अवलोकनीय: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (Neeraja moved page प्रेक्षणीय to अवलोकनीय without leaving a redirect) |
(No difference)
|
Revision as of 12:29, 7 December 2023
भौतिकी में, प्रेक्षणीय एक भौतिक गुण या भौतिक मात्रा है जिसका मापन किया जा सकता है। उदाहरणों में स्थिति (सदिश) और संवेग सम्मिलित हैं। पारंपरिक यांत्रिकी द्वारा शासित प्रणालियों में, यह सभी संभावित पद्धति स्थितियों के समूह पर वास्तविक-मूल्यवान फलन है। क्वांटम भौतिकी में, यह एक संचालिका, या गेज सिद्धांत है, जहां क्वांटम स्थिति के गुण को परिचालन परिभाषा के कुछ अनुक्रम द्वारा निर्धारित किया जा सकता है। उदाहरण के लिए, इन परिचालनों में पद्धति को विभिन्न विद्युत चुम्बकीय क्षेत्रों में प्रस्तुत करना और अंततः एक मान पढ़ना सम्मिलित हो सकता है।
भौतिक रूप से सार्थक अवलोकनों को परिवर्तन नियमों को भी पूरा करना चाहिए जो संदर्भ के विभिन्न फ़्रेमों में विभिन्न अवलोकनों द्वारा किए गए अवलोकनों से संबंधित हैं। ये परिवर्तन नियम अवस्था स्थान के ऑटोमोर्फिज्म हैं, जो कि आक्षेप परिवर्तन (गणित) है जो प्रश्न में स्थान के कुछ गणितीय गुणों को संरक्षित करता है।
क्वांटम यांत्रिकी
क्वांटम भौतिकी में, वेधशालाएं क्वांटम अवस्थाओं के अवस्था स्थान (भौतिकी) का प्रतिनिधित्व करने वाले हिल्बर्ट स्थान पर रैखिक संचालिका के रूप में प्रकट होती हैं। वेधशालाओं के आइगेनवैल्यूज़ वास्तविक संख्याएं हैं जो संभावित मानों के अनुरूप हैं, प्रेक्षणीय द्वारा दर्शाए गए गतिशील वेरिएबल को होने के रूप में मापा जा सकता है। अर्थात्, क्वांटम यांत्रिकी में अवलोकन विशेष माप के परिणामों को वास्तविक संख्याएँ निर्दिष्ट करते हैं, जो पद्धति की मापी गई क्वांटम स्थिति के संबंध में संचालिका के आइगेनवैल्यू के अनुरूप होते हैं। परिणामस्वरूप, केवल कुछ माप ही किसी क्वांटम प्रणाली की किसी स्थिति के लिए प्रेक्षणीय वस्तु का मान निर्धारित कर सकते हैं। पारंपरिक यांत्रिकी में, किसी प्रेक्षणीय वस्तु का मान निर्धारित करने के लिए कोई भी माप किया जा सकता है।
क्वांटम प्रणाली की स्थिति और प्रेक्षणीय के मान के मध्य संबंध के विवरण के लिए कुछ रैखिक बीजगणित की आवश्यकता होती है। क्वांटम यांत्रिकी के गणितीय सूत्रीकरण में, एक चरण स्थिरांक तक, शुद्ध अवस्थाएं हिल्बर्ट स्थान V में गैर-शून्य सदिश (ज्यामिति) द्वारा दी जाती हैं। दो सदिश 'v' और 'w' को एक ही स्थिति निर्दिष्ट करने के लिए माना जाता है और केवल यदि तभी जब कुछ गैर-शून्य के लिए होता है। V पर स्व-सहायक संचालिका द्वारा अवलोकन दिए जाते हैं। प्रत्येक स्व-सहायक संचालिका भौतिक रूप से सार्थक प्रेक्षणीय से मेल नहीं खाता है। [1][2][3][4] इसके अतिरिक्त, सभी भौतिक अवलोकन गैर-नगण्य स्व-सहायक संचालिका से जुड़े नहीं हैं। उदाहरण के लिए, क्वांटम सिद्धांत में, द्रव्यमान हैमिल्टनियन में पैरामीटर के रूप में प्रकट होता है, न कि गैर-नगण्य संचालिका के रूप में प्रकट होता है।[5] प्राथमिक कणों की प्रणाली के स्थितियों में, स्थान V में तरंग फलन या क्वांटम अवस्था नामक फलन सम्मिलित होते हैं।
क्वांटम यांत्रिकी में परिवर्तन नियमों के स्थितियों में, अपेक्षित ऑटोमोर्फिज्म हिल्बर्ट स्थान V के एकात्मक संचालिका (या एकात्मक विरोधी) रैखिक परिवर्तन हैं। गैलिलियन सापेक्षता या विशेष सापेक्षता के अनुसार, संदर्भ के फ्रेम का गणित विशेष रूप से सरल है, जो भौतिक रूप से सार्थक अवलोकनों के समूह को अधिक सीमा तक सीमित करता है।
क्वांटम यांत्रिकी में, प्रेक्षणीय वस्तुओं का मापन कुछ प्रतीत होता है कि सहज ज्ञान युक्त गुणों को प्रदर्शित करता है। विशेष रूप से, यदि कोई पद्धति हिल्बर्ट स्थान में सदिश द्वारा वर्णित स्थिति में है, तब माप प्रक्रिया अवस्था को गैर-नियतात्मक किन्तु सांख्यिकीय रूप से पूर्वानुमानित विधि से प्रभावित करती है। विशेष रूप से, माप प्रयुक्त होने के पश्चात्, एकल सदिश द्वारा अवस्था विवरण को नष्ट किया जा सकता है, जिसे सांख्यिकीय समूह द्वारा प्रतिस्थापित किया जा सकता है। क्वांटम भौतिकी में माप संचालन की प्रतिवर्ती प्रक्रिया (थर्मोडायनामिक्स) प्रकृति को कभी-कभी माप समस्या के रूप में संदर्भित किया जाता है और क्वांटम संचालन द्वारा गणितीय रूप से वर्णित किया जाता है। क्वांटम संचालन की संरचना के अनुसार, यह विवरण गणितीय रूप से सापेक्ष राज्य व्याख्या द्वारा प्रस्तुत विवरण के सामान्तर है जहां मूल प्रणाली को बड़ी प्रणाली के उपप्रणाली के रूप में माना जाता है और मूल प्रणाली की स्थिति बड़ी प्रणाली का अवस्था के आंशिक चिन्ह द्वारा दी जाती है।
क्वांटम यांत्रिकी में, गतिशील वेरिएबल जैसे स्थिति, ट्रांसलेशनल (रैखिक) गति, कोणीय गति संचालिका, स्पिन (भौतिकी), और कुल कोणीय गति प्रत्येक हर्मिटियन संचालिका से जुड़े हुए हैं जो क्वांटम प्रणाली की क्वांटम स्थिति पर कार्य करता है। संचालिका के आइगेनवैल्यूज़ उन संभावित मानों के अनुरूप है जिन्हें गतिशील वेरिएबल के रूप में देखा जा सकता है। उदाहरण के लिए, मान लीजिए , आइगेनवैल्यूज़ के साथ के साथ अवलोकन योग्य का एक ईजेनकेट (आइजन्सदिश) है, और हिल्बर्ट अंतरिक्ष में उपस्थित है। तब
यह ईजेनकेट समीकरण कहता है कि यदि प्रेक्षणीय का माप बनाया जाता है जबकि ब्याज की व्यवस्था अवस्था में है, तब उस विशेष माप के देखे गए मान को निश्चितता के साथ आइगेनवैल्यू लौटाना चाहिए। चूँकि, यदि ब्याज की व्यवस्था सामान्य स्थिति में है तब , तब बोर्न नियम द्वारा, आइगेनवैल्यू को संभाव्यता के साथ लौटाया जाता है।
उपरोक्त परिभाषा कुछ सीमा तक वास्तविक भौतिक मात्राओं को दर्शाने के लिए वास्तविक संख्याओं को चुनने की हमारी परंपरा पर निर्भर है। वास्तव में, केवल इसलिए कि गतिशील वेरिएबल वास्तविक हैं और आध्यात्मिक अर्थ में अवास्तविक नहीं हैं, इसका अर्थ यह नहीं है कि उन्हें गणितीय अर्थ में वास्तविक संख्याओं के अनुरूप होना चाहिए।[6]
अधिक त्रुटिहीन होने के लिए, गतिशील वेरिएबल/प्रेक्षणीय हिल्बर्ट स्थान में स्व-सहायक संचालिका है।
परिमित और अनंत आयामी हिल्बर्ट स्थानों पर संचालिका्स
यदि हिल्बर्ट स्थान परिमित-आयामी है तब अवलोकनों को हर्मिटियन मैट्रिक्स द्वारा दर्शाया जा सकता है। अनंत-आयामी हिल्बर्ट स्थान में, प्रेक्षणीय को सममित संचालिका द्वारा दर्शाया जाता है, जो आंशिक कार्य करता है। इस प्रकार के बदलाव का कारण यह है कि अनंत-आयामी हिल्बर्ट स्थान में, प्रेक्षणीय संचालिका असीमित संचालिका बन सकता है, जिसका अर्थ है कि अब इसका सबसे बड़ा आइगेनवैल्यू मान नहीं है। परिमित-आयामी हिल्बर्ट स्थान में यह स्थिति नहीं है: संचालिका के पास उस स्थिति के आयाम (गणित) से अधिक कोई आइगेनवैल्यू मान नहीं हो सकता है जिस पर वह कार्य करता है, और सुव्यवस्थित गुण द्वारा, वास्तविक संख्याओं के किसी भी परिमित समूह में सबसे बड़ा तत्व होता है। उदाहरण के लिए, रेखा के अनुदिश गतिमान बिंदु कण की स्थिति किसी भी वास्तविक संख्या को उसके मान के रूप में ले सकती है, और वास्तविक संख्याओं का समुच्चय अगणनीय समुच्चय है। चूँकि किसी प्रेक्षणीय वस्तु का आइगेनवैल्यू संभावित भौतिक मात्रा का प्रतिनिधित्व करता है जिसे उसके संबंधित गतिशील वेरिएबल ले सकते हैं, हमें यह निष्कर्ष निकालना चाहिए कि इस अगणनीय अनंत-आयामी हिल्बर्ट स्थान में देखने योग्य स्थिति के लिए कोई सबसे बड़ा आइगेनवैल्यू नहीं है।
क्वांटम यांत्रिकी में संगत और असंगत अवलोकन
पारंपरिक मात्राओं और क्वांटम यांत्रिक वेधशालाओं के मध्य महत्वपूर्ण अंतर यह है कि क्वांटम वेधशालाओं के कुछ जोड़े साथ मापने योग्य नहीं हो सकते हैं, एक गुण जिसे संपूरकता (भौतिकी) कहा जाता है। यह गणितीय रूप से उनके संबंधित संचालिका की गैर- क्रमपरिवर्तनशीलता द्वारा व्यक्त किया जाता है, इस प्रभाव से कि कम्यूटेटर (भौतिकी)
यह असमानता उस क्रम पर माप परिणामों की निर्भरता व्यक्त करती है जिसमें अवलोकन योग्य और का माप किया जाता है। का माप क्वांटम स्थिति को इस प्रकार से बदल देता है जो के पश्चात् के माप के साथ असंगत है और इसके विपरीत।
आवागमन संचालकों से संबंधित वेधशालाएँ संगत वेधशालाएँ कहलाती हैं। उदाहरण के लिए, मान लें कि और अक्ष के अनुदिश संवेग संगत हैं। गैर-कम्यूटिंग संचालिका से संबंधित वेधशालाओं को असंगत वेधशालाएं या पूरक चर कहा जाता है। उदाहरण के लिए, एक ही अक्ष पर स्थिति और संवेग असंगत हैं।[7]: 155
असंगत वेधशालाओं में सामान्य आइगेनफंक्शन का पूरा समूह नहीं हो सकता है। ध्यान दें कि और के कुछ एक साथ आइगेनसदिश हो सकते हैं , किन्तु पूर्ण आधार (सदिश स्थान) बनाने के लिए संख्या में पर्याप्त नहीं है।[8][9]
यह भी देखें
- माप (भौतिकी)
- अवलोकनीय ब्रह्माण्ड
- प्रेक्षक (क्वांटम भौतिकी)
- संचालिका (भौतिकी) QM संचालिका की तालिका
- अदृश्य
संदर्भ
- ↑ Isham, Christopher (1995). Lectures On Quantum Theory: Mathematical And Structural Foundations. World Scientific. pp. 87–88. ISBN 191129802X.
- ↑ Mackey, George Whitelaw (1963), Mathematical Foundations of Quantum Mechanics, Dover Books on Mathematics, New York: Dover Publications, ISBN 978-0-486-43517-6
- ↑ Emch, Gerard G. (1972), Algebraic methods in statistical mechanics and quantum field theory, Wiley-Interscience, ISBN 978-0-471-23900-0
- ↑ "Not all self-adjoint operators are observables?". Physics Stack Exchange. Retrieved 11 February 2022.
- ↑ Isham, Christopher (1995). Lectures On Quantum Theory: Mathematical And Structural Foundations. World Scientific. pp. 87–88. ISBN 191129802X.
- ↑ Ballentine, Leslie (2015). Quantum Mechanics: A Modern Development (2 ed.). World Scientific. p. 49. ISBN 978-9814578578.
- ↑ Messiah, Albert (1966). क्वांटम यांत्रिकी (in English). North Holland, John Wiley & Sons. ISBN 0486409244.
- ↑ Griffiths, David J. (2017). क्वांटम यांत्रिकी का परिचय (in English). Cambridge University Press. p. 111. ISBN 978-1-107-17986-8.
- ↑ Cohen-Tannoudji, Claude; Diu, Bernard; Laloë, Franck (2019-12-04). Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications (in English). Wiley. p. 232. ISBN 978-3-527-34553-3.
अग्रिम पठन
- Auyang, Sunny Y. (1995). How is quantum field theory possible?. New York, N.Y.: Oxford University Press. ISBN 978-0195093452.
- von Neumann, John (1996). Mathematical foundations of quantum mechanics. Translated by Robert T. Beyer (12. print., 1. paperback print. ed.). Princeton, N.J.: Princeton Univ. Press. ISBN 978-0691028934.
- Varadarajan, V.S. (2007). Geometry of quantum theory (2nd ed.). New York: Springer. ISBN 9780387493862.
- Weyl, Hermann (2009). "Appendix C: Quantum physics and causality". Philosophy of mathematics and natural science. Revised and augmented English edition based on a translation by Olaf Helmer. Princeton, N.J.: Princeton University Press. pp. 253–265. ISBN 9780691141206.
- Moretti, Valter (2017). Spectral Theory and Quantum Mechanics: Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation (2 ed.). Springer. ISBN 978-3319707068.
- Moretti, Valter (2019). Fundamental Mathematical Structures of Quantum Theory: Spectral Theory, Foundational Issues, Symmetries, Algebraic Formulation. Springer. ISBN 978-3030183462.