूम ध्रुवीकरण या वैक्यूम ध्रुवीकरण टेंसर है, कॉम्पैक्ट रूप में वैक्यूम आयाम है[1]

या