सांस्थितिक प्रदिश गुणनफल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Tensor product constructions for topological vector spaces}}गणित में, आमतौर पर दो [[टोपोलॉजिकल वेक्टर स्पेस]] के टोपोलॉजिकल [[टेंसर उत्पाद]] का निर्माण करने के कई अलग-अलग तरीके होते हैं। हिल्बर्ट रिक्त स्थान या परमाणु रिक्त स्थान के लिए टेंसर उत्पादों का एक सरल व्यवहार सिद्धांत है ([[हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद]] देखें), लेकिन सामान्य बानाच रिक्त स्थान या स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर रिक्त स्थान के लिए सिद्धांत बेहद सूक्ष्म है।
{{Short description|Tensor product constructions for topological vector spaces}}गणित में, सामान्य रूप से  दो [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश स्थान]] के टोपोलॉजिकल [[टेंसर उत्पाद]] का निर्माण करने के कई अलग-अलग विधि होते हैं। हिल्बर्ट रिक्त स्थान या परमाणु रिक्त स्थान के लिए टेंसर उत्पादों का एक सरल व्यवहार सिद्धांत है ([[हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद]] देखें), किन्तु सामान्य बानाच रिक्त स्थान या स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश रिक्त स्थान के लिए सिद्धांत अधिक सूक्ष्म है।


== प्रेरणा ==
== प्रेरणा ==
टोपोलॉजिकल टेंसर उत्पादों के लिए मूल प्रेरणाओं में से एक <math>\hat{\otimes}</math> तथ्य यह है कि रिक्त स्थान के टेंसर उत्पाद सुचारू रूप से कार्य करते हैं <math>\R^n</math> अपेक्षा के अनुरूप व्यवहार न करें. एक इंजेक्शन है
टोपोलॉजिकल टेंसर उत्पादों <math>\hat{\otimes}</math> के लिए मूल प्रेरणाओं में से एक यह तथ्य है कि <math>\R^n</math> पर सुचारू कार्यों के स्थानों के टेंसर उत्पाद अपेक्षा के अनुरूप व्यवहार नहीं करते हैं। एक इंजेक्शन है


:<math>C^\infty(\R^n) \otimes C^\infty(\R^m) \hookrightarrow C^\infty(\R^{n+m})</math>
:<math>C^\infty(\R^n) \otimes C^\infty(\R^m) \hookrightarrow C^\infty(\R^{n+m})</math>
लेकिन यह एक समरूपता नहीं है. उदाहरण के लिए, फ़ंक्शन <math>f(x,y) = e^{xy}</math> में सुचारु कार्यों के एक सीमित रैखिक संयोजन के रूप में व्यक्त नहीं किया जा सकता है <math>C^\infty(\R_x)\otimes C^\infty(\R_y).</math><ref>{{Cite web| url= https://math.stackexchange.com/a/2244646/251222|title=What is an example of a smooth function in C∞(R2) which is not contained in C∞(R)⊗C∞(R) }}</ref> टोपोलॉजिकल टेंसर उत्पाद के निर्माण के बाद ही हमें एक समरूपता प्राप्त होती है; अर्थात।,
किन्तु यह एक समरूपता नहीं है. उदाहरण के लिए, फ़ंक्शन <math>f(x,y) = e^{xy}</math> को <math>C^\infty(\R_x)\otimes C^\infty(\R_y).</math> में सुचारु कार्यों के एक सीमित रैखिक संयोजन के रूप में व्यक्त नहीं किया जा सकता है। हमें केवल टोपोलॉजिकल टेंसर उत्पाद के निर्माण के बाद एक समरूपता मिलती है;<ref>{{Cite web| url= https://math.stackexchange.com/a/2244646/251222|title=What is an example of a smooth function in C∞(R2) which is not contained in C∞(R)⊗C∞(R) }}</ref> अर्थात।,


:<math>C^\infty(\R^n) \mathop{\hat{\otimes}} C^\infty(\R^m) \cong C^\infty(\R^{n+m}).</math>
:<math>C^\infty(\R^n) \mathop{\hat{\otimes}} C^\infty(\R^m) \cong C^\infty(\R^{n+m}).</math>
यह लेख सबसे पहले बानाच अंतरिक्ष मामले में निर्माण का विवरण देता है। <math>C^\infty(\R^n)</math> यह बानाच स्थान नहीं है और आगे के मामलों पर अंत में चर्चा की जाती है।
यह लेख सबसे पहले बानाच अंतरिक्ष स्थिति में निर्माण का विवरण देता है। <math>C^\infty(\R^n)</math> कोई बानाच स्थान नहीं है और आगे के स्थितियों पर अंत में विचार की जाती है।


==हिल्बर्ट रिक्त स्थान के टेंसर उत्पाद==
==हिल्बर्ट रिक्त स्थान के टेंसर उत्पाद==
{{Main|Tensor product of Hilbert spaces}}
{{Main|हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद}}
दो हिल्बर्ट रिक्त स्थान ए और बी के बीजगणितीय टेंसर उत्पाद में ए और बी के [[सेसक्विलिनियर फॉर्म]]ों से प्रेरित एक प्राकृतिक सकारात्मक निश्चित सेसक्विलिनियर रूप (स्केलर उत्पाद) होता है। इसलिए विशेष रूप से इसमें एक प्राकृतिक [[सकारात्मक निश्चित द्विघात रूप]] होता है, और संबंधित पूर्णता एक होती है हिल्बर्ट स्पेस ए ⊗ बी, जिसे ए और बी का (हिल्बर्ट स्पेस) टेंसर उत्पाद कहा जाता है।


यदि सदिश a<sub>i</sub>और बी<sub>j</sub>और बी के [[ऑर्थोनॉर्मल आधार]] से गुजरें, फिर वेक्टर ए<sub>i</sub>⊗b<sub>j</sub>A ⊗ B का एक लंबात्मक आधार बनाएं।
दो हिल्बर्ट रिक्त स्थान ''A'' और ''B''  के बीजगणितीय टेंसर उत्पाद में ''A'' और ''B'' के [[सेसक्विलिनियर फॉर्म]] से प्रेरित एक प्राकृतिक सकारात्मक निश्चित सेसक्विलिनियर रूप (स्केलर उत्पाद) होता है। इसलिए विशेष रूप से इसमें एक प्राकृतिक [[सकारात्मक निश्चित द्विघात रूप]] होता है, और संबंधित पूर्णता एक होती है हिल्बर्ट स्पेस ''A'' ⊗ ''B'',  जिसे ''A'' और ''B'' का (हिल्बर्ट स्पेस) टेंसर उत्पाद कहा जाता है।
 
यदि सदिश ''a<sub>i</sub>'' और ''b<sub>j</sub>'' j, A और B के ऑर्थोनॉर्मल आधारों से होकर निकलते हैं, तो सदिश ''a<sub>i</sub>''⊗''b<sub>j</sub>''  A ⊗ B का ऑर्थोनॉर्मल आधार बनाते हैं।


== बैनाच रिक्त स्थान के क्रॉस मानदंड और टेंसर उत्पाद ==
== बैनाच रिक्त स्थान के क्रॉस मानदंड और टेंसर उत्पाद ==


हम से संकेतन का उपयोग करेंगे {{harv|Ryan|2002}} इस खंड में। दो बैनाच स्थानों के टेंसर उत्पाद को परिभाषित करने का स्पष्ट तरीका <math>A</math> और <math>B</math> हिल्बर्ट रिक्त स्थान के लिए विधि की प्रतिलिपि बनाना है: बीजगणितीय टेंसर उत्पाद पर एक मानदंड परिभाषित करें, फिर इस मानदंड में पूर्णता लें। समस्या यह है कि टेंसर उत्पाद पर एक मानदंड को परिभाषित करने के लिए एक से अधिक प्राकृतिक तरीके हैं।
'''हम से संकेतन का उपयोग करेंगे {{harv|Ryan|2002}} इस खंड में।''' दो बैनाच स्थानों के टेंसर उत्पाद को परिभाषित करने का स्पष्ट तरीका <math>A</math> और <math>B</math> हिल्बर्ट रिक्त स्थान के लिए विधि की प्रतिलिपि बनाना है: बीजगणितीय टेंसर उत्पाद पर एक मानदंड परिभाषित करें, फिर इस मानदंड में पूर्णता लें। समस्या यह है कि टेंसर उत्पाद पर एक मानदंड को परिभाषित करने के लिए एक से अधिक प्राकृतिक विधि हैं।


अगर <math>A</math> और <math>B</math> बानाच रिक्त स्थान बीजगणितीय टेंसर उत्पाद हैं <math>A</math> और <math>B</math> का मतलब टेंसर उत्पाद है <math>A</math> और <math>B</math> वेक्टर रिक्त स्थान के रूप में और द्वारा निरूपित किया जाता है <math>A \otimes B.</math> बीजगणितीय टेंसर उत्पाद <math>A \otimes B</math> सभी परिमित राशियों से मिलकर बना है।
अगर <math>A</math> और <math>B</math> बानाच रिक्त स्थान बीजगणितीय टेंसर उत्पाद हैं <math>A</math> और <math>B</math> का मतलब टेंसर उत्पाद है <math>A</math> और <math>B</math> सदिश रिक्त स्थान के रूप में और द्वारा निरूपित किया जाता है <math>A \otimes B.</math> बीजगणितीय टेंसर उत्पाद <math>A \otimes B</math> सभी परिमित राशियों से मिलकर बना है।
<math display=block>x = \sum_{i=1}^n a_i \otimes b_i,</math>
<math display=block>x = \sum_{i=1}^n a_i \otimes b_i,</math>
कहाँ <math>n</math> के आधार पर एक प्राकृतिक संख्या है <math>x</math> और <math>a_i \in A</math> और <math>b_i \in B</math> के लिए
कहाँ <math>n</math> के आधार पर एक प्राकृतिक संख्या है <math>x</math> और <math>a_i \in A</math> और <math>b_i \in B</math> के लिए
Line 53: Line 54:




==स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्थानों के टेंसर उत्पाद==
==स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थानों के टेंसर उत्पाद==
{{See also|Injective tensor product|Projective tensor product}}
{{See also|Injective tensor product|Projective tensor product}}


स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्थानों की टोपोलॉजी <math>A</math> और <math>B</math> [[ सेमिनोर्म ]]्स के परिवारों द्वारा दिए गए हैं। सेमिनॉर्म के प्रत्येक विकल्प के लिए <math>A</math> और पर <math>B</math> हम बीजगणितीय टेंसर उत्पाद पर क्रॉस मानदंडों के संबंधित परिवार को परिभाषित कर सकते हैं <math>A\otimes B,</math> और प्रत्येक परिवार से एक क्रॉस मानदंड चुनने पर हमें कुछ क्रॉस मानदंड प्राप्त होते हैं <math>A\otimes B,</math> टोपोलॉजी को परिभाषित करना. सामान्यतः ऐसा करने के बहुत सारे तरीके हैं। दो सबसे महत्वपूर्ण तरीके सभी प्रक्षेप्य क्रॉस मानदंडों, या सभी इंजेक्शन क्रॉस मानदंडों को लेना है। परिणामी टोपोलॉजी की पूर्णताएँ चालू हैं <math>A\otimes B</math> प्रक्षेप्य और इंजेक्टिव टेंसर उत्पाद कहलाते हैं, और इनके द्वारा निरूपित होते हैं <math>A\otimes_{\gamma} B</math> और <math>A\otimes_{\lambda} B.</math> से एक प्राकृतिक मानचित्र है <math>A\otimes_{\gamma} B</math> को <math>A\otimes_{\lambda} B.</math>
स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थानों की टोपोलॉजी <math>A</math> और <math>B</math> [[ सेमिनोर्म ]]्स के परिवारों द्वारा दिए गए हैं। सेमिनॉर्म के प्रत्येक विकल्प के लिए <math>A</math> और पर <math>B</math> हम बीजगणितीय टेंसर उत्पाद पर क्रॉस मानदंडों के संबंधित परिवार को परिभाषित कर सकते हैं <math>A\otimes B,</math> और प्रत्येक परिवार से एक क्रॉस मानदंड चुनने पर हमें कुछ क्रॉस मानदंड प्राप्त होते हैं <math>A\otimes B,</math> टोपोलॉजी को परिभाषित करना. सामान्यतः ऐसा करने के बहुत सारे विधि हैं। दो सबसे महत्वपूर्ण विधि सभी प्रक्षेप्य क्रॉस मानदंडों, या सभी इंजेक्शन क्रॉस मानदंडों को लेना है। परिणामी टोपोलॉजी की पूर्णताएँ चालू हैं <math>A\otimes B</math> प्रक्षेप्य और इंजेक्टिव टेंसर उत्पाद कहलाते हैं, और इनके द्वारा निरूपित होते हैं <math>A\otimes_{\gamma} B</math> और <math>A\otimes_{\lambda} B.</math> से एक प्राकृतिक मानचित्र है <math>A\otimes_{\gamma} B</math> को <math>A\otimes_{\lambda} B.</math>
अगर <math>A</math> या <math>B</math> एक परमाणु स्थान है तो प्राकृतिक मानचित्र से <math>A\otimes_{\gamma} B</math> को <math>A\otimes_{\lambda} B</math> एक समरूपता है. मोटे तौर पर कहें तो इसका मतलब यह है कि अगर <math>A</math> या <math>B</math> परमाणु है, तो इसका केवल एक समझदार टेंसर उत्पाद है <math>A</math> और <math>B</math>.
अगर <math>A</math> या <math>B</math> एक परमाणु स्थान है तो प्राकृतिक मानचित्र से <math>A\otimes_{\gamma} B</math> को <math>A\otimes_{\lambda} B</math> एक समरूपता है. मोटे तौर पर कहें तो इसका मतलब यह है कि अगर <math>A</math> या <math>B</math> परमाणु है, तो इसका केवल एक समझदार टेंसर उत्पाद है <math>A</math> और <math>B</math>.
यह गुण परमाणु स्थानों की विशेषता बताता है।
यह गुण परमाणु स्थानों की विशेषता बताता है।

Revision as of 21:59, 30 November 2023

गणित में, सामान्य रूप से दो टोपोलॉजिकल सदिश स्थान के टोपोलॉजिकल टेंसर उत्पाद का निर्माण करने के कई अलग-अलग विधि होते हैं। हिल्बर्ट रिक्त स्थान या परमाणु रिक्त स्थान के लिए टेंसर उत्पादों का एक सरल व्यवहार सिद्धांत है (हिल्बर्ट रिक्त स्थान का टेंसर उत्पाद देखें), किन्तु सामान्य बानाच रिक्त स्थान या स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश रिक्त स्थान के लिए सिद्धांत अधिक सूक्ष्म है।

प्रेरणा

टोपोलॉजिकल टेंसर उत्पादों के लिए मूल प्रेरणाओं में से एक यह तथ्य है कि पर सुचारू कार्यों के स्थानों के टेंसर उत्पाद अपेक्षा के अनुरूप व्यवहार नहीं करते हैं। एक इंजेक्शन है

किन्तु यह एक समरूपता नहीं है. उदाहरण के लिए, फ़ंक्शन को में सुचारु कार्यों के एक सीमित रैखिक संयोजन के रूप में व्यक्त नहीं किया जा सकता है। हमें केवल टोपोलॉजिकल टेंसर उत्पाद के निर्माण के बाद एक समरूपता मिलती है;[1] अर्थात।,

यह लेख सबसे पहले बानाच अंतरिक्ष स्थिति में निर्माण का विवरण देता है। कोई बानाच स्थान नहीं है और आगे के स्थितियों पर अंत में विचार की जाती है।

हिल्बर्ट रिक्त स्थान के टेंसर उत्पाद

दो हिल्बर्ट रिक्त स्थान A और B के बीजगणितीय टेंसर उत्पाद में A और B के सेसक्विलिनियर फॉर्म से प्रेरित एक प्राकृतिक सकारात्मक निश्चित सेसक्विलिनियर रूप (स्केलर उत्पाद) होता है। इसलिए विशेष रूप से इसमें एक प्राकृतिक सकारात्मक निश्चित द्विघात रूप होता है, और संबंधित पूर्णता एक होती है हिल्बर्ट स्पेस AB, जिसे A और B का (हिल्बर्ट स्पेस) टेंसर उत्पाद कहा जाता है।

यदि सदिश ai और bj j, A और B के ऑर्थोनॉर्मल आधारों से होकर निकलते हैं, तो सदिश aibj A ⊗ B का ऑर्थोनॉर्मल आधार बनाते हैं।

बैनाच रिक्त स्थान के क्रॉस मानदंड और टेंसर उत्पाद

हम से संकेतन का उपयोग करेंगे (Ryan 2002) इस खंड में। दो बैनाच स्थानों के टेंसर उत्पाद को परिभाषित करने का स्पष्ट तरीका और हिल्बर्ट रिक्त स्थान के लिए विधि की प्रतिलिपि बनाना है: बीजगणितीय टेंसर उत्पाद पर एक मानदंड परिभाषित करें, फिर इस मानदंड में पूर्णता लें। समस्या यह है कि टेंसर उत्पाद पर एक मानदंड को परिभाषित करने के लिए एक से अधिक प्राकृतिक विधि हैं।

अगर और बानाच रिक्त स्थान बीजगणितीय टेंसर उत्पाद हैं और का मतलब टेंसर उत्पाद है और सदिश रिक्त स्थान के रूप में और द्वारा निरूपित किया जाता है बीजगणितीय टेंसर उत्पाद सभी परिमित राशियों से मिलकर बना है।

कहाँ के आधार पर एक प्राकृतिक संख्या है और और के लिए कब और बानाच स्थान हैं, एcrossnorm (याcross norm) बीजगणितीय टेंसर उत्पाद पर शर्तों को पूरा करने वाला एक आदर्श है।
यहाँ और के सतत दोहरे स्थान के तत्व हैं और क्रमशः, और का दोहरा मानदंड है शब्दreasonable crossnorm का उपयोग उपरोक्त परिभाषा के लिए भी किया जाता है।

एक क्रॉस मानदंड है प्रक्षेप्य क्रॉस मानदंड कहा जाता है, द्वारा दिया गया

कहाँ यह पता चला है कि प्रक्षेप्य क्रॉस मानदंड सबसे बड़े क्रॉस मानदंड से सहमत है ((Ryan 2002), प्रस्ताव 2.1).

एक क्रॉस मानदंड है इंजेक्शन क्रॉस नॉर्म कहा जाता है, द्वारा दिया गया

कहाँ यहाँ और के टोपोलॉजिकल दोहरे को निरूपित करें और क्रमश।

यहां ध्यान दें कि इंजेक्टिव क्रॉस मानदंड केवल कुछ उचित अर्थों में सबसे छोटा है।

इन दो मानदंडों में बीजगणितीय टेंसर उत्पाद की पूर्णता को प्रक्षेप्य और इंजेक्टिव टेंसर उत्पाद कहा जाता है, और इन्हें निरूपित किया जाता है और कब और हिल्बर्ट स्पेस हैं, उनके हिल्बर्ट स्पेस टेंसर उत्पाद के लिए उपयोग किया जाने वाला मानदंड सामान्य रूप से इनमें से किसी भी मानदंड के बराबर नहीं है। कुछ लेखक इसे निरूपित करते हैं तो उपरोक्त अनुभाग में हिल्बर्ट स्पेस टेंसर उत्पाद होगा uniform crossnorm प्रत्येक जोड़ी के लिए एक असाइनमेंट है एक उचित क्रॉसनॉर्म के बानाच रिक्त स्थान पर ताकि यदि सभी (निरंतर रैखिक) ऑपरेटरों के लिए मनमाना बैनाच स्थान हैं और परिचालक निरंतर है और अगर और दो बानाच स्थान हैं और तो यह एक समान क्रॉस मानदंड है बीजगणितीय टेंसर उत्पाद पर एक उचित क्रॉस मानदंड परिभाषित करता है उपकरण द्वारा प्राप्त मानकीकृत रैखिक स्थान उस मानक के साथ निरूपित किया जाता है का पूरा होना जो एक बानाच स्थान है, द्वारा दर्शाया गया है द्वारा दिए गए मानदंड का मान पर और पूर्ण टेंसर उत्पाद पर एक तत्व के लिए में (या ) द्वारा दर्शाया गया है एक समान क्रॉसनॉर्म बताया गयाfinitely generated यदि, प्रत्येक जोड़ी के लिए बानाच स्थानों और प्रत्येक का

एक समान क्रॉसनॉर्म हैcofinitely generated यदि, प्रत्येक जोड़ी के लिए बानाच स्थानों और प्रत्येक का
tensor norm को एक सूक्ष्म रूप से उत्पन्न एकसमान क्रॉसनॉर्म के रूप में परिभाषित किया गया है। प्रक्षेप्य क्रॉस मानदंड और इंजेक्शन क्रॉस मानदंड ऊपर परिभाषित टेंसर मानदंड हैं और उन्हें क्रमशः प्रोजेक्टिव टेंसर मानदंड और इंजेक्टिव टेंसर मानदंड कहा जाता है।

अगर और मनमाने ढंग से बनच स्थान हैं और तो यह एक मनमाना समान क्रॉस मानदंड है


स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थानों के टेंसर उत्पाद

स्थानीय रूप से उत्तल टोपोलॉजिकल सदिश स्थानों की टोपोलॉजी और सेमिनोर्म ्स के परिवारों द्वारा दिए गए हैं। सेमिनॉर्म के प्रत्येक विकल्प के लिए और पर हम बीजगणितीय टेंसर उत्पाद पर क्रॉस मानदंडों के संबंधित परिवार को परिभाषित कर सकते हैं और प्रत्येक परिवार से एक क्रॉस मानदंड चुनने पर हमें कुछ क्रॉस मानदंड प्राप्त होते हैं टोपोलॉजी को परिभाषित करना. सामान्यतः ऐसा करने के बहुत सारे विधि हैं। दो सबसे महत्वपूर्ण विधि सभी प्रक्षेप्य क्रॉस मानदंडों, या सभी इंजेक्शन क्रॉस मानदंडों को लेना है। परिणामी टोपोलॉजी की पूर्णताएँ चालू हैं प्रक्षेप्य और इंजेक्टिव टेंसर उत्पाद कहलाते हैं, और इनके द्वारा निरूपित होते हैं और से एक प्राकृतिक मानचित्र है को अगर या एक परमाणु स्थान है तो प्राकृतिक मानचित्र से को एक समरूपता है. मोटे तौर पर कहें तो इसका मतलब यह है कि अगर या परमाणु है, तो इसका केवल एक समझदार टेंसर उत्पाद है और . यह गुण परमाणु स्थानों की विशेषता बताता है।

यह भी देखें

संदर्भ

  1. "What is an example of a smooth function in C∞(R2) which is not contained in C∞(R)⊗C∞(R)".
  • Ryan, R.A. (2002), Introduction to Tensor Products of Banach Spaces, New York: Springer.
  • Grothendieck, A. (1955), "Produits tensoriels topologiques et espaces nucléaires", Memoirs of the American Mathematical Society, 16.