अतिसंभावित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[सैद्धांतिक भौतिकी]] में, सुपरपोटेंशियल [[सुपरसिमेट्रिक क्वांटम यांत्रिकी]] में ऐसा फ़ंक्शन है। सुपरपोटेंशियल को देखते हुए, दो साझेदार क्षमताएं प्राप्त की जाती हैं, जिनमें से प्रत्येक श्रोडिंगर समीकरण में क्षमता के रूप में काम कर सकती है। शून्य के संभावित [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स]] के अलावा, भागीदार क्षमता में समान [[स्पेक्ट्रम (कार्यात्मक विश्लेषण)]] होता है, जिसका अर्थ है कि संभावित शून्य-ऊर्जा जमीनी स्थिति के अलावा, दो संभावनाओं द्वारा दर्शाए गए भौतिक प्रणालियों में समान विशेषता ऊर्जा होती है।
[[सैद्धांतिक भौतिकी]] में, '''अतिसंभावित''' [[सुपरसिमेट्रिक क्वांटम यांत्रिकी]] में ऐसा फलन है। अतिसंभावित को देखते हुए, दो साझेदार क्षमताएं प्राप्त की जाती हैं, जिनमें से प्रत्येक श्रोडिंगर समीकरण में क्षमता के रूप में कार्य कर सकती है। शून्य के संभावित [[आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स|आइगेनवैल्यूज़]] के अतिरिक्त, भागीदार संभावनाओं का [[स्पेक्ट्रम (कार्यात्मक विश्लेषण)|स्पेक्ट्रम]] समान होता है, जिसका अर्थ है कि संभावित शून्य-ऊर्जा भूमि स्थिति के अतिरिक्त, दो संभावनाओं द्वारा दर्शाए गए भौतिक प्रणालियों में समान विशेषता ऊर्जा होती है।


==-आयामी उदाहरण==
==एक-आयामी उदाहरण==


[[स्पिन (भौतिकी)]] नामक स्वतंत्रता की दो अवस्था वाली आंतरिक डिग्री वाले -आयामी, गैर-सापेक्षवादी कण पर विचार करें। (यह गैर-सापेक्ष क्वांटम यांत्रिकी में सामने आने वाली स्पिन की सामान्य धारणा नहीं है, क्योंकि वास्तविक स्पिन केवल त्रि-आयामी अंतरिक्ष में कणों पर लागू होती है।) बी और इसके [[हर्मिटियन सहायक]] बी को दें<sup>†</sup> [[ऑपरेटर (भौतिकी)]] को दर्शाता है जो क्रमशः  स्पिन अप कण को ​​ स्पिन डाउन कण में और इसके विपरीत परिवर्तित करता है। इसके अलावा, बी और बी लें<sup>†</sup> को इस प्रकार सामान्यीकृत किया जाए कि [[एंटीकम्यूटेटर]] {बी,बी<sup>†</sup>} 1 के बराबर है, और वह b लें<sup>2</sup> 0 के बराबर है। मान लीजिए कि p कण की [[गति]] को दर्शाता है और x इसकी [[स्थिति वेक्टर]] को [x,p]=i के साथ दर्शाता है, जहां हम प्राकृतिक इकाइयों का उपयोग करते हैं ताकि <math>\hbar=1</math>. मान लें कि W (सुपरपोटेंशियल) x के मनमाना अवकलनीय फ़ंक्शन का प्रतिनिधित्व करता है और सुपरसिमेट्रिक ऑपरेटर्स Q को परिभाषित करता है<sub>1</sub> और प्र<sub>2</sub> जैसा
स्वतंत्रता की दो अवस्था वाली आंतरिक डिग्री वाले एक-आयामी, असापेक्षवादी कण पर विचार करें जिसे "[[स्पिन (भौतिकी)|स्पिन]]" कहा जाता है। (यह असापेक्ष क्वांटम यांत्रिकी में सामने आने वाली स्पिन की सामान्य धारणा नहीं है, क्योंकि वास्तविक स्पिन केवल त्रि-आयामी अंतरिक्ष में कणों पर प्रारम्भ होती है।) b और इसके [[हर्मिटियन सहायक]] b<sup>†</sup> उन  [[ऑपरेटर (भौतिकी)|ऑपरेटरों (भौतिकी)]] को दर्शाते है जो "स्पिन अप" कण को ​​​​रूपांतरित करते हैं। क्रमशः "स्पिन डाउन" कण में और इसके विपरीत है। इसके अतिरिक्त, b और b<sup>†</sup> को इस प्रकार सामान्यीकृत किया जाए कि [[एंटीकम्यूटेटर]] {b,b<sup>†</sup>} 1 के समान  हो, और b<sup>2</sup> , 0 के समान हो। मान लीजिए कि p कण की [[गति]] का प्रतिनिधित्व करता है और x इसकी [[स्थिति वेक्टर]] को [x,p]=i के साथ दर्शाता है, जहां हम प्राकृतिक इकाइयों का उपयोग करते हैं जिससे <math>\hbar=1</math> मान लें कि W (अतिसंभावित) x के स्वेछानुसार अवकलनीय फलन का प्रतिनिधित्व करता है और सुपरसिमेट्रिक ऑपरेटरों Q<sub>1</sub> और Q<sub>2</sub> को इस प्रकार परिभाषित करता है:


:<math>Q_1=\frac{1}{2}\left[(p-iW)b+(p+iW)b^\dagger\right]</math>
:<math>Q_1=\frac{1}{2}\left[(p-iW)b+(p+iW)b^\dagger\right]</math>
:<math>Q_2=\frac{i}{2}\left[(p-iW)b-(p+iW)b^\dagger\right]</math>
:<math>Q_2=\frac{i}{2}\left[(p-iW)b-(p+iW)b^\dagger\right]</math>
संचालक प्र<sub>1</sub> और प्र<sub>2</sub> स्वयं-संयुक्त हैं. [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] होने दें
ऑपरेटर Q<sub>1</sub> और Q<sub>2</sub> स्व-सहायक हैं। [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] मान लीजिये,


:<math>H=\{Q_1,Q_1\}=\{Q_2,Q_2\}=\frac{p^2}{2}+\frac{W^2}{2}+\frac{W'}{2}(bb^\dagger-b^\dagger b)</math>
:<math>H=\{Q_1,Q_1\}=\{Q_2,Q_2\}=\frac{p^2}{2}+\frac{W^2}{2}+\frac{W'}{2}(bb^\dagger-b^\dagger b)</math>
जहां W', W के अवकलज को दर्शाता है। यह भी ध्यान रखें कि {Q<sub>1</sub>,क्यू<sub>2</sub>}=0. इन परिस्थितियों में, उपरोक्त प्रणाली N=2 सुपरसिममेट्री का [[खिलौना मॉडल]] है। [[क्वांटम क्षेत्र सिद्धांत]] के अनुरूप, स्पिन डाउन और स्पिन अप अवस्थाओं को अक्सर क्रमशः बोसोनिक और फर्मिओनिक अवस्थाओं के रूप में जाना जाता है। इन परिभाषाओं के साथ, Q<sub>1</sub> और प्र<sub>2</sub> बोसोनिक अवस्थाओं को फर्मिओनिक अवस्थाओं में मैप करें और इसके विपरीत। बोसोनिक या फर्मिओनिक सेक्टरों तक सीमित करने से दो [[ सुपरसिमेट्रिक क्वांटम यांत्रिकी ]] निर्धारित होते हैं
जहां W', W के अवकलज को दर्शाता है। यह भी ध्यान रखें कि {Q<sub>1</sub>,Q<sub>2</sub>}=0 है। इन परिस्थितियों में, उपरोक्त प्रणाली N=2 सुपरसिममेट्री का [[खिलौना मॉडल|टॉय मॉडल]] है। [[क्वांटम क्षेत्र सिद्धांत]] के अनुरूप, स्पिन डाउन और स्पिन अप अवस्थाओं को प्रायः क्रमशः "बोसोनिक" और "फ़र्मीओनिक" अवस्थाओं के रूप में जाना जाता है। इन परिभाषाओं के साथ, Q<sub>1</sub> और Q<sub>2</sub> "बोसोनिक" अवस्थाओं को "फ़र्मीओनिक" अवस्थाओं में में मैप करते हैं। इसके विपरीत बोसोनिक या फर्मिओनिक क्षेत्रों तक सीमित करने से दो साझेदार क्षमताएं निर्धारित होती हैं:


:<math> H = \frac{p^2}{2}+\frac{W^2}{2} \pm \frac{W'}{2}</math>
:<math> H = \frac{p^2}{2}+\frac{W^2}{2} \pm \frac{W'}{2}</math>


== चार [[ अंतरिक्ष समय ]] आयामों में ==
== चार [[ अंतरिक्ष समय |अंतरिक्ष समय]] आयामों में ==
चार स्पेसटाइम आयामों के साथ [[अतिसममिति]] [[क्वांटम क्षेत्र सिद्धांत]]ों में, जिसका प्रकृति से कुछ संबंध हो सकता है, यह पता चलता है कि स्केलर (भौतिकी) क्षेत्र चिरल सुपरफील्ड के सबसे निचले घटक के रूप में उत्पन्न होते हैं, जो स्वचालित रूप से जटिल मूल्य वाले होते हैं। हम [[चिरल सुपरफ़ील्ड]] के जटिल संयुग्म को एंटी-चिरल सुपरफ़ील्ड के रूप में पहचान सकते हैं। सुपरफील्ड्स के सेट से कार्रवाई प्राप्त करने के दो संभावित तरीके हैं:
चार स्पेसटाइम आयामों के साथ [[अतिसममिति]] [[क्वांटम क्षेत्र सिद्धांत|क्वांटम क्षेत्र सिद्धांतों]] में, जिसका प्रकृति से कुछ संबंध हो सकता है, यह ज्ञात होता है कि सदिश (भौतिकी) क्षेत्र चिरल सुपरफील्ड के सबसे निचले घटक के रूप में उत्पन्न होते हैं, जो स्वचालित रूप से जटिल मान वाले होते हैं। हम [[चिरल सुपरफ़ील्ड]] के जटिल संयुग्म को एंटी-चिरल सुपरफ़ील्ड के रूप में पहचान सकते हैं। सुपरफील्ड्स के सेट से एक्शन प्राप्त करने के दो संभावित विधि हैं:
   
   
* द्वारा फैलाए गए संपूर्ण सुपरस्पेस पर सुपरफ़ील्ड को ीकृत करें <math>x_{0,1,2,3}</math> और <math>\theta,\bar\theta</math>,
* विस्तारित किये गए संपूर्ण सुपरस्पेस पर सुपरफ़ील्ड <math>x_{0,1,2,3}</math> को एकीकृत किया जाता है और <math>\theta,\bar\theta</math> में,


या
या


* सुपरस्पेस के चिरल आधे भाग पर चिरल सुपरफ़ील्ड को ीकृत करें, जिसके द्वारा फैलाया गया है <math>x_{0,1,2,3}</math> और <math>\theta</math>, पर नहीं <math>\bar\theta</math>.
* सुपरस्पेस के चिरल अर्ध भाग पर चिरल सुपरफ़ील्ड को एकीकृत किया जाता है, जिसके द्वारा <math>x_{0,1,2,3}</math> विस्तारित किया गया है और <math>\theta</math>, <math>\bar\theta</math> पर नहीं विस्तारित किया गया है।


दूसरा विकल्प हमें बताता है कि चिरल सुपरफील्ड्स के सेट का मनमाना [[होलोमोर्फिक फ़ंक्शन]] लैग्रेंजियन में शब्द के रूप में दिखाई दे सकता है जो सुपरसिमेट्री के तहत अपरिवर्तनीय है। इस संदर्भ में, होलोमोर्फिक का अर्थ है कि फ़ंक्शन केवल चिरल सुपरफील्ड्स पर निर्भर हो सकता है, न कि उनके जटिल संयुग्मों पर। हम ऐसे फलन W को अतिक्षमता कह सकते हैं। तथ्य यह है कि डब्ल्यू चिरल सुपरफील्ड्स में होलोमोर्फिक है, यह समझाने में मदद करता है कि सुपरसिमेट्रिक सिद्धांत अपेक्षाकृत सुव्यवस्थित क्यों हैं, क्योंकि यह [[जटिल विश्लेषण]] से शक्तिशाली गणितीय उपकरणों का उपयोग करने की अनुमति देता है। वास्तव में, यह ज्ञात है कि W को कोई गड़बड़ीदार सुधार नहीं मिलता है, जिसके परिणाम को [[सुपरसिमेट्री नॉनरेनॉर्मलाइज़ेशन प्रमेय]]|परटर्बेटिव नॉन-रेनॉर्मलाइज़ेशन प्रमेय कहा जाता है। ध्यान दें कि गैर-परेशान करने वाली प्रक्रियाएं इसे ठीक कर सकती हैं, उदाहरण के लिए [[ एक पल | पल]] के कारण [[बीटा फ़ंक्शन (भौतिकी)]] में योगदान के माध्यम से।
दूसरा विकल्प हमें बताता है कि चिरल सुपरफील्ड्स के सेट का स्वेछा [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] लैग्रेंजियन में शब्द के रूप में दिखाई दे सकता है जो सुपरसिमेट्री के अंतर्गत अपरिवर्तनीय है। इस संदर्भ में, होलोमोर्फिक का अर्थ है कि फलन केवल चिरल सुपरफील्ड्स पर निर्भर हो सकता है, न कि उनके जटिल संयुग्मों पर निर्भर हो सकता है। हम ऐसे फलन W को अतिक्षमता कह सकते हैं। तथ्य यह है कि W चिरल सुपरफील्ड्स में होलोमोर्फिक है, यह समझाने में सहायता करता है कि सुपरसिमेट्रिक सिद्धांत अपेक्षाकृत सुव्यवस्थित क्यों हैं, क्योंकि यह [[जटिल विश्लेषण]] से शक्तिशाली गणितीय उपकरणों का उपयोग करने की अनुमति देता है। वास्तव में, यह ज्ञात है कि W को कोई विक्षुब्ध सुधार नहीं मिलता है, जिसके परिणाम को [[सुपरसिमेट्री नॉनरेनॉर्मलाइज़ेशन प्रमेय|सुपरसिमेट्री गैर-पुनर्सामान्यीकरण प्रमेय]] कहा जाता है। ध्यान दें कि विक्षुब्ध करने वाली प्रक्रियाएं इसे व्यवस्थित कर सकती हैं, उदाहरण के लिए [[ एक पल |इंस्टेंटन]] के कारण [[बीटा फ़ंक्शन (भौतिकी)|बीटा फलन (भौतिकी)]] में योगदान के माध्यम से होता है।


== यह भी देखें ==
== यह भी देखें ==


* [[कोमर सुपरपोटेंशियल]]
* [[कोमर सुपरपोटेंशियल|कोमर अतिसंभावित]]


==संदर्भ==
==संदर्भ==

Revision as of 23:06, 30 November 2023

सैद्धांतिक भौतिकी में, अतिसंभावित सुपरसिमेट्रिक क्वांटम यांत्रिकी में ऐसा फलन है। अतिसंभावित को देखते हुए, दो साझेदार क्षमताएं प्राप्त की जाती हैं, जिनमें से प्रत्येक श्रोडिंगर समीकरण में क्षमता के रूप में कार्य कर सकती है। शून्य के संभावित आइगेनवैल्यूज़ के अतिरिक्त, भागीदार संभावनाओं का स्पेक्ट्रम समान होता है, जिसका अर्थ है कि संभावित शून्य-ऊर्जा भूमि स्थिति के अतिरिक्त, दो संभावनाओं द्वारा दर्शाए गए भौतिक प्रणालियों में समान विशेषता ऊर्जा होती है।

एक-आयामी उदाहरण

स्वतंत्रता की दो अवस्था वाली आंतरिक डिग्री वाले एक-आयामी, असापेक्षवादी कण पर विचार करें जिसे "स्पिन" कहा जाता है। (यह असापेक्ष क्वांटम यांत्रिकी में सामने आने वाली स्पिन की सामान्य धारणा नहीं है, क्योंकि वास्तविक स्पिन केवल त्रि-आयामी अंतरिक्ष में कणों पर प्रारम्भ होती है।) b और इसके हर्मिटियन सहायक b उन ऑपरेटरों (भौतिकी) को दर्शाते है जो "स्पिन अप" कण को ​​​​रूपांतरित करते हैं। क्रमशः "स्पिन डाउन" कण में और इसके विपरीत है। इसके अतिरिक्त, b और b को इस प्रकार सामान्यीकृत किया जाए कि एंटीकम्यूटेटर {b,b} 1 के समान हो, और b2 , 0 के समान हो। मान लीजिए कि p कण की गति का प्रतिनिधित्व करता है और x इसकी स्थिति वेक्टर को [x,p]=i के साथ दर्शाता है, जहां हम प्राकृतिक इकाइयों का उपयोग करते हैं जिससे मान लें कि W (अतिसंभावित) x के स्वेछानुसार अवकलनीय फलन का प्रतिनिधित्व करता है और सुपरसिमेट्रिक ऑपरेटरों Q1 और Q2 को इस प्रकार परिभाषित करता है:

ऑपरेटर Q1 और Q2 स्व-सहायक हैं। हैमिल्टनियन (क्वांटम यांत्रिकी) मान लीजिये,

जहां W', W के अवकलज को दर्शाता है। यह भी ध्यान रखें कि {Q1,Q2}=0 है। इन परिस्थितियों में, उपरोक्त प्रणाली N=2 सुपरसिममेट्री का टॉय मॉडल है। क्वांटम क्षेत्र सिद्धांत के अनुरूप, स्पिन डाउन और स्पिन अप अवस्थाओं को प्रायः क्रमशः "बोसोनिक" और "फ़र्मीओनिक" अवस्थाओं के रूप में जाना जाता है। इन परिभाषाओं के साथ, Q1 और Q2 "बोसोनिक" अवस्थाओं को "फ़र्मीओनिक" अवस्थाओं में में मैप करते हैं। इसके विपरीत बोसोनिक या फर्मिओनिक क्षेत्रों तक सीमित करने से दो साझेदार क्षमताएं निर्धारित होती हैं:

चार अंतरिक्ष समय आयामों में

चार स्पेसटाइम आयामों के साथ अतिसममिति क्वांटम क्षेत्र सिद्धांतों में, जिसका प्रकृति से कुछ संबंध हो सकता है, यह ज्ञात होता है कि सदिश (भौतिकी) क्षेत्र चिरल सुपरफील्ड के सबसे निचले घटक के रूप में उत्पन्न होते हैं, जो स्वचालित रूप से जटिल मान वाले होते हैं। हम चिरल सुपरफ़ील्ड के जटिल संयुग्म को एंटी-चिरल सुपरफ़ील्ड के रूप में पहचान सकते हैं। सुपरफील्ड्स के सेट से एक्शन प्राप्त करने के दो संभावित विधि हैं:

  • विस्तारित किये गए संपूर्ण सुपरस्पेस पर सुपरफ़ील्ड को एकीकृत किया जाता है और में,

या

  • सुपरस्पेस के चिरल अर्ध भाग पर चिरल सुपरफ़ील्ड को एकीकृत किया जाता है, जिसके द्वारा विस्तारित किया गया है और , पर नहीं विस्तारित किया गया है।

दूसरा विकल्प हमें बताता है कि चिरल सुपरफील्ड्स के सेट का स्वेछा होलोमोर्फिक फलन लैग्रेंजियन में शब्द के रूप में दिखाई दे सकता है जो सुपरसिमेट्री के अंतर्गत अपरिवर्तनीय है। इस संदर्भ में, होलोमोर्फिक का अर्थ है कि फलन केवल चिरल सुपरफील्ड्स पर निर्भर हो सकता है, न कि उनके जटिल संयुग्मों पर निर्भर हो सकता है। हम ऐसे फलन W को अतिक्षमता कह सकते हैं। तथ्य यह है कि W चिरल सुपरफील्ड्स में होलोमोर्फिक है, यह समझाने में सहायता करता है कि सुपरसिमेट्रिक सिद्धांत अपेक्षाकृत सुव्यवस्थित क्यों हैं, क्योंकि यह जटिल विश्लेषण से शक्तिशाली गणितीय उपकरणों का उपयोग करने की अनुमति देता है। वास्तव में, यह ज्ञात है कि W को कोई विक्षुब्ध सुधार नहीं मिलता है, जिसके परिणाम को सुपरसिमेट्री गैर-पुनर्सामान्यीकरण प्रमेय कहा जाता है। ध्यान दें कि विक्षुब्ध करने वाली प्रक्रियाएं इसे व्यवस्थित कर सकती हैं, उदाहरण के लिए इंस्टेंटन के कारण बीटा फलन (भौतिकी) में योगदान के माध्यम से होता है।

यह भी देखें

संदर्भ

  • Stephen P. Martin, A Supersymmetry Primer. arXiv:hep-ph/9709356.
  • B. Mielnik and O. Rosas-Ortiz, "Factorization: Little or great algorithm?", J. Phys. A: Math. Gen. 37: 10007-10035, 2004
  • Cooper, Fred; Khare, Avinash; Sukhatme, Uday (1995). "Supersymmetric quantum mechanics". Physics Reports. 251: 267–385. arXiv:hep-th/9405029. Bibcode:1995PhR...251..267C. doi:10.1016/0370-1573(94)00080-M.