जैव-एलजीसीए: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (11 revisions imported from alpha:जैव-एलजीसीए) |
(No difference)
|
Latest revision as of 10:57, 11 December 2023
कम्प्यूटेशनल जीवविज्ञान और गणितीय और सैद्धांतिक जीवविज्ञान में, जैविक जालक-गैस कोशिकीय ऑटोमेटन (जैव-एलजीसीए) जैविक घटकों को स्थानांतरित करने और अन्तः क्रिया करने के लिए एक अलग मॉडल है,[1] जो कोशिकीय ऑटोमेटन (मशीनी मानव) का एक प्रकार है। जैव-एलजीसीए द्रव गतिशीलता में उपयोग किए जाने वाले जालक गैस ऑटोमेटन (एलजीसीए) मॉडल पर आधारित है। जैव-एलजीसीए मॉडल कोशिकाओं और अन्य गतिशील जैविक घटकों को अलग जालक पर चलने वाले बिंदु कणों के रूप में वर्णित करता है, जिससे निकट के कणों के साथ अन्तः क्रिया होती है। अतः उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल के विपरीत, जैव-एलजीसीए में कणों को उनकी स्थिति और वेग से परिभाषित किया जाता है। यह मुख्य रूप से घनत्व के अतिरिक्त गति में परिवर्तन के माध्यम से सक्रिय तरल पदार्थों और सामूहिक प्रवासन का मॉडल और विश्लेषण करने की अनुमति देता है। जैव-एलजीसीए अनुप्रयोगों में कैंसर का अन्तःक्षेप[2] और कैंसर की प्रगति सम्मिलित है।[3]
मॉडल परिभाषा
जैसा कि सभी कोशिकीय ऑटोमेटन मॉडल हैं, एक BIO-LGCA मॉडल को एक जालक , एक अवस्था समष्टि , एक निकटवर्ती और एक नियम द्वारा परिभाषित किया गया है।[4]
- जालक () सभी संभावित कण स्थितियों के समूह को परिभाषित करता है। कण मात्र कुछ निश्चित स्थानों पर अधिकृत करने के लिए प्रतिबंधित हैं, जो सामान्यतः समष्टि के नियमित और आवधिक चौकोर के परिणामस्वरूप होते हैं। अतः गणितीय रूप से, , -आयामी समष्टि का एक अलग उपसमुच्चय है।
- अवस्था समष्टि () प्रत्येक जालक स्थल के भीतर कणों की संभावित अवस्थाओं का वर्णन करता है. जैव-एलजीसीए में, उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल के विपरीत, अलग-अलग वेग वाले कई कण एक ही जालक स्थल पर अधिकृत कर सकते हैं, जहां सामान्यतः मात्र एक ही कोशिका प्रत्येक जालक नोड में एक साथ रह सकती है। अलग यह अवस्था समष्टि को उत्कृष्ट कोशिकीय ऑटोमेटन मॉडल (नीचे देखें) की तुलना में अल्प अधिक जटिल बनाता है।
- निकटवर्ती () जालक स्थलों के उपसमूह को इंगित करता है जो जालक में किसी दिए गए स्थल की गतिशीलता को निर्धारित करता है। अतः कण मात्र अपने निकटवर्ती के अन्य कणों के साथ अन्तः क्रिया करते हैं। परिमित जालक की सीमा पर जालक स्थलों के निकटवर्ती के लिए सीमा की स्थिति का चयन किया जाना चाहिए। निकटवर्ती और सीमा की स्थितियों को नियमित कोशिकीय ऑटोमेटा के लिए समान रूप से परिभाषित किया गया है (कोशिकीय ऑटोमेटन देखें)।
- नियम () यह निर्धारित करता है कि कण समय के साथ कैसे चलते हैं, बढ़ते हैं या समाप्त हो जाते हैं। प्रत्येक कोशिकीय ऑटोमेटन के जैसे, जैव-एलजीसीए अलग-अलग समय चरणों में विकसित होता है। अलग प्रणाली की गतिशीलता का अनुकरण करने के लिए, नियम को प्रत्येक समय चरण पर प्रत्येक जालक स्थल पर समकालिक रूप से लागू किया जाता है। नियम अनुप्रयोग जालक स्थल की मूल स्थिति को नवीन स्थिति में परिवर्तित कर देता है। नियम अद्यतन की जाने वाली जालक स्थल के अन्तः क्रिया निकटवर्ती में जालक स्थलों की स्थिति पर निर्भर करता है। अतः जैव-एलजीसीए में, नियम को दो चरणों में विभाजित किया गया है, संभाव्य अन्तः क्रिया चरण जिसके पश्चात नियतात्मक परिवहन चरण होता है। अन्तः क्रिया चरण पुनर्अभिविन्यास, जन्म और मृत्यु प्रक्रियाओं का अनुकरण करता है, और विशेष रूप से मॉडलिंग प्रक्रिया के लिए परिभाषित किया गया है। परिवहन चरण कणों को उनके वेग की दिशा में निकटवर्ती जालक नोड में स्थानांतरित करता है। विवरण के लिए नीचे देखें।
अवस्था समष्टि
इस प्रकार से कण वेगों को स्पष्ट रूप से मॉडलिंग करने के लिए, जालक स्थलों को विशिष्ट उपसंरचना माना जाता है। प्रत्येक जालक स्थल वेग चैनल , नामक सदिश के माध्यम से अपने निकटवर्ती जालक स्थलों से जुड़ा होता है, जहां वेग चैनलों की संख्या निकटतम निकटवर्ती संख्या के बराबर है, और इस प्रकार जालक ज्यामिति पर निर्भर करती है (एक आयामी जालक के लिए , द्वि-आयामी षट्कोणीय जालक के लिए , और इसी प्रकार)। अतः दो आयामों में, वेग चैनलों को के रूप में परिभाषित किया गया है। इसके अतिरिक्त, तथाकथित "शेष चैनलों" की एक यादृच्छिक संख्या को परिभाषित किया जा सकता है, जैसे कि , । चैनल को व्यस्त कहा जाता है यदि जालक स्थल में वेग चैनल के बराबर वेग वाला कण होता है। चैनल का अधिकृत अधिष्ठान संख्या द्वारा दर्शाया गया है। सामान्यतः, कणों को पाउली अपवर्जन सिद्धांत का पालन करना माना जाता है, जैसे कि से अधिक कण जालक स्थल पर ही वेग चैनल पर साथ अधिकृत नहीं कर सकते हैं। अतः इस स्थिति में, अधिष्ठान संख्याएं बूलियन चर हैं, अर्थात , और इस प्रकार, प्रत्येक साइट की अधिकतम वहन क्षमता होती है। चूंकि सभी चैनल अधिष्ठान संख्याओं का संग्रह प्रत्येक जालक स्थल में कणों की संख्या और उनके वेग को परिभाषित करता है, इसलिए सदिश जालक स्थल की स्थिति का वर्णन करता है, और अवस्था समष्टि के द्वारा दिया जाता है।
नियम और मॉडल गतिशीलता
इस प्रकार से मॉडल की गतिशीलता को अनुकरण करने के लिए जालक में प्रत्येक स्थल की स्थिति को अलग-अलग समय चरणों में समकालिक रूप से अद्यतन किया जाता है। अतः नियम को दो चरणों में बांटा गया है। संभाव्य अंतःक्रिया चरण कण अंतःक्रिया का अनुकरण करता है, जबकि नियतात्मक परिवहन चरण कण गति का अनुकरण करता है।
अन्तः क्रिया चरण
इस प्रकार से विशिष्ट अनुप्रयोग के आधार पर, अन्तः क्रिया चरण प्रतिक्रिया और/या पुनर्अभिविन्यास संक्रियकों से बना हो सकता है।
अतः प्रतिक्रिया संचालिका नोड की स्थिति को प्रतिस्थापित करता है नवीन अवस्था के साथ मार्कोव श्रृंखला का अनुसरण करते हुए है, जो प्रतिक्रियाशील प्रक्रिया पर निकटवर्ती कणों के प्रभाव का अनुकरण करने के लिए, निकटवर्ती जालक स्थल की स्थिति पर निर्भर करता है। प्रतिक्रिया संक्रियक कण संख्या को संरक्षित नहीं करता है, इस प्रकार व्यक्तियों के जन्म और मृत्यु का अनुकरण करने की अनुमति देता है। इस प्रकार से प्रतिक्रिया संक्रियक की संक्रमण संभाव्यता को सामान्यतः घटनात्मक टिप्पणियों के रूप में तदर्थ रूप में परिभाषित किया जाता है।
अतः पुनर्अभिविन्यास संक्रियक भी संभाव्यता के साथ एक अवस्था को नवीन अवस्था से प्रतिस्थापित करता है। यद्यपि, यह संक्रियक कण संख्या को संरक्षित करता है और इसलिए मात्र मॉडल वेग चैनलों के बीच कणों को पुनर्वितरित करके कण वेग में परिवर्तन करता है। इस संक्रियक के लिए संक्रमण की संभावना सांख्यिकीय अवलोकनों (अधिकतम कैलिबर के सिद्धांत का उपयोग करके) या ज्ञात एकल-कण गतिशीलता (पुनर्अभिविन्यास गतिशीलता का वर्णन करने वाले लैंग्विन समीकरण से संबंधित समीकरण फोककर-प्लैंक समीकरण द्वारा दिए गए विवेकाधीन, स्थिर-अवस्था कोणीय संभाव्यता वितरण का उपयोग करके) निर्धारित की जा सकती है,[5][6] और सामान्यतः रूप
प्रतिक्रिया और पुनर्अभिविन्यास संक्रियक को लागू करने वाला अवस्था परिणामी रूप से पश्च-अन्तः क्रिया विन्यास के रूप में जाना जाता है और इसे द्वारा दर्शाया जाता है।
परिवहन चरण
इस प्रकार से अन्तः क्रिया चरण के पश्चात, नियतात्मक परिवहन चरण को सभी जालक स्थलों पर समकालिक रूप से लागू किया जाता है। अतः परिवहन चरण जीवित जीवों के सक्रिय पदार्थ के कारण घटकों की गति को उनके वेग के अनुसार अनुकरण करता है।
इस चरण के समय, पश्च-अन्तः क्रिया अवस्थाों की अधिष्ठान संख्या को वेग चैनल की दिशा में निकटवर्ती जालक स्थल के एक ही चैनल के नवीन अधिष्ठान अवस्थाों के रूप में परिभाषित किया जाएगा, अर्थात ।
इस प्रकार से एक नवीन समय चरण तब प्रारंभ होता है जब अन्तः क्रिया और परिवहन चरण दोनों घटित हो जाते हैं। अतः इसलिए, जैव-एलजीसीए की गतिशीलता को प्रसंभात्य पुनरावृत्ति संबंध सूक्ष्मगतिकी समीकरण
उदाहरण अन्तः क्रिया गतिकी
इस प्रकार से प्रतिक्रिया और/या पुनर्अभिविन्यास संक्रियक के लिए संक्रमण संभावना को मॉडल किए गए प्रणाली को उचित रूप से अनुकरण करने के लिए परिभाषित किया जाना चाहिए। अतः कुछ प्राथमिक अन्तः क्रिया और संबंधित संक्रमण संभावनाएं निम्न सूचीबद्ध हैं।
यादृच्छिक चाल
किसी बाह्य या आंतरिक उत्तेजना के अभाव में, कोशिकाएँ बिना किसी दिशात्मक प्राथमिकता के यादृच्छिक रूप से घूम सकती हैं। अतः इस स्थिति में, पुनर्अभिविन्यास संक्रियक को संक्रमण संभावना
सरल जन्म एवं मृत्यु प्रक्रिया
यदि जीव अन्य व्यक्तियों से स्वतंत्र रूप से प्रजनन करते हैं और समाप्त हो जाते हैं (सीमित वहन क्षमता को छोड़कर), तो एक साधारण जन्म/मृत्यु प्रक्रिया को[3]
आसंजक अन्तः क्रिया
अतः कोशिकाएं कोशिका की सतह पर कैडेरिन अणुओं द्वारा दूसरे से चिपक सकती हैं। कैडरिन अन्तः क्रिया कोशिकाओं को समुच्चय बनाने की अनुमति देता है। इस प्रकार से आसंजक जैवाणु के माध्यम से कोशिका समुच्चय का निर्माण[7] पुनर्अभिविन्यास संक्रियक
गणितीय विश्लेषण
चूंकि सभी घटकों के बीच उच्च-क्रम सहसंबंध और निर्भरता के कारण प्रसंभात्य घटक-आधारित मॉडल का यथार्थ उपचार शीघ्र ही असंभव हो जाता है,[8] जैव-एलजीसीए मॉडल का विश्लेषण करने की सामान्य विधि इसे जनसंख्या की अपेक्षित मान गतिशीलता का वर्णन करने वाले अनुमानित, नियतात्मक पुनरावृत्ति संबंध (एफडीई) में डालना है, फिर इस अनुमानित मॉडल का गणितीय विश्लेषण करना और परिणामों की तुलना मूल जैव-एलजीसीए मॉडल से करना है।
सर्वप्रथम, सूक्ष्मगतिकी समीकरण का अपेक्षित मान
इस अरेखीय FDE से, कोई कई सजातीय संतुलन बिंदु, या और से स्वतंत्र स्थिरांक की पहचान कर सकता है जो FDE के हल हैं। अतः इन स्थिर अवस्थाओं की स्थिरता स्थितियों और मॉडल के रूप निर्माण क्षमता का अध्ययन करने के लिए, रैखिक स्थिरता का प्रदर्शन किया जा सकता है। इस प्रकार से ऐसा करने के लिए, अरेखीय FDE को
इस प्रकार से आइगेनमान एवं आइगेनसदिश बोल्ट्ज़मैन प्रचारक स्थिर अवस्था की स्थिरता गुणों को निर्देशित करते हैं:[4]
- यदि , जहां मापांक को दर्शाता है, तो तरंग संख्या के साथ क्षोभ समय के साथ बढ़ती है। यदि , और है, तो तरंग संख्या के साथ क्षोभ प्रभावी हो जाएगी और स्पष्ट तरंग दैर्ध्य के साथ रूप देखे जाएंगे।अन्यथा, स्थिर स्थिति स्थिर है और कोई भी क्षोभ क्षय हो जाएगी।
- यदि , जहां तर्क को दर्शाता है, तो क्षोभ स्थानांतरित हो जाती है और गैर-स्थिर जनसंख्या व्यवहार देखा जाता है। अन्यथा, जनसंख्या स्थूल स्तर पर स्थिर दिखाई देगी।
अनुप्रयोग
इस प्रकार से जैविक घटनाओं के अध्ययन के लिए जैव-एलजीसीए के निर्माण में मुख्य रूप से अन्तः क्रिया संक्रियक के लिए उचित संक्रमण संभावनाओं को परिभाषित करना सम्मिलित है, यद्यपि अवस्था समष्टि की यथार्थ परिभाषा (उदाहरण के लिए कई कोशिकीय समलक्षणी पर विचार करने के लिए), सीमा की स्थिति (सीमित परिस्थितियों में मॉडलिंग घटना के लिए), निकटवर्ती (मात्रात्मक रूप से प्रयोगात्मक अन्तः क्रिया श्रेणी से मेल खाने के लिए), और वहन क्षमता (दिए गए कोशिका आकार के लिए भीड़ प्रभाव का अनुकरण करने के लिए) विशिष्ट अनुप्रयोगों के लिए महत्वपूर्ण हो सकते हैं। जबकि पुनर्अभिविन्यास संक्रियक का वितरण उपरोक्त सांख्यिकीय और जैवभौतिक विधियों के माध्यम से प्राप्त किया जा सकता है, अतः उदाहरण के लिए, प्रतिक्रिया संक्रियकों के वितरण का अनुमान इन विट्रो प्रयोगों के आंकड़ों से लगाया जा सकता है।[9]
जैव-एलजीसीए मॉडल का उपयोग कई कोशिकीय, जैवभौतिक और चिकित्सा घटनाओं का अध्ययन करने के लिए किया गया है। इस प्रकार से कुछ निम्नलिखित उदाहरणों में सम्मिलित हैं:
- एंजियोजिनेसिस :[10] एंजियोजेनेसिस के समय सम्मिलित प्रक्रियाओं और उनके भार को निर्धारित करने के लिए अंतःकला कोशिकाओं और जैव-एलजीसीए अनुरूपण वेधशालाओं के साथ इन विट्रो प्रयोग की तुलना की गई। उन्होंने पाया कि आसंजन, संरेखण, संपर्क मार्गदर्शन और कोशिकाबाह्य आधात्री पुनःमॉडलिंग सभी वाहिनी जनन में सम्मिलित हैं, जबकि लंबी दूरी की अन्तः क्रिया प्रक्रिया के लिए महत्वपूर्ण नहीं है।
- सक्रिय तरल पदार्थ:[11] ध्रुवीय संरेखण अन्तः क्रिया के माध्यम से अन्तः क्रिया करने वाले कणों की संख्या के स्थूल भौतिक गुणों की जांच जैव-एलजीसीए मॉडल का उपयोग करके की गई थी। यह पाया गया कि प्रारंभिक कण घनत्व और अंतःक्रिया शक्ति बढ़ने से दूसरे क्रम के चरण में सजातीय, अव्यवस्थित अवस्था से क्रमबद्ध, प्रतिरूपित, गतिमान अवस्था में संक्रमण होता है।
- महामारी विज्ञान:[12] स्थानिक एसआईआर मॉडल जैव-एलजीसीए मॉडल का उपयोग विभिन्न टीकाकरण रणनीतियों के प्रभाव और गैर-स्थानिक मॉडल के साथ स्थानिक महामारी का अनुमान लगाने के प्रभाव का अध्ययन करने के लिए किया गया था। उन्होंने पाया कि बाधा-प्रकार की टीकाकरण कार्यनीतियाँ स्थानिक रूप से समान टीकाकरण रणनीतियों की तुलना में बहुत अधिक प्रभावी हैं। इसके अतिरिक्त, उन्होंने पाया कि गैर-स्थानिक मॉडल संक्रमण की दर को बहुत अधिक समझते हैं।
- कोशिका जैमिंग (भौतिकी):[13] स्तन कैंसर में रूप-परिवर्तन व्यवहार का अध्ययन करने के लिए इन विट्रो और जैव-एलजीसीए मॉडल का उपयोग किया गया था। जैव-एलजीसीए मॉडल से ज्ञात हुआ कि विक्षेपी अलग-अलग व्यवहार प्रदर्शित कर सकता है, जैसे कि यादृच्छिक गैस जैसा, जाम ठोस जैसा, और सहसंबद्ध तरल पदार्थ जैसी स्थिति, जो कोशिकाओं के बीच चिपकने के स्तर, ईसीएम घनत्व और कोशिका-ईसीएम अन्तः क्रिया पर निर्भर करता है।
संदर्भ
- ↑ Deutsch, Andreas; Nava-Sedeño, Josué Manik; Syga, Simon; Hatzikirou, Haralampos (2021-06-15). "BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration". PLOS Computational Biology (in English). 17 (6): e1009066. Bibcode:2021PLSCB..17E9066D. doi:10.1371/journal.pcbi.1009066. ISSN 1553-7358. PMC 8232544. PMID 34129639.
- ↑ Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja (2017-08-11). "Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model". Biology Direct. 12 (1): 18. doi:10.1186/s13062-017-0188-z. ISSN 1745-6150. PMC 5553611. PMID 28800767.
- ↑ 3.0 3.1 Böttger, Katrin; Hatzikirou, Haralambos; Voss-Böhme, Anja; Cavalcanti-Adam, Elisabetta Ada; Herrero, Miguel A.; Deutsch, Andreas (2015-09-03). Alber, Mark S (ed.). "ट्यूमर की शुरुआत और दृढ़ता के लिए एक उभरता हुआ एली प्रभाव महत्वपूर्ण है". PLOS Computational Biology (in English). 11 (9): e1004366. Bibcode:2015PLSCB..11E4366B. doi:10.1371/journal.pcbi.1004366. ISSN 1553-7358. PMC 4559422. PMID 26335202.
- ↑ 4.0 4.1 4.2 "Mathematical Modeling of Biological Pattern Formation", Cellular Automaton Modeling of Biological Pattern Formation, Modeling and Simulation in Science, Engineering and Technology, Boston, MA: Birkhäuser Boston, pp. 45–56, 2005, doi:10.1007/0-8176-4415-6_3, ISBN 978-0-8176-4281-5, retrieved 2021-05-25
- ↑ Nava-Sedeño, J. M.; Hatzikirou, H.; Peruani, F.; Deutsch, A. (2017-02-27). "एकल और सामूहिक सेल प्रवासन के लिए भौतिक लैंग्विन समीकरण मॉडल से सेलुलर ऑटोमेटन नियम निकालना". Journal of Mathematical Biology. 75 (5): 1075–1100. doi:10.1007/s00285-017-1106-9. ISSN 0303-6812. PMID 28243720. S2CID 32456636.
- ↑ Nava-Sedeño, J. M.; Hatzikirou, H.; Klages, R.; Deutsch, A. (2017-12-05). "Cellular automaton models for time-correlated random walks: derivation and analysis". Scientific Reports. 7 (1): 16952. arXiv:1802.04201. Bibcode:2017NatSR...716952N. doi:10.1038/s41598-017-17317-x. ISSN 2045-2322. PMC 5717221. PMID 29209065.
- ↑ Bussemaker, Harmen J. (1996-02-01). "Analysis of a pattern-forming lattice-gas automaton: Mean-field theory and beyond". Physical Review E. 53 (2): 1644–1661. Bibcode:1996PhRvE..53.1644B. doi:10.1103/physreve.53.1644. ISSN 1063-651X. PMID 9964425.
- ↑ Ovaskainen, Otso; Somervuo, Panu; Finkelshtein, Dmitri (2020-10-28). "एजेंट-आधारित मॉडल से उभरने वाले स्थानिक-लौकिक सहसंबंधों की भविष्यवाणी के लिए एक सामान्य गणितीय विधि". Journal of the Royal Society Interface. 17 (171): 20200655. doi:10.1098/rsif.2020.0655. PMC 7653394. PMID 33109018.
- ↑ Dirkse, Anne; Golebiewska, Anna; Buder, Thomas; Nazarov, Petr V.; Muller, Arnaud; Poovathingal, Suresh; Brons, Nicolaas H. C.; Leite, Sonia; Sauvageot, Nicolas; Sarkisjan, Dzjemma; Seyfrid, Mathieu (2019-04-16). "ग्लियोब्लास्टोमा में स्टेम सेल से जुड़ी विविधता सूक्ष्म वातावरण द्वारा आकारित आंतरिक ट्यूमर प्लास्टिसिटी के परिणामस्वरूप होती है". Nature Communications (in English). 10 (1): 1787. Bibcode:2019NatCo..10.1787D. doi:10.1038/s41467-019-09853-z. ISSN 2041-1723. PMC 6467886. PMID 30992437.
- ↑ Mente, Carsten; Prade, Ina; Brusch, Lutz; Breier, Georg; Deutsch, Andreas (2010-10-01). "जैविक जाली-गैस सेलुलर ऑटोमेटन मॉडल के लिए एक नवीन ग्रेडिएंट-आधारित अनुकूलन विधि के साथ पैरामीटर अनुमान". Journal of Mathematical Biology (in English). 63 (1): 173–200. doi:10.1007/s00285-010-0366-4. ISSN 0303-6812. PMID 20886214. S2CID 12404555.
- ↑ Bussemaker, Harmen J.; Deutsch, Andreas; Geigant, Edith (1997-06-30). "सामूहिक गति के लिए सेलुलर ऑटोमेटन मॉडल में एक गतिशील चरण संक्रमण का माध्य-क्षेत्र विश्लेषण". Physical Review Letters (in English). 78 (26): 5018–5021. arXiv:physics/9706008. Bibcode:1997PhRvL..78.5018B. doi:10.1103/PhysRevLett.78.5018. ISSN 0031-9007. S2CID 45979152.
- ↑ Fuks, Henryk; Lawniczak, Anna T. (2001). "महामारी के स्थानिक प्रसार के लिए व्यक्तिगत-आधारित जाली मॉडल". Discrete Dynamics in Nature and Society (in English). 6 (3): 191–200. doi:10.1155/s1026022601000206.
- ↑ Ilina, Olga; Gritsenko, Pavlo G.; Syga, Simon; Lippoldt, Jürgen; La Porta, Caterina A. M.; Chepizhko, Oleksandr; Grosser, Steffen; Vullings, Manon; Bakker, Gert-Jan; Starruß, Jörn; Bult, Peter (2020-08-24). "Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion". Nature Cell Biology (in English). 22 (9): 1103–1115. doi:10.1038/s41556-020-0552-6. ISSN 1476-4679. PMC 7502685. PMID 32839548.
बाह्य संबंध
- जैव-एलजीसीए Simulator - वैयक्तिकृत पैरामीटर मानों के साथ प्राथमिक अन्तःक्रिया वाला एक ऑनलाइन सिम्युलेटर।
- जैव-एलजीसीए Python Package - BIO-LGCA मॉडल सिमुलेशन लागू करने के लिए एक विवृत स्रोत पायथन पैकेज।