घनत्व आव्यूह पुनर्सामान्यीकरण समूह: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Numerical variational technique}} | {{short description|Numerical variational technique}} | ||
घनत्व मैट्रिक्स पुनर्सामान्यीकरण समूह (डीएमआरजी) संख्यात्मक भिन्नता विधि (क्वांटम यांत्रिकी) तकनीक है जो [[ स्थूल पैमाने |स्थूल पैमाने]] | कई-शरीर समस्या की कम-ऊर्जा भौतिकी | उच्च सटीकता के साथ क्वांटम कई-शरीर प्रणालियों को प्राप्त करने के लिए तैयार की गई है। वैरिएशनल विधि (क्वांटम यांत्रिकी) के रूप में, डीएमआरजी कुशल एल्गोरिदम है जो हैमिल्टन के सबसे कम ऊर्जा मैट्रिक्स उत्पाद राज्य तरंग फ़ंक्शन को खोजने का प्रयास करता है। इसका आविष्कार 1992 में स्टीवन आर. व्हाइट द्वारा किया गया था और यह आजकल 1-आयामी प्रणालियों के लिए सबसे कुशल तरीका है।<ref>{{Citation|last=Nakatani|first=Naoki|title=Matrix Product States and Density Matrix Renormalization Group Algorithm|date=2018|url=http://dx.doi.org/10.1016/b978-0-12-409547-2.11473-8|work=Reference Module in Chemistry, Molecular Sciences and Chemical Engineering|publisher=Elsevier|doi=10.1016/b978-0-12-409547-2.11473-8|isbn=978-0-12-409547-2|access-date=2021-04-21}}</ref> | |||
घनत्व मैट्रिक्स पुनर्सामान्यीकरण समूह (डीएमआरजी) | |||
== इतिहास == | == इतिहास == | ||
डीएमआरजी का पहला अनुप्रयोग, स्टीवन आर. व्हाइट और [[रेइनहार्ड नॉक]] द्वारा, | डीएमआरजी का पहला अनुप्रयोग, स्टीवन आर. व्हाइट और [[रेइनहार्ड नॉक]] द्वारा, खिलौना मॉडल था: 1डी बॉक्स में [[स्पिन (भौतिकी)]] 0 कण के स्पेक्ट्रम को खोजने के लिए।{{When|date=July 2023}} यह मॉडल केनेथ जी. विल्सन द्वारा किसी भी नए [[पुनर्सामान्यीकरण समूह]] विधि के परीक्षण के रूप में प्रस्तावित किया गया था, क्योंकि वे सभी इस सरल समस्या से विफल हो गए थे।{{When|date=July 2023}} डीएमआरजी ने प्रत्येक चरण में ब्लॉक में केवल साइट जोड़ने के बजाय बीच में दो साइटों के साथ दो ब्लॉकों को जोड़कर और साथ ही सबसे महत्वपूर्ण राज्यों की पहचान करने के लिए [[घनत्व मैट्रिक्स]] का उपयोग करके पिछले पुनर्सामान्यीकरण समूह विधियों की समस्याओं पर काबू पा लिया। प्रत्येक चरण के अंत में रखा जाए। खिलौना मॉडल में सफल होने के बाद, डीएमआरजी पद्धति को [[हाइजेनबर्ग मॉडल (क्वांटम)]] पर सफलतापूर्वक आजमाया गया। | ||
==सिद्धांत== | ==सिद्धांत== | ||
अनेक-निकाय समस्या|क्वांटम अनेक-निकाय भौतिकी की मुख्य समस्या यह तथ्य है कि [[हिल्बर्ट स्थान]] आकार के साथ तेजी से बढ़ता है। दूसरे शब्दों में यदि कोई | अनेक-निकाय समस्या|क्वांटम अनेक-निकाय भौतिकी की मुख्य समस्या यह तथ्य है कि [[हिल्बर्ट स्थान]] आकार के साथ तेजी से बढ़ता है। दूसरे शब्दों में यदि कोई जाली पर विचार करता है, जिसमें आयाम के कुछ हिल्बर्ट स्थान होते हैं <math>d</math> जाली के प्रत्येक स्थल पर, कुल हिल्बर्ट स्थान का आयाम होगा <math>d^{N}</math>, कहाँ <math>N</math> जाली पर साइटों की संख्या है. उदाहरण के लिए, लंबाई L की स्पिन-1/2 श्रृंखला में 2 है<sup>स्वतंत्रता की डिग्री. डीएमआरजी पुनरावृत्तीय, परिवर्तनशील विधि है जो लक्ष्य राज्य के लिए सबसे महत्वपूर्ण स्वतंत्रता की प्रभावी डिग्री को कम कर देती है। जिस राज्य में सबसे अधिक रुचि होती है वह [[जमीनी राज्य]] है। | ||
वार्मअप चक्र के बाद | वार्मअप चक्र के बाद, विधि सिस्टम को दो उपप्रणालियों या ब्लॉकों में विभाजित करती है, जिनके समान आकार की आवश्यकता नहीं होती है, और बीच में दो साइटें होती हैं। वार्मअप के दौरान ब्लॉक के लिए प्रतिनिधि राज्यों का सेट चुना गया है। बाएँ ब्लॉक + दो साइट + दाएँ ब्लॉक के इस सेट को 'सुपरब्लॉक' के रूप में जाना जाता है। अब सुपरब्लॉक की जमीनी स्थिति के लिए उम्मीदवार, जो कि पूर्ण प्रणाली का छोटा संस्करण है, मिल सकता है। इसमें थोड़ी सटीकता हो सकती है, लेकिन यह विधि पुनरावृत्तीय है और नीचे दिए गए चरणों के साथ इसमें सुधार होता है। | ||
[[Image:Dmrg1.png|thumb|300px|right|डीएमआरजी के अनुसार, सिस्टम को बाएँ और दाएँ ब्लॉक में विघटित करना।]]जो उम्मीदवार जमीनी स्थिति पाई गई है, उसे घनत्व मैट्रिक्स का उपयोग करके प्रत्येक ब्लॉक के लिए रैखिक उप-स्थान में प्रक्षेपित किया जाता है, इसलिए यह नाम दिया गया है। इस प्रकार, प्रत्येक ब्लॉक के लिए प्रासंगिक स्थिति अद्यतन की जाती है। | [[Image:Dmrg1.png|thumb|300px|right|डीएमआरजी के अनुसार, सिस्टम को बाएँ और दाएँ ब्लॉक में विघटित करना।]]जो उम्मीदवार जमीनी स्थिति पाई गई है, उसे घनत्व मैट्रिक्स का उपयोग करके प्रत्येक ब्लॉक के लिए रैखिक उप-स्थान में प्रक्षेपित किया जाता है, इसलिए यह नाम दिया गया है। इस प्रकार, प्रत्येक ब्लॉक के लिए प्रासंगिक स्थिति अद्यतन की जाती है। | ||
अब | अब ब्लॉक दूसरे की कीमत पर बढ़ता है और प्रक्रिया दोहराई जाती है। जब बढ़ता हुआ ब्लॉक अधिकतम आकार तक पहुँच जाता है, तो उसके स्थान पर दूसरा बढ़ना शुरू हो जाता है। हर बार जब हम मूल (समान आकार) स्थिति में लौटते हैं, तो हम कहते हैं कि स्वीप पूरा हो गया है। आम तौर पर, 10 में हिस्से की सटीकता प्राप्त करने के लिए कुछ स्वीप पर्याप्त होते हैं<sup>1डी जाली के लिए 10</sup>। | ||
[[Image:Dmrg2.png|thumb|300px|right|डीएमआरजी स्वीप।]] | [[Image:Dmrg2.png|thumb|300px|right|डीएमआरजी स्वीप।]] | ||
Line 21: | Line 18: | ||
==कार्यान्वयन मार्गदर्शिका== | ==कार्यान्वयन मार्गदर्शिका== | ||
डीएमआरजी एल्गोरिदम का व्यावहारिक कार्यान्वयन | डीएमआरजी एल्गोरिदम का व्यावहारिक कार्यान्वयन लंबा काम है{{Opinion|date=October 2020}}. कुछ मुख्य कम्प्यूटेशनल युक्तियाँ ये हैं: | ||
* चूंकि पुनर्सामान्यीकृत हैमिल्टनियन का आकार आम तौर पर कुछ या दसियों हजार के क्रम में होता है, जबकि मांगी गई ईजेनस्टेट सिर्फ जमीनी स्थिति है, सुपरब्लॉक के लिए जमीनी स्थिति मैट्रिक्स विकर्णीकरण के [[लैंज़ोस एल्गोरिदम]] जैसे पुनरावृत्त एल्गोरिदम के माध्यम से प्राप्त की जाती है। | * चूंकि पुनर्सामान्यीकृत हैमिल्टनियन का आकार आम तौर पर कुछ या दसियों हजार के क्रम में होता है, जबकि मांगी गई ईजेनस्टेट सिर्फ जमीनी स्थिति है, सुपरब्लॉक के लिए जमीनी स्थिति मैट्रिक्स विकर्णीकरण के [[लैंज़ोस एल्गोरिदम]] जैसे पुनरावृत्त एल्गोरिदम के माध्यम से प्राप्त की जाती है। अन्य विकल्प अर्नोल्डी पुनरावृत्ति है, खासकर जब गैर-हर्मिटियन मैट्रिक्स से निपटना हो। | ||
* लैंज़ोस एल्गोरिदम आमतौर पर समाधान के सर्वोत्तम अनुमान से शुरू होता है। यदि कोई अनुमान उपलब्ध नहीं है तो | * लैंज़ोस एल्गोरिदम आमतौर पर समाधान के सर्वोत्तम अनुमान से शुरू होता है। यदि कोई अनुमान उपलब्ध नहीं है तो यादृच्छिक वेक्टर चुना जाता है। डीएमआरजी में, निश्चित डीएमआरजी चरण में प्राप्त जमीनी स्थिति, उपयुक्त रूप से रूपांतरित, उचित अनुमान है और इस प्रकार अगले डीएमआरजी चरण में यादृच्छिक शुरुआती वेक्टर की तुलना में काफी बेहतर काम करती है। | ||
* समरूपता वाले सिस्टम में, हमने क्वांटम संख्याओं को संरक्षित किया हो सकता है, जैसे हाइजेनबर्ग मॉडल में कुल स्पिन। हिल्बर्ट क्षेत्र को जिन सेक्टरों में विभाजित किया गया है, उनमें से प्रत्येक के भीतर जमीनी स्थिति का पता लगाना सुविधाजनक है। | * समरूपता वाले सिस्टम में, हमने क्वांटम संख्याओं को संरक्षित किया हो सकता है, जैसे हाइजेनबर्ग मॉडल में कुल स्पिन। हिल्बर्ट क्षेत्र को जिन सेक्टरों में विभाजित किया गया है, उनमें से प्रत्येक के भीतर जमीनी स्थिति का पता लगाना सुविधाजनक है। | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
डीएमआरजी को स्पिन श्रृंखलाओं के कम ऊर्जा गुणों को प्राप्त करने के लिए सफलतापूर्वक लागू किया गया है: अनुप्रस्थ क्षेत्र में [[आइसिंग मॉडल]], हाइजेनबर्ग मॉडल (क्वांटम), आदि, फर्मियोनिक सिस्टम, जैसे [[हबर्ड मॉडल]], [[कोंडो प्रभाव]] जैसी अशुद्धियों के साथ समस्याएं, [[बोसॉन]] सिस्टम, और [[क्वांटम डॉट्स]] की भौतिकी [[कितना तार]] से जुड़ गई। इसे [[वृक्ष ग्राफ]]़ पर काम करने के लिए भी विस्तारित किया गया है, और [[डेनड्रीमर]] के अध्ययन में इसका अनुप्रयोग पाया गया है। 2डी सिस्टम के लिए जिसका | डीएमआरजी को स्पिन श्रृंखलाओं के कम ऊर्जा गुणों को प्राप्त करने के लिए सफलतापूर्वक लागू किया गया है: अनुप्रस्थ क्षेत्र में [[आइसिंग मॉडल]], हाइजेनबर्ग मॉडल (क्वांटम), आदि, फर्मियोनिक सिस्टम, जैसे [[हबर्ड मॉडल]], [[कोंडो प्रभाव]] जैसी अशुद्धियों के साथ समस्याएं, [[बोसॉन]] सिस्टम, और [[क्वांटम डॉट्स]] की भौतिकी [[कितना तार]] से जुड़ गई। इसे [[वृक्ष ग्राफ]]़ पर काम करने के लिए भी विस्तारित किया गया है, और [[डेनड्रीमर]] के अध्ययन में इसका अनुप्रयोग पाया गया है। 2डी सिस्टम के लिए जिसका आयाम दूसरे से काफी बड़ा है, डीएमआरजी भी सटीक है, और सीढ़ी के अध्ययन में उपयोगी साबित हुआ है। | ||
इस पद्धति का विस्तार 2डी में संतुलन [[सांख्यिकीय भौतिकी]] का अध्ययन करने और 1डी में कोई संतुलन नहीं | गैर-संतुलन घटना का विश्लेषण करने के लिए किया गया है। | इस पद्धति का विस्तार 2डी में संतुलन [[सांख्यिकीय भौतिकी]] का अध्ययन करने और 1डी में कोई संतुलन नहीं | गैर-संतुलन घटना का विश्लेषण करने के लिए किया गया है। | ||
Line 36: | Line 33: | ||
== उदाहरण: क्वांटम हाइजेनबर्ग मॉडल == | == उदाहरण: क्वांटम हाइजेनबर्ग मॉडल == | ||
आइए इसके लिए | आइए इसके लिए अनंत DMRG एल्गोरिदम पर विचार करें <math>S=1</math> एंटीफेरोमैग्नेटिक [[क्वांटम हाइजेनबर्ग मॉडल]]। यह नुस्खा प्रत्येक अनुवादात्मक रूप से अपरिवर्तनीय एक-आयामी [[जाली (समूह)]] के लिए लागू किया जा सकता है। | ||
डीएमआरजी | डीएमआरजी पुनर्सामान्यीकरण समूह | पुनर्सामान्यीकरण-समूह तकनीक है क्योंकि यह एक-आयामी क्वांटम सिस्टम के हिल्बर्ट स्थान का कुशल ट्रंकेशन प्रदान करता है। | ||
=== प्रारंभिक बिंदु === | === प्रारंभिक बिंदु === | ||
चार साइटों से शुरू करके | चार साइटों से शुरू करके अनंत श्रृंखला का अनुकरण करना। पहली ब्लॉक साइट है, आखिरी यूनिवर्स-ब्लॉक साइट है और बाकी जोड़ी गई साइटें हैं, दाईं ओर वाली साइट यूनिवर्स-ब्लॉक साइट और दूसरी ब्लॉक साइट में जोड़ी गई है। | ||
एकल साइट के लिए हिल्बर्ट स्थान है <math>\mathfrak{H}</math> आधार के साथ <math>\{|S,S_z\rangle\}\equiv\{|1,1\rangle,|1,0\rangle,|1,-1\rangle\}</math>. इस आधार के साथ स्पिन (भौतिकी) संचालक हैं | एकल साइट के लिए हिल्बर्ट स्थान है <math>\mathfrak{H}</math> आधार के साथ <math>\{|S,S_z\rangle\}\equiv\{|1,1\rangle,|1,0\rangle,|1,-1\rangle\}</math>. इस आधार के साथ स्पिन (भौतिकी) संचालक हैं <math>S_x</math>, <math>S_y</math> और <math>S_z</math> एकल साइट के लिए. प्रत्येक ब्लॉक, दो ब्लॉक और दो साइटों के लिए, अपना स्वयं का हिल्बर्ट स्थान है <math>\mathfrak{H}_b</math>, इसका आधार <math>\{|w_i\rangle\}</math> (<math>i:1\dots \dim(\mathfrak{H}_b)</math>)और इसके अपने संचालक<math display="block">O_b:\mathfrak{H}_b\rightarrow\mathfrak{H}_b</math>कहाँ | ||
* अवरोध पैदा करना: <math>\mathfrak{H}_B</math>, <math>\{|u_i\rangle\}</math>, <math>H_B</math>, <math>S_{x_B}</math>, <math>S_{y_B}</math>, <math>S_{z_B}</math> | * अवरोध पैदा करना: <math>\mathfrak{H}_B</math>, <math>\{|u_i\rangle\}</math>, <math>H_B</math>, <math>S_{x_B}</math>, <math>S_{y_B}</math>, <math>S_{z_B}</math> | ||
Line 83: | Line 80: | ||
=== चरण 2: सुपरब्लॉक हैमिल्टनियन को विकर्णित करें === | === चरण 2: सुपरब्लॉक हैमिल्टनियन को विकर्णित करें === | ||
इस बिंदु पर आपको हैमिल्टनियन के आइजेनवैल्यू, आइजेनवेक्टर और आइजेनस्पेस को चुनना होगा जिसके लिए कुछ [[नमूदार]] की गणना की जाती है, यह लक्ष्य स्थिति है। शुरुआत में आप स्थिर स्थिति चुन सकते हैं और इसे खोजने के लिए कुछ उन्नत एल्गोरिदम का उपयोग कर सकते हैं, इनमें से | इस बिंदु पर आपको हैमिल्टनियन के आइजेनवैल्यू, आइजेनवेक्टर और आइजेनस्पेस को चुनना होगा जिसके लिए कुछ [[नमूदार]] की गणना की जाती है, यह लक्ष्य स्थिति है। शुरुआत में आप स्थिर स्थिति चुन सकते हैं और इसे खोजने के लिए कुछ उन्नत एल्गोरिदम का उपयोग कर सकते हैं, इनमें से का वर्णन इस प्रकार है: | ||
* बड़े वास्तविक-[[सममित मैट्रिक्स]] के कुछ सबसे कम आइजेनवैल्यू और संबंधित आइजेनवैल्यू, आइजेनवेक्टर और आइजेनस्पेस की पुनरावृत्तीय गणना, अर्नेस्ट आर. डेविडसन; कम्प्यूटेशनल भौतिकी जर्नल 17, 87-94 (1975) | * बड़े वास्तविक-[[सममित मैट्रिक्स]] के कुछ सबसे कम आइजेनवैल्यू और संबंधित आइजेनवैल्यू, आइजेनवेक्टर और आइजेनस्पेस की पुनरावृत्तीय गणना, अर्नेस्ट आर. डेविडसन; कम्प्यूटेशनल भौतिकी जर्नल 17, 87-94 (1975) | ||
Line 115: | Line 112: | ||
S_{x_{r-U}}=S_{x_r}\otimes\mathbb{I} | S_{x_{r-U}}=S_{x_r}\otimes\mathbb{I} | ||
</math> | </math> | ||
अब, फॉर्म बनाएं <math>m\times m</math> नए ब्लॉक और ब्रह्मांड-ब्लॉक ऑपरेटरों के मैट्रिक्स प्रतिनिधित्व, परिवर्तन के साथ आधार बदलकर | अब, फॉर्म बनाएं <math>m\times m</math> नए ब्लॉक और ब्रह्मांड-ब्लॉक ऑपरेटरों के मैट्रिक्स प्रतिनिधित्व, परिवर्तन के साथ आधार बदलकर नया ब्लॉक बनाते हैं <math>T</math>, उदाहरण के लिए:<math display="block">\begin{matrix} | ||
&H_B=TH_{B-l}T^\dagger | &H_B=TH_{B-l}T^\dagger | ||
Line 126: | Line 123: | ||
==मैट्रिक्स उत्पाद ansatz== | ==मैट्रिक्स उत्पाद ansatz== | ||
1डी सिस्टम के लिए डीएमआरजी की सफलता इस तथ्य से संबंधित है कि यह मैट्रिक्स उत्पाद राज्यों (एमपीएस) के क्षेत्र में | 1डी सिस्टम के लिए डीएमआरजी की सफलता इस तथ्य से संबंधित है कि यह मैट्रिक्स उत्पाद राज्यों (एमपीएस) के क्षेत्र में परिवर्तनशील विधि है। ये स्वरूप की अवस्थाएँ हैं | ||
: <math>|\Psi\rangle = | : <math>|\Psi\rangle = | ||
Line 132: | Line 129: | ||
कहाँ <math>s_1\cdots s_N</math> उदाहरण के लिए मान हैं स्पिन श्रृंखला में स्पिन का z-घटक, और A<sup>s<sub>''i''</sub></sup> मनमाना आयाम m के आव्यूह हैं। जैसे ही m → ∞, निरूपण सटीक हो जाता है। इस सिद्धांत को एस. रोमर और एस. ओस्टलुंड ने [https://arxiv.org/abs/cond-mat/9606213] में उजागर किया था। | कहाँ <math>s_1\cdots s_N</math> उदाहरण के लिए मान हैं स्पिन श्रृंखला में स्पिन का z-घटक, और A<sup>s<sub>''i''</sub></sup> मनमाना आयाम m के आव्यूह हैं। जैसे ही m → ∞, निरूपण सटीक हो जाता है। इस सिद्धांत को एस. रोमर और एस. ओस्टलुंड ने [https://arxiv.org/abs/cond-mat/9606213] में उजागर किया था। | ||
क्वांटम रसायन विज्ञान अनुप्रयोग में, <math> s_i </math> इस प्रकार दो इलेक्ट्रॉनों की स्पिन क्वांटम संख्या के प्रक्षेपण की चार संभावनाएं हैं जो | क्वांटम रसायन विज्ञान अनुप्रयोग में, <math> s_i </math> इस प्रकार दो इलेक्ट्रॉनों की स्पिन क्वांटम संख्या के प्रक्षेपण की चार संभावनाएं हैं जो एकल कक्षक पर कब्जा कर सकती हैं <math> s_i = | 00\rangle, |10\rangle, |01\rangle, |11\rangle </math>, जहां इन केट्स की पहली (दूसरी) प्रविष्टि स्पिन-अप (डाउन) इलेक्ट्रॉन से मेल खाती है। क्वांटम रसायन विज्ञान में, <math> A^{s_1} </math> (किसी प्रदत्त के लिए <math> s_i </math>) और <math> A^{s_N} </math> (किसी प्रदत्त के लिए <math> s_N </math>) को परंपरागत रूप से क्रमशः पंक्ति और स्तंभ मैट्रिक्स के रूप में चुना जाता है। इस प्रकार, का परिणाम <math> A^{s_1} \ldots A^{s_N} </math> अदिश मान है और ट्रेस ऑपरेशन अनावश्यक है। <math> N </math> सिमुलेशन में उपयोग की जाने वाली साइटों (मूल रूप से ऑर्बिटल्स) की संख्या है। | ||
MPS ansatz में मैट्रिक्स अद्वितीय नहीं हैं, उदाहरण के लिए, कोई सम्मिलित कर सकता है <math> B^{-1} B </math> के बीच में <math>A^{s_i}A^{s_{i+1}}</math>, फिर परिभाषित करें <math>\tilde{A}^{s_i} = A^{s_i}B^{-1}</math> और <math>\tilde{A}^{s_{i+1}} = BA^{s_{i+1}}</math>, और राज्य अपरिवर्तित रहेगा. इस तरह की गेज स्वतंत्रता का उपयोग मैट्रिक्स को विहित रूप में बदलने के लिए किया जाता है। तीन प्रकार के विहित रूप मौजूद हैं: (1) वाम-सामान्यीकृत रूप, जब | MPS ansatz में मैट्रिक्स अद्वितीय नहीं हैं, उदाहरण के लिए, कोई सम्मिलित कर सकता है <math> B^{-1} B </math> के बीच में <math>A^{s_i}A^{s_{i+1}}</math>, फिर परिभाषित करें <math>\tilde{A}^{s_i} = A^{s_i}B^{-1}</math> और <math>\tilde{A}^{s_{i+1}} = BA^{s_{i+1}}</math>, और राज्य अपरिवर्तित रहेगा. इस तरह की गेज स्वतंत्रता का उपयोग मैट्रिक्स को विहित रूप में बदलने के लिए किया जाता है। तीन प्रकार के विहित रूप मौजूद हैं: (1) वाम-सामान्यीकृत रूप, जब | ||
Line 141: | Line 138: | ||
सभी के लिए <math>i</math>, और (3) मिश्रित-विहित रूप जब दोनों बाएँ और दाएँ-सामान्यीकृत मैट्रिक्स मौजूद होते हैं <math>N</math> उपरोक्त MPS ansatz में मैट्रिक्स। | सभी के लिए <math>i</math>, और (3) मिश्रित-विहित रूप जब दोनों बाएँ और दाएँ-सामान्यीकृत मैट्रिक्स मौजूद होते हैं <math>N</math> उपरोक्त MPS ansatz में मैट्रिक्स। | ||
डीएमआरजी गणना का लक्ष्य प्रत्येक के तत्वों को हल करना है <math> A^{s_i} </math> matrices. इस उद्देश्य के लिए तथाकथित एक-साइट और दो-साइट एल्गोरिदम तैयार किए गए हैं। एक-साइट एल्गोरिथ्म में, केवल | डीएमआरजी गणना का लक्ष्य प्रत्येक के तत्वों को हल करना है <math> A^{s_i} </math> matrices. इस उद्देश्य के लिए तथाकथित एक-साइट और दो-साइट एल्गोरिदम तैयार किए गए हैं। एक-साइट एल्गोरिथ्म में, केवल मैट्रिक्स (एक साइट) जिसके तत्वों को समय में हल किया जाता है। टू-साइट का सीधा सा मतलब है कि दो मैट्रिक्स को पहले ही मैट्रिक्स में अनुबंधित (गुणा) किया जाता है, और फिर उसके तत्वों को हल किया जाता है। दो-साइट एल्गोरिदम प्रस्तावित है क्योंकि एक-साइट एल्गोरिदम में स्थानीय न्यूनतम पर फंसने की संभावना अधिक होती है। उपरोक्त विहित रूपों में से किसी में एमपीएस होने से गणना को अधिक अनुकूल बनाने का लाभ होता है - यह सामान्य स्वदेशी समस्या की ओर ले जाता है। कैनोनिकलाइज़ेशन के बिना, कोई सामान्यीकृत आइगेनवैल्यू समस्या से निपटेगा। | ||
==एक्सटेंशन== | ==एक्सटेंशन== | ||
2004 में मैट्रिक्स उत्पाद राज्यों के वास्तविक समय विकास को लागू करने के लिए समय-विकसित ब्लॉक डिकिमेशन विधि विकसित की गई थी। यह विचार [[ एक कंप्यूटर जितना ]] के शास्त्रीय अनुकरण पर आधारित है। इसके बाद, डीएमआरजी औपचारिकता के भीतर वास्तविक समय के विकास की गणना करने के लिए | 2004 में मैट्रिक्स उत्पाद राज्यों के वास्तविक समय विकास को लागू करने के लिए समय-विकसित ब्लॉक डिकिमेशन विधि विकसित की गई थी। यह विचार [[ एक कंप्यूटर जितना |कंप्यूटर जितना]] के शास्त्रीय अनुकरण पर आधारित है। इसके बाद, डीएमआरजी औपचारिकता के भीतर वास्तविक समय के विकास की गणना करने के लिए नई विधि तैयार की गई - ए. फीगुइन और एस.आर. का पेपर देखें। सफ़ेद [https://arxiv.org/abs/cond-mat/0502475]। | ||
हाल के वर्षों में, मैट्रिक्स उत्पाद राज्यों की परिभाषा का विस्तार करते हुए विधि को 2डी और 3डी तक विस्तारित करने के कुछ प्रस्ताव सामने रखे गए हैं। फ़्रैंक वेरस्ट्रेट|एफ का यह पेपर देखें। वेरस्ट्रेट और जुआन इग्नासिओ सिराक सस्टुरैन|आई। सिरैक, [https://arxiv.org/abs/cond-mat/0407066]। | हाल के वर्षों में, मैट्रिक्स उत्पाद राज्यों की परिभाषा का विस्तार करते हुए विधि को 2डी और 3डी तक विस्तारित करने के कुछ प्रस्ताव सामने रखे गए हैं। फ़्रैंक वेरस्ट्रेट|एफ का यह पेपर देखें। वेरस्ट्रेट और जुआन इग्नासिओ सिराक सस्टुरैन|आई। सिरैक, [https://arxiv.org/abs/cond-mat/0407066]। | ||
Line 165: | Line 162: | ||
==संबंधित सॉफ़्टवेयर== | ==संबंधित सॉफ़्टवेयर== | ||
* [https://people.smp.uq.edu.au/IanMcCulloch/mptoolkit/index.php मैट्रिक्स उत्पाद टूलकिट]: [[C++]] में लिखे गए परिमित और अनंत मैट्रिक्स उत्पाद राज्यों में हेरफेर करने के लिए टूल का | * [https://people.smp.uq.edu.au/IanMcCulloch/mptoolkit/index.php मैट्रिक्स उत्पाद टूलकिट]: [[C++]] में लिखे गए परिमित और अनंत मैट्रिक्स उत्पाद राज्यों में हेरफेर करने के लिए टूल का निःशुल्क [[GPL]] सेट [https:/ /people.smp.uq.edu.au/IanMcCulloch/mptoolkit/index.php] | ||
* [https://gitlab.com/uni10/uni10/ Uni10]: C++ में कई टेंसर नेटवर्क एल्गोरिदम (DMRG, TEBD, MERA, PEPS ...) को लागू करने वाली | * [https://gitlab.com/uni10/uni10/ Uni10]: C++ में कई टेंसर नेटवर्क एल्गोरिदम (DMRG, TEBD, MERA, PEPS ...) को लागू करने वाली लाइब्रेरी | ||
* पावर के साथ पाउडर: [[फोरट्रान]] में लिखे गए समय-निर्भर डीएमआरजी कोड का मुफ्त वितरण [http://qti.sns.it/dmrg/phome.html] {{Webarchive|url=https://web.archive.org/web/20171204225717/http://qti.sns.it/dmrg/phome.html |date=2017-12-04 }} | * पावर के साथ पाउडर: [[फोरट्रान]] में लिखे गए समय-निर्भर डीएमआरजी कोड का मुफ्त वितरण [http://qti.sns.it/dmrg/phome.html] {{Webarchive|url=https://web.archive.org/web/20171204225717/http://qti.sns.it/dmrg/phome.html |date=2017-12-04 }} | ||
* ALPS परियोजना: C++ में लिखे गए समय-स्वतंत्र DMRG कोड और [[क्वांटम मोंटे कार्लो]] कोड का निःशुल्क वितरण [http://alps.comp-phys.org] | * ALPS परियोजना: C++ में लिखे गए समय-स्वतंत्र DMRG कोड और [[क्वांटम मोंटे कार्लो]] कोड का निःशुल्क वितरण [http://alps.comp-phys.org] | ||
* [https://g1257.github.io/dmrgPlusPlus/index.html DMRG++]: C++ में लिखित DMRG का निःशुल्क कार्यान्वयन [https://g1257.github.io/dmrgPlusPlus/index.html] | * [https://g1257.github.io/dmrgPlusPlus/index.html DMRG++]: C++ में लिखित DMRG का निःशुल्क कार्यान्वयन [https://g1257.github.io/dmrgPlusPlus/index.html] | ||
* [http://itensor.org/ ITensor] (इंटेलिजेंट टेंसर) लाइब्रेरी: C++ में लिखी गई टेंसर और मैट्रिक्स-प्रोडक्ट स्थिति आधारित DMRG गणना करने के लिए | * [http://itensor.org/ ITensor] (इंटेलिजेंट टेंसर) लाइब्रेरी: C++ में लिखी गई टेंसर और मैट्रिक्स-प्रोडक्ट स्थिति आधारित DMRG गणना करने के लिए निःशुल्क लाइब्रेरी [http://itensor.org/] | ||
* [https://sourceforge.net/projects/openmps/ OpenMPS]: पायथन/फोरट्रान2003 में लिखे गए मैट्रिक्स उत्पाद राज्यों पर आधारित | * [https://sourceforge.net/projects/openmps/ OpenMPS]: पायथन/फोरट्रान2003 में लिखे गए मैट्रिक्स उत्पाद राज्यों पर आधारित खुला स्रोत DMRG कार्यान्वयन। [https://sourceforge.net/projects/openmps/] | ||
* स्नेक DMRG प्रोग्राम: ओपन सोर्स DMRG, tDMRG और परिमित तापमान DMRG प्रोग्राम C++ में लिखा गया है [https://github.com/entron/snake-dmrg] | * स्नेक DMRG प्रोग्राम: ओपन सोर्स DMRG, tDMRG और परिमित तापमान DMRG प्रोग्राम C++ में लिखा गया है [https://github.com/entron/snake-dmrg] | ||
* [https://github.com/SebWouters/CheMPS2 CheMPS2]: C++ में लिखे गए एबी इनिटियो क्वांटम रसायन विज्ञान विधियों के लिए ओपन सोर्स (GPL) स्पिन-अनुकूलित DMRG कोड [https://dx.doi.org/10.1016/j। सीपीसी.2014.01.019] | * [https://github.com/SebWouters/CheMPS2 CheMPS2]: C++ में लिखे गए एबी इनिटियो क्वांटम रसायन विज्ञान विधियों के लिए ओपन सोर्स (GPL) स्पिन-अनुकूलित DMRG कोड [https://dx.doi.org/10.1016/j। सीपीसी.2014.01.019] | ||
* [https://github.com/sanshar/Block Block]: क्वांटम रसायन विज्ञान और मॉडल हैमिल्टनियन के लिए खुला स्रोत DMRG ढांचा। एसयू(2) और सामान्य गैर-एबेलियन समरूपता का समर्थन करता है। C++ में लिखा गया है. | * [https://github.com/sanshar/Block Block]: क्वांटम रसायन विज्ञान और मॉडल हैमिल्टनियन के लिए खुला स्रोत DMRG ढांचा। एसयू(2) और सामान्य गैर-एबेलियन समरूपता का समर्थन करता है। C++ में लिखा गया है. | ||
* [https://pypi.org/project/block2/ Block2]: क्वांटम रसायन विज्ञान और मॉडलों के लिए DMRG, डायनेमिक DMRG, tdDMRG और परिमित तापमान DMRG का | * [https://pypi.org/project/block2/ Block2]: क्वांटम रसायन विज्ञान और मॉडलों के लिए DMRG, डायनेमिक DMRG, tdDMRG और परिमित तापमान DMRG का कुशल [[समानांतर एल्गोरिदम]] कार्यान्वयन। [[पायथन (प्रोग्रामिंग भाषा)]]/C++ में लिखा गया है। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 00:30, 5 December 2023
घनत्व मैट्रिक्स पुनर्सामान्यीकरण समूह (डीएमआरजी) संख्यात्मक भिन्नता विधि (क्वांटम यांत्रिकी) तकनीक है जो स्थूल पैमाने | कई-शरीर समस्या की कम-ऊर्जा भौतिकी | उच्च सटीकता के साथ क्वांटम कई-शरीर प्रणालियों को प्राप्त करने के लिए तैयार की गई है। वैरिएशनल विधि (क्वांटम यांत्रिकी) के रूप में, डीएमआरजी कुशल एल्गोरिदम है जो हैमिल्टन के सबसे कम ऊर्जा मैट्रिक्स उत्पाद राज्य तरंग फ़ंक्शन को खोजने का प्रयास करता है। इसका आविष्कार 1992 में स्टीवन आर. व्हाइट द्वारा किया गया था और यह आजकल 1-आयामी प्रणालियों के लिए सबसे कुशल तरीका है।[1]
इतिहास
डीएमआरजी का पहला अनुप्रयोग, स्टीवन आर. व्हाइट और रेइनहार्ड नॉक द्वारा, खिलौना मॉडल था: 1डी बॉक्स में स्पिन (भौतिकी) 0 कण के स्पेक्ट्रम को खोजने के लिए।[when?] यह मॉडल केनेथ जी. विल्सन द्वारा किसी भी नए पुनर्सामान्यीकरण समूह विधि के परीक्षण के रूप में प्रस्तावित किया गया था, क्योंकि वे सभी इस सरल समस्या से विफल हो गए थे।[when?] डीएमआरजी ने प्रत्येक चरण में ब्लॉक में केवल साइट जोड़ने के बजाय बीच में दो साइटों के साथ दो ब्लॉकों को जोड़कर और साथ ही सबसे महत्वपूर्ण राज्यों की पहचान करने के लिए घनत्व मैट्रिक्स का उपयोग करके पिछले पुनर्सामान्यीकरण समूह विधियों की समस्याओं पर काबू पा लिया। प्रत्येक चरण के अंत में रखा जाए। खिलौना मॉडल में सफल होने के बाद, डीएमआरजी पद्धति को हाइजेनबर्ग मॉडल (क्वांटम) पर सफलतापूर्वक आजमाया गया।
सिद्धांत
अनेक-निकाय समस्या|क्वांटम अनेक-निकाय भौतिकी की मुख्य समस्या यह तथ्य है कि हिल्बर्ट स्थान आकार के साथ तेजी से बढ़ता है। दूसरे शब्दों में यदि कोई जाली पर विचार करता है, जिसमें आयाम के कुछ हिल्बर्ट स्थान होते हैं जाली के प्रत्येक स्थल पर, कुल हिल्बर्ट स्थान का आयाम होगा , कहाँ जाली पर साइटों की संख्या है. उदाहरण के लिए, लंबाई L की स्पिन-1/2 श्रृंखला में 2 हैस्वतंत्रता की डिग्री. डीएमआरजी पुनरावृत्तीय, परिवर्तनशील विधि है जो लक्ष्य राज्य के लिए सबसे महत्वपूर्ण स्वतंत्रता की प्रभावी डिग्री को कम कर देती है। जिस राज्य में सबसे अधिक रुचि होती है वह जमीनी राज्य है।
वार्मअप चक्र के बाद, विधि सिस्टम को दो उपप्रणालियों या ब्लॉकों में विभाजित करती है, जिनके समान आकार की आवश्यकता नहीं होती है, और बीच में दो साइटें होती हैं। वार्मअप के दौरान ब्लॉक के लिए प्रतिनिधि राज्यों का सेट चुना गया है। बाएँ ब्लॉक + दो साइट + दाएँ ब्लॉक के इस सेट को 'सुपरब्लॉक' के रूप में जाना जाता है। अब सुपरब्लॉक की जमीनी स्थिति के लिए उम्मीदवार, जो कि पूर्ण प्रणाली का छोटा संस्करण है, मिल सकता है। इसमें थोड़ी सटीकता हो सकती है, लेकिन यह विधि पुनरावृत्तीय है और नीचे दिए गए चरणों के साथ इसमें सुधार होता है।
जो उम्मीदवार जमीनी स्थिति पाई गई है, उसे घनत्व मैट्रिक्स का उपयोग करके प्रत्येक ब्लॉक के लिए रैखिक उप-स्थान में प्रक्षेपित किया जाता है, इसलिए यह नाम दिया गया है। इस प्रकार, प्रत्येक ब्लॉक के लिए प्रासंगिक स्थिति अद्यतन की जाती है।
अब ब्लॉक दूसरे की कीमत पर बढ़ता है और प्रक्रिया दोहराई जाती है। जब बढ़ता हुआ ब्लॉक अधिकतम आकार तक पहुँच जाता है, तो उसके स्थान पर दूसरा बढ़ना शुरू हो जाता है। हर बार जब हम मूल (समान आकार) स्थिति में लौटते हैं, तो हम कहते हैं कि स्वीप पूरा हो गया है। आम तौर पर, 10 में हिस्से की सटीकता प्राप्त करने के लिए कुछ स्वीप पर्याप्त होते हैं1डी जाली के लिए 10।
कार्यान्वयन मार्गदर्शिका
डीएमआरजी एल्गोरिदम का व्यावहारिक कार्यान्वयन लंबा काम है[opinion]. कुछ मुख्य कम्प्यूटेशनल युक्तियाँ ये हैं:
- चूंकि पुनर्सामान्यीकृत हैमिल्टनियन का आकार आम तौर पर कुछ या दसियों हजार के क्रम में होता है, जबकि मांगी गई ईजेनस्टेट सिर्फ जमीनी स्थिति है, सुपरब्लॉक के लिए जमीनी स्थिति मैट्रिक्स विकर्णीकरण के लैंज़ोस एल्गोरिदम जैसे पुनरावृत्त एल्गोरिदम के माध्यम से प्राप्त की जाती है। अन्य विकल्प अर्नोल्डी पुनरावृत्ति है, खासकर जब गैर-हर्मिटियन मैट्रिक्स से निपटना हो।
- लैंज़ोस एल्गोरिदम आमतौर पर समाधान के सर्वोत्तम अनुमान से शुरू होता है। यदि कोई अनुमान उपलब्ध नहीं है तो यादृच्छिक वेक्टर चुना जाता है। डीएमआरजी में, निश्चित डीएमआरजी चरण में प्राप्त जमीनी स्थिति, उपयुक्त रूप से रूपांतरित, उचित अनुमान है और इस प्रकार अगले डीएमआरजी चरण में यादृच्छिक शुरुआती वेक्टर की तुलना में काफी बेहतर काम करती है।
- समरूपता वाले सिस्टम में, हमने क्वांटम संख्याओं को संरक्षित किया हो सकता है, जैसे हाइजेनबर्ग मॉडल में कुल स्पिन। हिल्बर्ट क्षेत्र को जिन सेक्टरों में विभाजित किया गया है, उनमें से प्रत्येक के भीतर जमीनी स्थिति का पता लगाना सुविधाजनक है।
अनुप्रयोग
डीएमआरजी को स्पिन श्रृंखलाओं के कम ऊर्जा गुणों को प्राप्त करने के लिए सफलतापूर्वक लागू किया गया है: अनुप्रस्थ क्षेत्र में आइसिंग मॉडल, हाइजेनबर्ग मॉडल (क्वांटम), आदि, फर्मियोनिक सिस्टम, जैसे हबर्ड मॉडल, कोंडो प्रभाव जैसी अशुद्धियों के साथ समस्याएं, बोसॉन सिस्टम, और क्वांटम डॉट्स की भौतिकी कितना तार से जुड़ गई। इसे वृक्ष ग्राफ़ पर काम करने के लिए भी विस्तारित किया गया है, और डेनड्रीमर के अध्ययन में इसका अनुप्रयोग पाया गया है। 2डी सिस्टम के लिए जिसका आयाम दूसरे से काफी बड़ा है, डीएमआरजी भी सटीक है, और सीढ़ी के अध्ययन में उपयोगी साबित हुआ है।
इस पद्धति का विस्तार 2डी में संतुलन सांख्यिकीय भौतिकी का अध्ययन करने और 1डी में कोई संतुलन नहीं | गैर-संतुलन घटना का विश्लेषण करने के लिए किया गया है।
दृढ़ता से सहसंबद्ध प्रणालियों का अध्ययन करने के लिए डीएमआरजी को क्वांटम रसायन विज्ञान के क्षेत्र में भी लागू किया गया है।
उदाहरण: क्वांटम हाइजेनबर्ग मॉडल
आइए इसके लिए अनंत DMRG एल्गोरिदम पर विचार करें एंटीफेरोमैग्नेटिक क्वांटम हाइजेनबर्ग मॉडल। यह नुस्खा प्रत्येक अनुवादात्मक रूप से अपरिवर्तनीय एक-आयामी जाली (समूह) के लिए लागू किया जा सकता है।
डीएमआरजी पुनर्सामान्यीकरण समूह | पुनर्सामान्यीकरण-समूह तकनीक है क्योंकि यह एक-आयामी क्वांटम सिस्टम के हिल्बर्ट स्थान का कुशल ट्रंकेशन प्रदान करता है।
प्रारंभिक बिंदु
चार साइटों से शुरू करके अनंत श्रृंखला का अनुकरण करना। पहली ब्लॉक साइट है, आखिरी यूनिवर्स-ब्लॉक साइट है और बाकी जोड़ी गई साइटें हैं, दाईं ओर वाली साइट यूनिवर्स-ब्लॉक साइट और दूसरी ब्लॉक साइट में जोड़ी गई है।
एकल साइट के लिए हिल्बर्ट स्थान है आधार के साथ . इस आधार के साथ स्पिन (भौतिकी) संचालक हैं , और एकल साइट के लिए. प्रत्येक ब्लॉक, दो ब्लॉक और दो साइटों के लिए, अपना स्वयं का हिल्बर्ट स्थान है , इसका आधार ()और इसके अपने संचालक
- अवरोध पैदा करना: , , , , ,
- बाईं साइट: , , , ,
- राइट-साइट: , , , ,
- ब्रह्मांड: , , , , ,
आरंभिक बिंदु पर सभी चार हिल्बर्ट स्थान समतुल्य हैं , सभी स्पिन ऑपरेटर समतुल्य हैं , और और . निम्नलिखित पुनरावृत्तियों में, यह केवल बाएँ और दाएँ साइटों के लिए सत्य है।
चरण 1: सुपरब्लॉक के लिए हैमिल्टनियन मैट्रिक्स बनाएं
अवयव चार ब्लॉक ऑपरेटर और चार ब्रह्मांड-ब्लॉक ऑपरेटर हैं, जो पहले पुनरावृत्ति में हैं मैट्रिक्स (गणित), तीन लेफ्ट-साइट स्पिन ऑपरेटर और तीन राइट-साइट स्पिन ऑपरेटर, जो हमेशा होते हैं matrices. सुपरब्लॉक (श्रृंखला) का हैमिल्टनियन प्रणाली मैट्रिक्स, जिसमें पहले पुनरावृत्ति में केवल चार साइटें हैं, इन ऑपरेटरों द्वारा बनाई गई हैं। हाइजेनबर्ग एंटीफेरोमैग्नेटिक एस = 1 मॉडल में हैमिल्टनियन है:
ये ऑपरेटर सुपरब्लॉक स्टेट स्पेस में रहते हैं: , आधार है . उदाहरण के लिए: (सम्मेलन):
डीएमआरजी फॉर्म में हैमिल्टनियन है (हमने सेट किया है)। ):
ऑपरेटर हैं मैट्रिक्स, , उदाहरण के लिए:
चरण 2: सुपरब्लॉक हैमिल्टनियन को विकर्णित करें
इस बिंदु पर आपको हैमिल्टनियन के आइजेनवैल्यू, आइजेनवेक्टर और आइजेनस्पेस को चुनना होगा जिसके लिए कुछ नमूदार की गणना की जाती है, यह लक्ष्य स्थिति है। शुरुआत में आप स्थिर स्थिति चुन सकते हैं और इसे खोजने के लिए कुछ उन्नत एल्गोरिदम का उपयोग कर सकते हैं, इनमें से का वर्णन इस प्रकार है:
- बड़े वास्तविक-सममित मैट्रिक्स के कुछ सबसे कम आइजेनवैल्यू और संबंधित आइजेनवैल्यू, आइजेनवेक्टर और आइजेनस्पेस की पुनरावृत्तीय गणना, अर्नेस्ट आर. डेविडसन; कम्प्यूटेशनल भौतिकी जर्नल 17, 87-94 (1975)
यह चरण एल्गोरिथम का सबसे अधिक समय लेने वाला हिस्सा है।
अगर लक्ष्य स्थिति है, इस बिंदु पर विभिन्न ऑपरेटरों के अपेक्षित मूल्य का उपयोग करके मापा जा सकता है .
चरण 3: घनत्व मैट्रिक्स कम करें
कम घनत्व मैट्रिक्स बनाएं पहले दो ब्लॉक सिस्टम के लिए, ब्लॉक और लेफ्ट-साइट। परिभाषा के अनुसार यह है आव्यूह: मैट्रिक्स विकर्णीकरण और बनाओ आव्यूह , कौन सी पंक्तियाँ हैं eigenvectors से जुड़े सबसे बड़ा eigenvalues का . इसलिए कम घनत्व मैट्रिक्स के सबसे महत्वपूर्ण ईजेनस्टेट्स द्वारा गठित किया गया है। आप चुनते हैं पैरामीटर को देख रहे हैं : .
चरण 4: नया ब्लॉक और यूनिवर्स-ब्लॉक ऑपरेटर
इससे उदाहरण के लिए, ब्लॉक और लेफ्ट-साइट के सिस्टम कंपोजिट और राइट-साइट और यूनिवर्स-ब्लॉक के सिस्टम कंपोजिट के लिए ऑपरेटरों का मैट्रिक्स प्रतिनिधित्व:
अब, फॉर्म बनाएं नए ब्लॉक और ब्रह्मांड-ब्लॉक ऑपरेटरों के मैट्रिक्स प्रतिनिधित्व, परिवर्तन के साथ आधार बदलकर नया ब्लॉक बनाते हैं , उदाहरण के लिए:
जब अवलोकन योग्य वस्तु किसी मान पर एकत्रित हो जाती है तो एल्गोरिदम सफलतापूर्वक बंद हो जाता है।
मैट्रिक्स उत्पाद ansatz
1डी सिस्टम के लिए डीएमआरजी की सफलता इस तथ्य से संबंधित है कि यह मैट्रिक्स उत्पाद राज्यों (एमपीएस) के क्षेत्र में परिवर्तनशील विधि है। ये स्वरूप की अवस्थाएँ हैं
कहाँ उदाहरण के लिए मान हैं स्पिन श्रृंखला में स्पिन का z-घटक, और Asi मनमाना आयाम m के आव्यूह हैं। जैसे ही m → ∞, निरूपण सटीक हो जाता है। इस सिद्धांत को एस. रोमर और एस. ओस्टलुंड ने [1] में उजागर किया था।
क्वांटम रसायन विज्ञान अनुप्रयोग में, इस प्रकार दो इलेक्ट्रॉनों की स्पिन क्वांटम संख्या के प्रक्षेपण की चार संभावनाएं हैं जो एकल कक्षक पर कब्जा कर सकती हैं , जहां इन केट्स की पहली (दूसरी) प्रविष्टि स्पिन-अप (डाउन) इलेक्ट्रॉन से मेल खाती है। क्वांटम रसायन विज्ञान में, (किसी प्रदत्त के लिए ) और (किसी प्रदत्त के लिए ) को परंपरागत रूप से क्रमशः पंक्ति और स्तंभ मैट्रिक्स के रूप में चुना जाता है। इस प्रकार, का परिणाम अदिश मान है और ट्रेस ऑपरेशन अनावश्यक है। सिमुलेशन में उपयोग की जाने वाली साइटों (मूल रूप से ऑर्बिटल्स) की संख्या है।
MPS ansatz में मैट्रिक्स अद्वितीय नहीं हैं, उदाहरण के लिए, कोई सम्मिलित कर सकता है के बीच में , फिर परिभाषित करें और , और राज्य अपरिवर्तित रहेगा. इस तरह की गेज स्वतंत्रता का उपयोग मैट्रिक्स को विहित रूप में बदलने के लिए किया जाता है। तीन प्रकार के विहित रूप मौजूद हैं: (1) वाम-सामान्यीकृत रूप, जब
सभी के लिए , (2) सही-सामान्यीकृत रूप, कब
सभी के लिए , और (3) मिश्रित-विहित रूप जब दोनों बाएँ और दाएँ-सामान्यीकृत मैट्रिक्स मौजूद होते हैं उपरोक्त MPS ansatz में मैट्रिक्स।
डीएमआरजी गणना का लक्ष्य प्रत्येक के तत्वों को हल करना है matrices. इस उद्देश्य के लिए तथाकथित एक-साइट और दो-साइट एल्गोरिदम तैयार किए गए हैं। एक-साइट एल्गोरिथ्म में, केवल मैट्रिक्स (एक साइट) जिसके तत्वों को समय में हल किया जाता है। टू-साइट का सीधा सा मतलब है कि दो मैट्रिक्स को पहले ही मैट्रिक्स में अनुबंधित (गुणा) किया जाता है, और फिर उसके तत्वों को हल किया जाता है। दो-साइट एल्गोरिदम प्रस्तावित है क्योंकि एक-साइट एल्गोरिदम में स्थानीय न्यूनतम पर फंसने की संभावना अधिक होती है। उपरोक्त विहित रूपों में से किसी में एमपीएस होने से गणना को अधिक अनुकूल बनाने का लाभ होता है - यह सामान्य स्वदेशी समस्या की ओर ले जाता है। कैनोनिकलाइज़ेशन के बिना, कोई सामान्यीकृत आइगेनवैल्यू समस्या से निपटेगा।
एक्सटेंशन
2004 में मैट्रिक्स उत्पाद राज्यों के वास्तविक समय विकास को लागू करने के लिए समय-विकसित ब्लॉक डिकिमेशन विधि विकसित की गई थी। यह विचार कंप्यूटर जितना के शास्त्रीय अनुकरण पर आधारित है। इसके बाद, डीएमआरजी औपचारिकता के भीतर वास्तविक समय के विकास की गणना करने के लिए नई विधि तैयार की गई - ए. फीगुइन और एस.आर. का पेपर देखें। सफ़ेद [2]।
हाल के वर्षों में, मैट्रिक्स उत्पाद राज्यों की परिभाषा का विस्तार करते हुए विधि को 2डी और 3डी तक विस्तारित करने के कुछ प्रस्ताव सामने रखे गए हैं। फ़्रैंक वेरस्ट्रेट|एफ का यह पेपर देखें। वेरस्ट्रेट और जुआन इग्नासिओ सिराक सस्टुरैन|आई। सिरैक, [3]।
अग्रिम पठन
- The original paper, by S. R. White, [4] or [5]
- A textbook on DMRG and its origins: https://www.springer.com/gp/book/9783540661290
- A broad review, by Karen Hallberg, [6].
- Two reviews by Ulrich Schollwöck, one discussing the original formulation [7], and another in terms of matrix product states [8]
- The Ph.D. thesis of Javier Rodríguez Laguna [9].
- An introduction to DMRG and its time-dependent extension [10].
- A list of DMRG e-prints on arxiv.org [11].
- A review article on DMRG for ab initio quantum chemistry [12].
- An introduction video on DMRG for ab initio quantum chemistry [13].
- White, Steven R.; Huse, David A. (1993-08-01). "Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain". Physical Review B. American Physical Society (APS). 48 (6): 3844–3852. Bibcode:1993PhRvB..48.3844W. doi:10.1103/physrevb.48.3844. ISSN 0163-1829. PMID 10008834.
संबंधित सॉफ़्टवेयर
- मैट्रिक्स उत्पाद टूलकिट: C++ में लिखे गए परिमित और अनंत मैट्रिक्स उत्पाद राज्यों में हेरफेर करने के लिए टूल का निःशुल्क GPL सेट [https:/ /people.smp.uq.edu.au/IanMcCulloch/mptoolkit/index.php]
- Uni10: C++ में कई टेंसर नेटवर्क एल्गोरिदम (DMRG, TEBD, MERA, PEPS ...) को लागू करने वाली लाइब्रेरी
- पावर के साथ पाउडर: फोरट्रान में लिखे गए समय-निर्भर डीएमआरजी कोड का मुफ्त वितरण [14] Archived 2017-12-04 at the Wayback Machine
- ALPS परियोजना: C++ में लिखे गए समय-स्वतंत्र DMRG कोड और क्वांटम मोंटे कार्लो कोड का निःशुल्क वितरण [15]
- DMRG++: C++ में लिखित DMRG का निःशुल्क कार्यान्वयन [16]
- ITensor (इंटेलिजेंट टेंसर) लाइब्रेरी: C++ में लिखी गई टेंसर और मैट्रिक्स-प्रोडक्ट स्थिति आधारित DMRG गणना करने के लिए निःशुल्क लाइब्रेरी [17]
- OpenMPS: पायथन/फोरट्रान2003 में लिखे गए मैट्रिक्स उत्पाद राज्यों पर आधारित खुला स्रोत DMRG कार्यान्वयन। [18]
- स्नेक DMRG प्रोग्राम: ओपन सोर्स DMRG, tDMRG और परिमित तापमान DMRG प्रोग्राम C++ में लिखा गया है [19]
- CheMPS2: C++ में लिखे गए एबी इनिटियो क्वांटम रसायन विज्ञान विधियों के लिए ओपन सोर्स (GPL) स्पिन-अनुकूलित DMRG कोड सीपीसी.2014.01.019
- Block: क्वांटम रसायन विज्ञान और मॉडल हैमिल्टनियन के लिए खुला स्रोत DMRG ढांचा। एसयू(2) और सामान्य गैर-एबेलियन समरूपता का समर्थन करता है। C++ में लिखा गया है.
- Block2: क्वांटम रसायन विज्ञान और मॉडलों के लिए DMRG, डायनेमिक DMRG, tdDMRG और परिमित तापमान DMRG का कुशल समानांतर एल्गोरिदम कार्यान्वयन। पायथन (प्रोग्रामिंग भाषा)/C++ में लिखा गया है।
यह भी देखें
- क्वांटम मोंटे कार्लो
- समय-विकसित ब्लॉक क्षय
- कॉन्फ़िगरेशन इंटरैक्शन
संदर्भ
- ↑ Nakatani, Naoki (2018), "Matrix Product States and Density Matrix Renormalization Group Algorithm", Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, doi:10.1016/b978-0-12-409547-2.11473-8, ISBN 978-0-12-409547-2, retrieved 2021-04-21