विलक्षण विक्षोभ: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Concept in mathematics}} | {{Short description|Concept in mathematics}} | ||
गणित में, एक विलक्षण अस्तव्यस्तता | गणित में, एक '''विलक्षण अस्तव्यस्तता''' समस्या एक ऐसी समस्या है जिसमें एक छोटा पैरामीटर होता है जिस पैरामीटर मान को शून्य पर समूह करके अनुमानित नहीं किया जा सकता है। अधिक त्रुटिहीन रूप से, समाधान को [[स्पर्शोन्मुख विस्तार]] द्वारा समान रूप से अनुमानित नहीं किया जा सकता है | ||
:<math>\varphi(x) \approx \sum_{n=0}^N \delta_n(\varepsilon) \psi_n(x) \,</math> | :<math>\varphi(x) \approx \sum_{n=0}^N \delta_n(\varepsilon) \psi_n(x) \,</math> | ||
जैसा <math>\varepsilon \to 0</math>. यहाँ <math>\varepsilon</math> समस्या का छोटा पैरामीटर है और <math>\delta_n(\varepsilon)</math> के कार्यों का एक क्रम है <math>\varepsilon</math> बढ़ते क्रम का, जैसे <math>\delta_n(\varepsilon) = \varepsilon^n</math>. यह [[गड़बड़ी सिद्धांत|अस्तव्यस्तता | जैसा <math>\varepsilon \to 0</math>. यहाँ <math>\varepsilon</math> समस्या का छोटा पैरामीटर है और <math>\delta_n(\varepsilon)</math> के कार्यों का एक क्रम है <math>\varepsilon</math> बढ़ते क्रम का, जैसे <math>\delta_n(\varepsilon) = \varepsilon^n</math>. यह [[गड़बड़ी सिद्धांत|अस्तव्यस्तता सिद्धांत]] समस्याओं के विपरीत है, जिसके लिए इस फॉर्म का एक समान अनुमान प्राप्त किया जा सकता है। एकल रूप से परेशान समस्याओं को सामान्यतः अनेक पैमानों पर संचालित होने वाली गतिशीलता द्वारा चित्रित किया जाता है। एकवचन अस्तव्यस्तता के अनेक वर्ग नीचे उल्लिखित हैं। | ||
एकवचन | शब्द "एकवचन गड़बड़ी" 1940 के दशक में [[कर्ट ओटो फ्रेडरिक्स]] और वोल्फगैंग आर. वासो द्वारा गढ़ा गया था ।<ref>{{Citation | ||
1940 के दशक में [[कर्ट ओटो फ्रेडरिक्स]] और वोल्फगैंग आर. वासो द्वारा गढ़ा | |||
| last=Wasow | | last=Wasow | ||
| first=Wolfgang R. | | first=Wolfgang R. | ||
Line 16: | Line 14: | ||
|page = PDF page 5 | |page = PDF page 5 | ||
|url=https://apps.dtic.mil/sti/pdfs/ADA103857.pdf}}</ref> | |url=https://apps.dtic.mil/sti/pdfs/ADA103857.pdf}}</ref> | ||
== विश्लेषण | == विश्लेषण की विधियाँ == | ||
एक परेशान समस्या जिसका समाधान संपूर्ण समस्या क्षेत्र पर, चाहे स्थान हो या समय, एक एकल स्पर्शोन्मुख विस्तार द्वारा | एक परेशान समस्या जिसका समाधान संपूर्ण समस्या क्षेत्र पर अनुमानित किया जा सकता है, चाहे वह स्थान हो या समय, एक एकल [[स्पर्शोन्मुख विस्तार द्वारा नियमित गड़बड़ी]] होती है । अधिकांशतः अनुप्रयोगों में, नियमित रूप से परेशान समस्या का एक स्वीकार्य अनुमान केवल छोटे पैरामीटर को प्रतिस्थापित करके पाया जाता है <math>\varepsilon</math> समस्या कथन में हर स्थान शून्य। यह विस्तार के केवल पहले पद को लेने से मेल खाता है, जिससे एक अनुमान प्राप्त होता है जो संभवतः धीरे-धीरे सही समाधान तक पहुंचता है। <math>\varepsilon</math> घट जाती है. एक विलक्षण अस्तव्यस्तता वाली समस्या का समाधान इस तरह से अनुमानित नहीं किया जा सकता है: जैसा कि नीचे दिए गए उदाहरणों में देखा गया है, एक विलक्षण अस्तव्यस्तता सामान्यतः तब होती है जब किसी समस्या का छोटा पैरामीटर उसके उच्चतम ऑपरेटर को गुणा करता है। इस प्रकार भोलेपन से पैरामीटर को शून्य मान लेने से समस्या की प्रकृति ही बदल जाती है। विभेदक समीकरणों के स्थितियों में, सीमा शर्तों को संतुष्ट नहीं किया जा सकता है; बीजगणितीय समीकरणों में, समाधानों की संभावित संख्या कम हो जाती है। | ||
गणितज्ञों, भौतिकविदों और अन्य शोधकर्ताओं के लिए विलक्षण अस्तव्यस्तता | गणितज्ञों, भौतिकविदों और अन्य शोधकर्ताओं के लिए विलक्षण अस्तव्यस्तता सिद्धांत अन्वेषण का एक समृद्ध और चालू क्षेत्र है। इस क्षेत्र में समस्याओं से निपटने के लिए उपयोग की जाने वाली विधियाँ अनेक हैं। इनमें से अधिक मूलभूत में स्थानिक समस्याओं के लिए [[मिलान किए गए एसिम्प्टोटिक विस्तार]] और [[डब्ल्यूकेबी सन्निकटन]] की विधि और समय में, [[पोनकारे-लिंडस्टेड विधि]], और [[आवधिक औसत]] सम्मिलित हैं। | ||
एकल अस्तव्यस्तता | एकल अस्तव्यस्तता समस्याओं को हल करने के लिए संख्यात्मक विधि भी बहुत लोकप्रिय हैं।<ref name="WCW10">{{cite journal|last=Wang|first=Yingwei|last2=Chen|first2=Suqin|last3=Wu|first3=Xionghua|date=2010|title=पैरामीटरयुक्त एकवचन गड़बड़ी समस्याओं के एक वर्ग को हल करने के लिए एक तर्कसंगत वर्णक्रमीय संयोजन विधि|journal=Journal of Computational and Applied Mathematics|volume=233|issue=10|pages=2652–2660|doi=10.1016/j.cam.2009.11.011|doi-access=free}}</ref> | ||
ओडीई और पीडीई में एकल अस्तव्यस्तता | ओडीई और पीडीई में एकल अस्तव्यस्तता पर पुस्तकों के लिए, उदाहरण के लिए होम्स, पर्टर्बेशन विधियों का परिचय, देखें<ref name="holmes">Holmes, Mark H. ''Introduction to Perturbation Methods''. Springer, 1995. {{ISBN|978-0-387-94203-2}}</ref> हिंच, पर्टर्बेशन विधियां<ref name="hinch">Hinch, E. J. ''Perturbation methods''. Cambridge University Press, 1991. {{ISBN|978-0-521-37897-0}}</ref> या कार्ल एम. बेंडर और [[स्टीवन ओर्सज़ैग]], वैज्ञानिकों और इंजीनियरों के लिए उन्नत गणितीय विधियों को देखें ।<ref name="BO">Bender, Carl M. and Orszag, Steven A. ''Advanced Mathematical Methods for Scientists and Engineers''. Springer, 1999. {{ISBN|978-0-387-98931-0}}</ref> | ||
== एकवचन विक्षुब्ध समस्याओं के उदाहरण == | == एकवचन विक्षुब्ध समस्याओं के उदाहरण == | ||
नीचे वर्णित प्रत्येक उदाहरण दिखाता है कि कैसे एक अनुभवहीन अस्तव्यस्तता | नीचे वर्णित प्रत्येक उदाहरण दिखाता है कि कैसे एक अनुभवहीन अस्तव्यस्तता विश्लेषण, जो मानता है कि समस्या एकवचन के अतिरिक्त नियमित है, विफल हो जाएगी। कुछ लोग दिखाते हैं कि समस्या को अधिक परिष्कृत एकल तरीकों से कैसे हल किया जा सकता है। | ||
=== साधारण अंतर समीकरणों में लुप्त होने वाले गुणांक === | === साधारण अंतर समीकरणों में लुप्त होने वाले गुणांक === | ||
Line 39: | Line 37: | ||
=== समय में उदाहरण === | === समय में उदाहरण === | ||
विद्युत चालित रोबोट मैनिपुलेटर में धीमी यांत्रिक गतिशीलता और तेज़ विद्युत गतिशीलता हो सकती है, इस प्रकार दो समय पैमाने प्रदर्शित होते हैं। ऐसे स्थितियों में, हम पद्धति को दो उपप्रणालियों में विभाजित कर सकते हैं, एक तेज गतिकी के अनुरूप और दूसरा धीमी गतिकी के अनुरूप, और फिर उनमें से प्रत्येक के लिए भिन्न से नियंत्रक डिजाइन कर सकते हैं। एक विलक्षण अस्तव्यस्तता | विद्युत चालित रोबोट मैनिपुलेटर में धीमी यांत्रिक गतिशीलता और तेज़ विद्युत गतिशीलता हो सकती है, इस प्रकार दो समय पैमाने प्रदर्शित होते हैं। ऐसे स्थितियों में, हम पद्धति को दो उपप्रणालियों में विभाजित कर सकते हैं, एक तेज गतिकी के अनुरूप और दूसरा धीमी गतिकी के अनुरूप, और फिर उनमें से प्रत्येक के लिए भिन्न से नियंत्रक डिजाइन कर सकते हैं। एक विलक्षण अस्तव्यस्तता विधि के माध्यम से, हम इन दो उपप्रणालियों को एक-दूसरे से स्वतंत्र बना सकते हैं, जिससे नियंत्रण समस्या सरल हो जाएगी। | ||
समीकरणों के निम्नलिखित समूह द्वारा वर्णित प्रणाली के एक वर्ग पर विचार करें: | समीकरणों के निम्नलिखित समूह द्वारा वर्णित प्रणाली के एक वर्ग पर विचार करें: | ||
Line 46: | Line 44: | ||
:<math>\varepsilon\dot{x}_2 = f_2(x_1,x_2) + \varepsilon g_2(x_1,x_2,\varepsilon), \, </math> | :<math>\varepsilon\dot{x}_2 = f_2(x_1,x_2) + \varepsilon g_2(x_1,x_2,\varepsilon), \, </math> | ||
:<math>x_1(0) = a_1, x_2(0) = a_2, \,</math> | :<math>x_1(0) = a_1, x_2(0) = a_2, \,</math> | ||
साथ <math>0<\varepsilon \ll 1</math>. दूसरा समीकरण इंगित करता है कि की गतिशीलता <math>x_2</math> की तुलना में बहुत तेज़ है <math>x_1</math>. और प्रमेय युगल [[एंड्री निकोलाइविच तिखोनोव]] है<ref name=Tikhonov>Tikhonov, A. N. (1952), "Systems of differential equations containing a small parameter multiplying the derivative" (in Russian), ''Mat. Sb.'' 31 (73), pp. 575–586</ref> बताता है कि, पद्धति पर सही स्थितियों | साथ <math>0<\varepsilon \ll 1</math>. दूसरा समीकरण इंगित करता है कि की गतिशीलता <math>x_2</math> की तुलना में बहुत तेज़ है <math>x_1</math>. और प्रमेय युगल [[एंड्री निकोलाइविच तिखोनोव]] है<ref name=Tikhonov>Tikhonov, A. N. (1952), "Systems of differential equations containing a small parameter multiplying the derivative" (in Russian), ''Mat. Sb.'' 31 (73), pp. 575–586</ref> बताता है कि, पद्धति पर सही स्थितियों के साथ, यह प्रारंभ में और बहुत जल्दी समीकरणों के समाधान का अनुमान लगाएगा | ||
:<math>\dot{x}_1 = f_1(x_1,x_2), \,</math> | :<math>\dot{x}_1 = f_1(x_1,x_2), \,</math> | ||
Line 63: | Line 61: | ||
=== बीजगणितीय समीकरण === | === बीजगणितीय समीकरण === | ||
बहुपद के किसी फलन के सभी मूल ज्ञात करने की समस्या पर विचार करें <math>p(x) = \varepsilon x^3-x^2+1</math>. सीमा में <math>\varepsilon\to 0</math>, यह [[घन फलन]] द्विघात फलन में परिवर्तित हो जाता है <math>1 - x^2</math> जड़ों के साथ <math>x = \pm 1</math>. एक नियमित अस्तव्यस्तता | बहुपद के किसी फलन के सभी मूल ज्ञात करने की समस्या पर विचार करें <math>p(x) = \varepsilon x^3-x^2+1</math>. सीमा में <math>\varepsilon\to 0</math>, यह [[घन फलन]] द्विघात फलन में परिवर्तित हो जाता है <math>1 - x^2</math> जड़ों के साथ <math>x = \pm 1</math>. एक नियमित अस्तव्यस्तता श्रृंखला को प्रतिस्थापित करना | ||
:<math>x(\varepsilon) = x_0 + \varepsilon x_1 + \varepsilon^2 x_2+\cdots</math> | :<math>x(\varepsilon) = x_0 + \varepsilon x_1 + \varepsilon^2 x_2+\cdots</math> | ||
Line 69: | Line 67: | ||
:<math>x(\varepsilon) = \pm 1 + \frac{1}{2}\varepsilon \pm \frac{5}{8}\varepsilon^2+\cdots .</math> | :<math>x(\varepsilon) = \pm 1 + \frac{1}{2}\varepsilon \pm \frac{5}{8}\varepsilon^2+\cdots .</math> | ||
अन्य मूल को खोजने के लिए, एकवचन अस्तव्यस्तता | अन्य मूल को खोजने के लिए, एकवचन अस्तव्यस्तता विश्लेषण का उपयोग किया जाना चाहिए। फिर हमें इस तथ्य से निपटना होगा कि जब हम अनुमति देते हैं तब समीकरण द्विघात में बदल जाता है <math>\varepsilon</math> शून्य की ओर प्रवृत्त होते हैं, उस सीमा में जड़ों में से एक अनंत तक चली जाती है। इस जड़ को परेशान करने वाले विश्लेषण के लिए अदृश्य होने से रोकने के लिए, हमें पुनर्मूल्यांकन करना होगा <math>x</math> इस भागने वाले रूट पर नज़र रखने के लिए जिससे कि पुनर्स्केल किए गए चर के संदर्भ में, यह बच न जाए। हम एक पुनर्स्केल किए गए वैरिएबल को परिभाषित करते हैं <math>y= x \varepsilon^{\nu}</math> जहां प्रतिपादक <math>\nu</math> इस प्रकार चुना जाएगा कि हम इतनी तेजी से पुनः स्केल करें कि रूट एक सीमित मान पर हो <math>y</math> की सीमा में <math>\varepsilon</math> शून्य तक, किन्तु इस तरह कि यह शून्य तक न गिरे जहां अन्य दो जड़ें समाप्त हो जाएंगी। के अनुसार <math>y</math> हमारे पास है | ||
:<math>y^3 -\varepsilon^{\nu-1}y^2 + \varepsilon^{3\nu - 1} = 0 .</math> | :<math>y^3 -\varepsilon^{\nu-1}y^2 + \varepsilon^{3\nu - 1} = 0 .</math> | ||
हम इसके लिए देख सकते हैं <math>\nu < 1</math> | हम इसके लिए देख सकते हैं <math>\nu < 1</math> <math>y^3</math> निम्न डिग्री शर्तों का प्रभुत्व है, जबकि पर <math>\nu =1</math> यह उतना ही प्रभावशाली हो जाता है <math>y^2</math> जबकि वह दोनों शेष पद पर हावी हैं। यह बिंदु जहां उच्चतम ऑर्डर अवधि वर्तमान सीमा में गायब नहीं होगी <math>\varepsilon</math> किसी अन्य पद पर समान रूप से प्रभावी होकर शून्य हो जाना, महत्वपूर्ण अध:पतन कहलाता है; इससे शेष रूट को दृश्यमान बनाने के लिए सही रीस्केलिंग प्राप्त होती है। यह विकल्प उपज देता है | ||
:<math>y^3 -y^2 + \varepsilon^2 = 0 .</math> | :<math>y^3 -y^2 + \varepsilon^2 = 0 .</math> | ||
अस्तव्यस्तता | अस्तव्यस्तता श्रृंखला को प्रतिस्थापित करना | ||
:<math>y(\varepsilon) = y_0 + \varepsilon^2 y_1 + \varepsilon^4 y_2+\cdots</math> | :<math>y(\varepsilon) = y_0 + \varepsilon^2 y_1 + \varepsilon^4 y_2+\cdots</math> |
Revision as of 11:06, 30 November 2023
गणित में, एक विलक्षण अस्तव्यस्तता समस्या एक ऐसी समस्या है जिसमें एक छोटा पैरामीटर होता है जिस पैरामीटर मान को शून्य पर समूह करके अनुमानित नहीं किया जा सकता है। अधिक त्रुटिहीन रूप से, समाधान को स्पर्शोन्मुख विस्तार द्वारा समान रूप से अनुमानित नहीं किया जा सकता है
जैसा . यहाँ समस्या का छोटा पैरामीटर है और के कार्यों का एक क्रम है बढ़ते क्रम का, जैसे . यह अस्तव्यस्तता सिद्धांत समस्याओं के विपरीत है, जिसके लिए इस फॉर्म का एक समान अनुमान प्राप्त किया जा सकता है। एकल रूप से परेशान समस्याओं को सामान्यतः अनेक पैमानों पर संचालित होने वाली गतिशीलता द्वारा चित्रित किया जाता है। एकवचन अस्तव्यस्तता के अनेक वर्ग नीचे उल्लिखित हैं।
शब्द "एकवचन गड़बड़ी" 1940 के दशक में कर्ट ओटो फ्रेडरिक्स और वोल्फगैंग आर. वासो द्वारा गढ़ा गया था ।[1]
विश्लेषण की विधियाँ
एक परेशान समस्या जिसका समाधान संपूर्ण समस्या क्षेत्र पर अनुमानित किया जा सकता है, चाहे वह स्थान हो या समय, एक एकल स्पर्शोन्मुख विस्तार द्वारा नियमित गड़बड़ी होती है । अधिकांशतः अनुप्रयोगों में, नियमित रूप से परेशान समस्या का एक स्वीकार्य अनुमान केवल छोटे पैरामीटर को प्रतिस्थापित करके पाया जाता है समस्या कथन में हर स्थान शून्य। यह विस्तार के केवल पहले पद को लेने से मेल खाता है, जिससे एक अनुमान प्राप्त होता है जो संभवतः धीरे-धीरे सही समाधान तक पहुंचता है। घट जाती है. एक विलक्षण अस्तव्यस्तता वाली समस्या का समाधान इस तरह से अनुमानित नहीं किया जा सकता है: जैसा कि नीचे दिए गए उदाहरणों में देखा गया है, एक विलक्षण अस्तव्यस्तता सामान्यतः तब होती है जब किसी समस्या का छोटा पैरामीटर उसके उच्चतम ऑपरेटर को गुणा करता है। इस प्रकार भोलेपन से पैरामीटर को शून्य मान लेने से समस्या की प्रकृति ही बदल जाती है। विभेदक समीकरणों के स्थितियों में, सीमा शर्तों को संतुष्ट नहीं किया जा सकता है; बीजगणितीय समीकरणों में, समाधानों की संभावित संख्या कम हो जाती है।
गणितज्ञों, भौतिकविदों और अन्य शोधकर्ताओं के लिए विलक्षण अस्तव्यस्तता सिद्धांत अन्वेषण का एक समृद्ध और चालू क्षेत्र है। इस क्षेत्र में समस्याओं से निपटने के लिए उपयोग की जाने वाली विधियाँ अनेक हैं। इनमें से अधिक मूलभूत में स्थानिक समस्याओं के लिए मिलान किए गए एसिम्प्टोटिक विस्तार और डब्ल्यूकेबी सन्निकटन की विधि और समय में, पोनकारे-लिंडस्टेड विधि, और आवधिक औसत सम्मिलित हैं।
एकल अस्तव्यस्तता समस्याओं को हल करने के लिए संख्यात्मक विधि भी बहुत लोकप्रिय हैं।[2]
ओडीई और पीडीई में एकल अस्तव्यस्तता पर पुस्तकों के लिए, उदाहरण के लिए होम्स, पर्टर्बेशन विधियों का परिचय, देखें[3] हिंच, पर्टर्बेशन विधियां[4] या कार्ल एम. बेंडर और स्टीवन ओर्सज़ैग, वैज्ञानिकों और इंजीनियरों के लिए उन्नत गणितीय विधियों को देखें ।[5]
एकवचन विक्षुब्ध समस्याओं के उदाहरण
नीचे वर्णित प्रत्येक उदाहरण दिखाता है कि कैसे एक अनुभवहीन अस्तव्यस्तता विश्लेषण, जो मानता है कि समस्या एकवचन के अतिरिक्त नियमित है, विफल हो जाएगी। कुछ लोग दिखाते हैं कि समस्या को अधिक परिष्कृत एकल तरीकों से कैसे हल किया जा सकता है।
साधारण अंतर समीकरणों में लुप्त होने वाले गुणांक
विभेदक समीकरण जिनमें एक छोटा पैरामीटर होता है जो उच्चतम क्रम के शब्द को पूर्वगुणित करता है, सामान्यतः सीमा परतों को प्रदर्शित करता है, जिससे कि समाधान दो भिन्न-भिन्न पैमानों में विकसित हो। उदाहरण के लिए, सीमा मूल्य समस्या पर विचार करें
इसका समाधान कब नीचे दिखाया गया ठोस वक्र है। ध्यान दें कि मूल बिंदु के पास समाधान तेजी से बदलता है। यदि हम भोलेपन से समूह करते हैं , हमें नीचे बाहरी लेबल वाला समाधान मिलेगा जो सीमा परत को मॉडल नहीं करता है, जिसके लिए x शून्य के करीब है। समान रूप से मान्य सन्निकटन कैसे प्राप्त करें, यह दिखाने वाले अधिक विवरण के लिए, मिलान किए गए स्पर्शोन्मुख विस्तार की विधि देखें।
समय में उदाहरण
विद्युत चालित रोबोट मैनिपुलेटर में धीमी यांत्रिक गतिशीलता और तेज़ विद्युत गतिशीलता हो सकती है, इस प्रकार दो समय पैमाने प्रदर्शित होते हैं। ऐसे स्थितियों में, हम पद्धति को दो उपप्रणालियों में विभाजित कर सकते हैं, एक तेज गतिकी के अनुरूप और दूसरा धीमी गतिकी के अनुरूप, और फिर उनमें से प्रत्येक के लिए भिन्न से नियंत्रक डिजाइन कर सकते हैं। एक विलक्षण अस्तव्यस्तता विधि के माध्यम से, हम इन दो उपप्रणालियों को एक-दूसरे से स्वतंत्र बना सकते हैं, जिससे नियंत्रण समस्या सरल हो जाएगी।
समीकरणों के निम्नलिखित समूह द्वारा वर्णित प्रणाली के एक वर्ग पर विचार करें:
साथ . दूसरा समीकरण इंगित करता है कि की गतिशीलता की तुलना में बहुत तेज़ है . और प्रमेय युगल एंड्री निकोलाइविच तिखोनोव है[6] बताता है कि, पद्धति पर सही स्थितियों के साथ, यह प्रारंभ में और बहुत जल्दी समीकरणों के समाधान का अनुमान लगाएगा
समय के कुछ अंतराल पर और वह, जैसे शून्य की ओर घटने पर, पद्धति उसी अंतराल में समाधान के अधिक करीब पहुंच जाएगा।[7]
अंतरिक्ष में उदाहरण
द्रव यांत्रिकी में, थोड़े चिपचिपे तरल पदार्थ के गुण एक संकीर्ण सीमा परत के बाहर और अंदर नाटकीय रूप से भिन्न होते हैं। इस प्रकार द्रव अनेक स्थानिक पैमाने प्रदर्शित करता है।
प्रतिक्रिया-प्रसार प्रणाली जिसमें एक अभिकर्मक दूसरे की तुलना में बहुत धीमी गति से फैलता है, उन क्षेत्रों द्वारा चिह्नित पैटर्न का निर्माण कर सकता है जहां एक अभिकर्मक उपस्तिथ है, और उन क्षेत्रों में जहां यह नहीं है, उनके मध्य तेज बदलाव के साथ। पारिस्थितिकी में, शिकारी-शिकार मॉडल जैसे
कहाँ शिकार है और शिकारी है, ऐसे पैटर्न प्रदर्शित करते हुए दिखाया गया है।[8]
बीजगणितीय समीकरण
बहुपद के किसी फलन के सभी मूल ज्ञात करने की समस्या पर विचार करें . सीमा में , यह घन फलन द्विघात फलन में परिवर्तित हो जाता है जड़ों के साथ . एक नियमित अस्तव्यस्तता श्रृंखला को प्रतिस्थापित करना
समीकरण में और की समान शक्तियों को सामान्तर करना केवल इन दो जड़ों में सुधार उत्पन्न होता है:
अन्य मूल को खोजने के लिए, एकवचन अस्तव्यस्तता विश्लेषण का उपयोग किया जाना चाहिए। फिर हमें इस तथ्य से निपटना होगा कि जब हम अनुमति देते हैं तब समीकरण द्विघात में बदल जाता है शून्य की ओर प्रवृत्त होते हैं, उस सीमा में जड़ों में से एक अनंत तक चली जाती है। इस जड़ को परेशान करने वाले विश्लेषण के लिए अदृश्य होने से रोकने के लिए, हमें पुनर्मूल्यांकन करना होगा इस भागने वाले रूट पर नज़र रखने के लिए जिससे कि पुनर्स्केल किए गए चर के संदर्भ में, यह बच न जाए। हम एक पुनर्स्केल किए गए वैरिएबल को परिभाषित करते हैं जहां प्रतिपादक इस प्रकार चुना जाएगा कि हम इतनी तेजी से पुनः स्केल करें कि रूट एक सीमित मान पर हो की सीमा में शून्य तक, किन्तु इस तरह कि यह शून्य तक न गिरे जहां अन्य दो जड़ें समाप्त हो जाएंगी। के अनुसार हमारे पास है
हम इसके लिए देख सकते हैं निम्न डिग्री शर्तों का प्रभुत्व है, जबकि पर यह उतना ही प्रभावशाली हो जाता है जबकि वह दोनों शेष पद पर हावी हैं। यह बिंदु जहां उच्चतम ऑर्डर अवधि वर्तमान सीमा में गायब नहीं होगी किसी अन्य पद पर समान रूप से प्रभावी होकर शून्य हो जाना, महत्वपूर्ण अध:पतन कहलाता है; इससे शेष रूट को दृश्यमान बनाने के लिए सही रीस्केलिंग प्राप्त होती है। यह विकल्प उपज देता है
अस्तव्यस्तता श्रृंखला को प्रतिस्थापित करना
उत्पन्न
फिर हम मूल में रुचि रखते हैं ; डबल रूट पर वह दो जड़ें हैं जिन्हें हमने उस अनंत पुनर्स्केलिंग की सीमा में शून्य तक ढहने के ऊपर पाया है। श्रृंखला के पहले कुछ पदों की गणना करने पर परिणाम प्राप्त होता है
संदर्भ
- ↑ Wasow, Wolfgang R. (1981), "ON BOUNDARY LAYER PROBLEMS IN THE THEORY OF ORDINARY DIFFERENTIAL EQUATIONS" (PDF), Mathematics Research Center, University of Wisconsin-Madison, Technical Summary Report, 2244: PDF page 5
- ↑ Wang, Yingwei; Chen, Suqin; Wu, Xionghua (2010). "पैरामीटरयुक्त एकवचन गड़बड़ी समस्याओं के एक वर्ग को हल करने के लिए एक तर्कसंगत वर्णक्रमीय संयोजन विधि". Journal of Computational and Applied Mathematics. 233 (10): 2652–2660. doi:10.1016/j.cam.2009.11.011.
- ↑ Holmes, Mark H. Introduction to Perturbation Methods. Springer, 1995. ISBN 978-0-387-94203-2
- ↑ Hinch, E. J. Perturbation methods. Cambridge University Press, 1991. ISBN 978-0-521-37897-0
- ↑ Bender, Carl M. and Orszag, Steven A. Advanced Mathematical Methods for Scientists and Engineers. Springer, 1999. ISBN 978-0-387-98931-0
- ↑ Tikhonov, A. N. (1952), "Systems of differential equations containing a small parameter multiplying the derivative" (in Russian), Mat. Sb. 31 (73), pp. 575–586
- ↑ Verhulst, Ferdinand. Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, 2005. ISBN 0-387-22966-3.
- ↑ Owen, M. R. and Lewis, M. A. "How Predation can Slow, Stop, or Reverse a Prey Invasion", Bulletin of Mathematical Biology (2001) 63, 655-684.