वोटर मॉडल: Difference between revisions
No edit summary |
No edit summary |
||
Line 20: | Line 20: | ||
===क्लस्टरिंग और सह-अस्तित्व=== | ===क्लस्टरिंग और सह-अस्तित्व=== | ||
रुचि मॉडलों के सीमित व्यवहार में हैl चूँकि किसी साइट की फ्लिप दरें उसके निकटवर्ती पर निर्भर करती हैं, इसलिए यह स्पष्ट है कि जब सभी | क्लस्टरिंग और सह-अस्तित्व, रुचि मॉडलों के सीमित व्यवहार में हैl चूँकि किसी साइट की फ्लिप दरें उसके निकटवर्ती पर निर्भर करती हैं, इसलिए यह स्पष्ट है कि जब सभी साइट समान मूल्य लेती हैं, तो पूरी प्रणाली सदैव के लिए बदलना बंद कर देती है। इसलिए, एक वोटर मॉडल में दो साधारण चरम स्थिर वितरण होते हैं, बिंदु-द्रव्यमान <math>\scriptstyle \delta_0 </math> और <math>\scriptstyle \delta_1 </math> पर <math>\scriptstyle \eta \equiv 0 </math> या <math>\scriptstyle \eta\equiv 1 </math> क्रमशः, जो सर्वसम्मति का प्रतिनिधित्व करते हैं। चर्चा का मुख्य प्रश्न यह है कि क्या अन्य भी हैं, जो संतुलन में विभिन्न के विचार सह-अस्तित्व का प्रतिनिधित्व करते है। ऐसा कहा जाता है कि '''सह-अस्तित्व''' तब होता है जब कोई स्थिर वितरण होता है जो अनंत 0 और 1 के साथ कॉन्फ़िगरेशन पर ध्यान केंद्रित करता है। दूसरी ओर, यदि सभी के लिए <math>\scriptstyle x,y\in Z^d </math> और फिर सभी प्रारंभिक कॉन्फ़िगरेशन | ||
:<math> | :<math> | ||
\lim_{t\rightarrow \infty}P[\eta_t(x)\neq\eta_t(y)]=0 | \lim_{t\rightarrow \infty}P[\eta_t(x)\neq\eta_t(y)]=0 | ||
Line 31: | Line 31: | ||
===मॉडल विवरण=== | ===मॉडल विवरण=== | ||
यह अनुभाग बुनियादी वोटर | यह अनुभाग बुनियादी वोटर मॉडल में से एक, रैखिक वोटर मॉडल को समर्पित होगा। | ||
अगर <math>\scriptstyle p( </math>•,•<math>\scriptstyle)</math> एक अघुलनशील [[यादृच्छिक चाल]] के लिए संक्रमण संभावनाएं बनें <math>\scriptstyle Z^d </math>, तब: | अगर <math>\scriptstyle p( </math>•,•<math>\scriptstyle)</math> एक अघुलनशील [[यादृच्छिक चाल]] के लिए संक्रमण संभावनाएं बनें <math>\scriptstyle Z^d </math>, तब: | ||
Line 37: | Line 37: | ||
p(x,y)\geq 0 \quad\text{and} \sum_{y}p(x,y)=1 | p(x,y)\geq 0 \quad\text{and} \sum_{y}p(x,y)=1 | ||
</math> | </math> | ||
फिर रैखिक वोटर मॉडल में, संक्रमण दरें रैखिक | फिर रैखिक वोटर मॉडल में, संक्रमण दरें रैखिक फलन हैं <math>\scriptstyle \eta </math>: | ||
:<math> | :<math> | ||
c(x,\eta)= \left\{ | c(x,\eta)= \left\{ | ||
Line 144: | Line 144: | ||
===मॉडल विवरण=== | ===मॉडल विवरण=== | ||
यह खंड, एक प्रकार के गैर-रेखीय वोटर मॉडल पर ध्यान केंद्रित करता है, जिसे थ्रेशोल्ड वोटर मॉडल के रूप में जाना जाता है। इसे परिभाषित करने के लिए आइए <math>\scriptstyle \mathcal{N} </math> का पड़ोस हो <math>\scriptstyle 0\in Z^d </math> जो प्रतिच्छेद करके प्राप्त किया जाता है <math>\scriptstyle Z^d </math> किसी भी कॉम्पैक्ट, उत्तल, सममित सेट के साथ <math>\scriptstyle R^d </math>; दूसरे शब्दों में, <math>\scriptstyle \mathcal{N} </math> यह एक परिमित समुच्चय माना जाता है जो सभी प्रतिबिंबों के संबंध में सममित है और अप्रासंगिक है (अर्थात यह जो समूह उत्पन्न करता है वह है <math>\scriptstyle Z^d </math>). ऐसा | यह खंड, एक प्रकार के गैर-रेखीय वोटर मॉडल पर ध्यान केंद्रित करता है, जिसे थ्रेशोल्ड वोटर मॉडल के रूप में जाना जाता है। इसे परिभाषित करने के लिए आइए <math>\scriptstyle \mathcal{N} </math> का पड़ोस हो <math>\scriptstyle 0\in Z^d </math> जो प्रतिच्छेद करके प्राप्त किया जाता है <math>\scriptstyle Z^d </math> किसी भी कॉम्पैक्ट, उत्तल, सममित सेट के साथ <math>\scriptstyle R^d </math>; दूसरे शब्दों में, <math>\scriptstyle \mathcal{N} </math> यह एक परिमित समुच्चय माना जाता है जो सभी प्रतिबिंबों के संबंध में सममित है और अप्रासंगिक है (अर्थात यह जो समूह उत्पन्न करता है वह है <math>\scriptstyle Z^d </math>). ऐसा सदैव माना जा सकता है <math>\scriptstyle \mathcal{N} </math> इसमें सभी यूनिट वेक्टर शामिल हैं <math>\scriptstyle (1,0,0,\dots,0),\dots,(0,\dots,0,1) </math>. एक सकारात्मक पूर्णांक के लिए <math>\scriptstyle T </math>, पड़ोस के साथ दहलीज वोटर मॉडल <math>\scriptstyle \mathcal{N} </math> और दहलीज <math>\scriptstyle T </math> दर फलन वाला एक है: | ||
:<math> | :<math> | ||
Line 195: | Line 195: | ||
तब कभी कोई संक्रमण नहीं होता, और प्रक्रिया स्थिर हो जाती है। | तब कभी कोई संक्रमण नहीं होता, और प्रक्रिया स्थिर हो जाती है। | ||
(बी) प्रमेय 3.2 की धारणा के तहत, प्रक्रिया स्थिर नहीं होती है। इसे देखने के लिए, प्रारंभिक कॉन्फ़िगरेशन पर विचार करें <math>\scriptstyle \dots 0 0 0 1 1 1 \dots </math>, जिसमें अनंत अनेक शून्यों के बाद अनंत अनेक शून्य आते हैं। तब सीमा पर केवल शून्य और एक पलट सकते हैं, जिससे विन्यास | (बी) प्रमेय 3.2 की धारणा के तहत, प्रक्रिया स्थिर नहीं होती है। इसे देखने के लिए, प्रारंभिक कॉन्फ़िगरेशन पर विचार करें <math>\scriptstyle \dots 0 0 0 1 1 1 \dots </math>, जिसमें अनंत अनेक शून्यों के बाद अनंत अनेक शून्य आते हैं। तब सीमा पर केवल शून्य और एक पलट सकते हैं, जिससे विन्यास सदैव एक जैसा दिखेगा सिवाय इसके कि सीमा एक सरल सममित यादृच्छिक चाल की तरह चलेगी। तथ्य यह है कि यह यादृच्छिक चलना आवर्ती है, इसका तात्पर्य यह है कि प्रत्येक साइट अनंत बार फ़्लिप करती है। | ||
गुण 3 इंगित करती है कि थ्रेसहोल्ड वोटर मॉडल रैखिक वोटर मॉडल से काफी अलग है, जिसमें सह-अस्तित्व एक आयाम में भी होता है, बशर्ते कि पड़ोस बहुत छोटा न हो। थ्रेशोल्ड मॉडल का झुकाव स्थानीय अल्पसंख्यक की ओर है, जो रैखिक मामले में मौजूद नहीं है। | गुण 3 इंगित करती है कि थ्रेसहोल्ड वोटर मॉडल रैखिक वोटर मॉडल से काफी अलग है, जिसमें सह-अस्तित्व एक आयाम में भी होता है, बशर्ते कि पड़ोस बहुत छोटा न हो। थ्रेशोल्ड मॉडल का झुकाव स्थानीय अल्पसंख्यक की ओर है, जो रैखिक मामले में मौजूद नहीं है। |
Revision as of 19:46, 30 November 2023
संभाव्यता के गणितीय सिद्धांत में, वोटर मॉडल 1975 में रिचर्ड ए. होली और थॉमस एम. लिगेट द्वारा प्रांरम्भ की गई एक अंतःक्रियात्मक कण प्रणाली है।[1]
कोई कल्पना कर सकता है कि कनेक्टेड ग्राफ़ पर प्रत्येक बिंदु पर एक वोटर है, जहां कनेक्शन इंगित करते हैं कि वोटर की एक जोड़ी (नोड्स) के बीच किसी प्रकार की पारस्परिक क्रिया होती है। किसी भी मुद्दे पर किसी भी वोटर की राय उसके निकटवर्ती की राय के प्रभाव में यादृच्छिक समय पर बदल जाती है। किसी भी समय एक वोटर की राय 0 और 1 लेबल वाले दो मानों में से एक ले सकती है। यादृच्छिक समय पर, एक यादृच्छिक व्यक्ति का चयन किया जाता है और उस वोटर की राय को स्टोकेस्टिक नियम के अनुसार बदल दिया जाता है। विशेष रूप से, चुने गए वोटर के निकटवर्ती में से एक को संभावनाओं के दिए गए सेट के अनुसार चुना जाता है और उस निकटवर्ती की राय चुने हुए वोटर को हस्तांतरित कर दी जाती है।
एक वैकल्पिक व्याख्या स्थानिक संघर्ष के संदर्भ में है। मान लीजिए कि दो राष्ट्र 0 या 1 लेबल वाले क्षेत्रों (नोड्स के सेट) को नियंत्रित करते हैं। किसी दिए गए स्थान पर 0 से 1 तक का फ्लिप दूसरे राष्ट्र द्वारा उस साइट पर आक्रमण का संकेत देता है।
ध्यान दें कि हर बार केवल एक फ्लिप होता है। वोटर मॉडल से जुड़ी समस्याओं को प्रायः दोहरी प्रणाली के संदर्भ में पुनर्गठित किया जाएगा एकजुट होने का मार्कोव चेन है। प्रायः ये समस्याएं स्वतंत्र मार्कोव श्रृंखलाओं से जुड़ी अन्य समस्याओं तक कम हो जाती हैl
परिभाषा
वोटर मॉडल एक (निरंतर समय) मार्कोव प्रक्रिया है राज्य स्थान के साथ और संक्रमण दरें कार्य करती हैं , जहाँ एक डी-आयामी पूर्णांक जाली है, और •,• के एक फलन के रूप में गैर-ऋणात्मक, समान रूप से परिबद्ध और सतत माना जाता है उत्पाद टोपोलॉजी में . प्रत्येक घटक कॉन्फ़िगरेशन कहा जाता हैl यह स्पष्ट करने के लिए कि कॉन्फ़िगरेशन में साइट x का मान दर्शाता है ; जबकि इसका तात्पर्य है कॉन्फ़िगरेशन में साइट x का मान है समय पर .
प्रक्रिया की गतिशीलता संक्रमण दरों के संग्रह द्वारा निर्दिष्ट की जाती है। वोटर मॉडल के लिए, जिस दर पर परिवर्तन होता है 0 से 1 तक या इसके विपरीत एक फलन साइट के द्वारा दिया जाता हैl इसमें निम्नलिखित गुण हैं:
- प्रत्येक के लिए अगर या अगर
- प्रत्येक के लिए अगर सभी के लिए
- अगर और
- में बदलाव के तहत अपरिवर्तनीय है
गुण (1) ऐसा कहती है और विकास के लिए निश्चित बिंदु हैं। (2) इंगित करता है कि 0 और 1 की भूमिकाओं को बदलने से विकास अपरिवर्तित है। गुण (3), में तात्पर्य है , और तात्पर्य अगर , और इसका तात्पर्य है अगर .
क्लस्टरिंग और सह-अस्तित्व
क्लस्टरिंग और सह-अस्तित्व, रुचि मॉडलों के सीमित व्यवहार में हैl चूँकि किसी साइट की फ्लिप दरें उसके निकटवर्ती पर निर्भर करती हैं, इसलिए यह स्पष्ट है कि जब सभी साइट समान मूल्य लेती हैं, तो पूरी प्रणाली सदैव के लिए बदलना बंद कर देती है। इसलिए, एक वोटर मॉडल में दो साधारण चरम स्थिर वितरण होते हैं, बिंदु-द्रव्यमान और पर या क्रमशः, जो सर्वसम्मति का प्रतिनिधित्व करते हैं। चर्चा का मुख्य प्रश्न यह है कि क्या अन्य भी हैं, जो संतुलन में विभिन्न के विचार सह-अस्तित्व का प्रतिनिधित्व करते है। ऐसा कहा जाता है कि सह-अस्तित्व तब होता है जब कोई स्थिर वितरण होता है जो अनंत 0 और 1 के साथ कॉन्फ़िगरेशन पर ध्यान केंद्रित करता है। दूसरी ओर, यदि सभी के लिए और फिर सभी प्रारंभिक कॉन्फ़िगरेशन
ऐसा कहा जाता है कि क्लस्टरिंग होती है.
क्लस्टरिंग को क्लस्टर की अवधारणा से अलग करना महत्वपूर्ण है। क्लस्टर को जुड़े हुए घटकों के रूप में परिभाषित किया गया है या .
रैखिक वोटर मॉडल
मॉडल विवरण
यह अनुभाग बुनियादी वोटर मॉडल में से एक, रैखिक वोटर मॉडल को समर्पित होगा।
अगर •,• एक अघुलनशील यादृच्छिक चाल के लिए संक्रमण संभावनाएं बनें , तब:
फिर रैखिक वोटर मॉडल में, संक्रमण दरें रैखिक फलन हैं :
या अगर इंगित करता है कि एक फ्लिप होता है , तो संक्रमण दरें बस हैं:
यादृच्छिक सैर को संयोजित करने की एक प्रक्रिया को इस प्रकार परिभाषित किया गया है। यहाँ समय पर इन यादृच्छिक चालों द्वारा कब्जा की गई साइटों के सेट को दर्शाता है . परिभाषित करने के लिए , कई (निरंतर समय) यादृच्छिक सैर पर विचार करें इकाई घातीय होल्डिंग समय और संक्रमण संभावनाओं के साथ •,•, और उन्हें तब तक स्वतंत्र मानें जब तक उनमें से दो मिल न जाएं। उस समय, जो दोनों मिलते हैं वे एक कण में मिल जाते हैं, जो संक्रमण संभावनाओं के साथ एक यादृच्छिक चाल की तरह चलता रहता है •,• .
वोटर मॉडल के व्यवहार का विश्लेषण करने के लिए द्वैत (गणित) की अवधारणा आवश्यक है। रैखिक वोटर मॉडल द्वंद्व के एक बहुत ही उपयोगी रूप को संतुष्ट करते हैं, जिसे सहवर्ती द्वंद्व के रूप में जाना जाता है, जो है:
कहाँ का प्रारंभिक विन्यास है और समन्वित यादृच्छिक चाल की प्रारंभिक अवस्था है .
रैखिक वोटर मॉडल के व्यवहार को सीमित करना
होने देना एक अघुलनशील यादृच्छिक चाल के लिए संक्रमण संभावनाएं बनें और , तो ऐसे रैखिक वोटर मॉडल के लिए द्वैत संबंध यही कहता है
कहाँ और (निरंतर समय) यादृच्छिक चलते हैं साथ , , और समय पर यादृच्छिक चाल द्वारा ली गई स्थिति है . और खंड 2.1 के अंत में वर्णित एक सम्मिलित यादृच्छिक चाल बनाता है। एक सममित यादृच्छिक चाल है। अगर आवर्ती है और , और अंततः संभावना 1 के साथ टकराएगा, और इसलिए
इसलिए, प्रक्रिया क्लस्टर होती है।
दूसरी ओर, जब , सिस्टम सह-अस्तित्व में है। ऐसा इसलिए है क्योंकि , क्षणिक है, इस प्रकार एक सकारात्मक संभावना है कि यादृच्छिक चाल कभी भी हिट नहीं होती है, और इसलिए
कुछ स्थिरांक के लिए प्रारंभिक वितरण के अनुरूप।
अगर एक सममित यादृच्छिक चाल हो, तो निम्नलिखित प्रमेय हैं:
प्रमेय 2.1
रैखिक वोटर मॉडल क्लस्टर यदि आवर्ती है, और यदि सह-अस्तित्व में है क्षणिक है. विशेष रूप से,
- प्रक्रिया क्लस्टर यदि और , या अगर और ;
- प्रक्रिया सह-अस्तित्व में है यदि .
टिप्पणियाँ: थ्रेसहोल्ड वोटर मॉडल के व्यवहार के साथ इसकी तुलना करने के लिए, जिस पर अगले भाग में चर्चा की जाएगी, ध्यान दें कि रैखिक वोटर मॉडल क्लस्टर या सह-अस्तित्व लगभग विशेष रूप से साइटों के सेट के आयाम पर निर्भर करता है, न कि आकार पर। अंतःक्रिया की सीमा.
प्रमेय 2.2 कल्पना करना स्थानिक रूप से कोई भी अनुवाद एर्गोडिक प्रक्रिया और राज्य स्थान पर अपरिवर्तनीय माप है , तब
- अगर फिर आवर्ती है ;
- अगर तो फिर क्षणिक है .
कहाँ का वितरण है ; कमजोर अभिसरण का तात्पर्य है है, एक गैरतुच्छ चरम अपरिवर्तनीय उपाय है और .
एक विशेष रैखिक वोटर मॉडल
रैखिक वोटर मॉडल के दिलचस्प विशेष मामलों में से एक, जिसे बुनियादी रैखिक वोटर मॉडल के रूप में जाना जाता है, राज्य स्थान के लिए है :
ताकि
इस स्थिति में, प्रक्रिया क्लस्टर हो जाती है , जबकि सह-अस्तित्व में है . यह द्वंद्व इस तथ्य से निकटता से संबंधित है कि सरल यादृच्छिक चलना यदि आवर्ती है और क्षणिक यदि .
एक आयाम में क्लस्टर d = 1
विशेष मामले के लिए , और प्रत्येक के लिए . प्रमेय 2.2 से, , इस प्रकार इस मामले में क्लस्टरिंग होती है। इस अनुभाग का उद्देश्य इस क्लस्टरिंग का अधिक सटीक विवरण देना है।
जैसा कि पहले उल्लेख किया गया है, ए के समूह के जुड़े हुए घटकों के रूप में परिभाषित किए गए हैं या . के लिए औसत क्लस्टर आकार परिभाषित किया गया है:
बशर्ते सीमा मौजूद हो.
प्रस्ताव 2.3
मान लीजिए कि वोटर मॉडल प्रारंभिक वितरण के साथ है और तो, एक अनुवाद अपरिवर्तनीय संभाव्यता माप है
कार्य समय
बुनियादी रैखिक वोटर मॉडल के व्यवसाय समय कार्यात्मकताओं को इस प्रकार परिभाषित करें:
प्रमेय 2.4
मान लें कि सभी साइट x और समय t के लिए, , फिर ऐसे , लगभग निश्चित रूप से अगर सबूत
चेबीशेव की असमानता और बोरेल-कैंटेली लेम्मा द्वारा, नीचे समीकरण है:
देने पर प्रमेय अनुसरण करता है .
सीमा वोटर मॉडल
मॉडल विवरण
यह खंड, एक प्रकार के गैर-रेखीय वोटर मॉडल पर ध्यान केंद्रित करता है, जिसे थ्रेशोल्ड वोटर मॉडल के रूप में जाना जाता है। इसे परिभाषित करने के लिए आइए का पड़ोस हो जो प्रतिच्छेद करके प्राप्त किया जाता है किसी भी कॉम्पैक्ट, उत्तल, सममित सेट के साथ ; दूसरे शब्दों में, यह एक परिमित समुच्चय माना जाता है जो सभी प्रतिबिंबों के संबंध में सममित है और अप्रासंगिक है (अर्थात यह जो समूह उत्पन्न करता है वह है ). ऐसा सदैव माना जा सकता है इसमें सभी यूनिट वेक्टर शामिल हैं . एक सकारात्मक पूर्णांक के लिए , पड़ोस के साथ दहलीज वोटर मॉडल और दहलीज दर फलन वाला एक है:
सीधे शब्दों में कहें तो साइट की संक्रमण दर 1 है यदि समान मान न लेने वाली साइटों की संख्या थ्रेशोल्ड टी से बड़ी या उसके बराबर है। अन्यथा, साइट वर्तमान स्थिति पर रहता है और पलटेगा नहीं।
उदाहरण के लिए, यदि , और , फिर कॉन्फ़िगरेशन प्रक्रिया के लिए एक अवशोषित अवस्था या जाल है।
सीमावर्ती वोटर मॉडल का सीमित व्यवहार
यदि एक सीमा वोटर मॉडल तय नहीं होता है, तो यह उम्मीद की जानी चाहिए कि यह प्रक्रिया छोटी सीमा के लिए और बड़ी सीमा के लिए क्लस्टर के रूप में सह-अस्तित्व में होगी, जहां बड़े और छोटे की व्याख्या पड़ोस के आकार के सापेक्ष की जाती है, . अंतर्ज्ञान यह है कि छोटी सीमा होने से फ़्लिप होना आसान हो जाता है, इसलिए यह संभावना है कि हर समय 0 और 1 दोनों के आसपास बहुत कुछ होगा। निम्नलिखित तीन प्रमुख परिणाम हैं:
- अगर , तो यह प्रक्रिया इस अर्थ में स्थिर हो जाती है कि प्रत्येक साइट केवल सीमित रूप से ही फ़्लिप होती है।
- अगर और , फिर प्रक्रिया क्लस्टर।
- अगर साथ पर्याप्त रूप से छोटा() और पर्याप्त रूप से बड़ा, तो प्रक्रिया सह-अस्तित्व में रहती है।
यहां गुण (1) और (2) के अनुरूप दो प्रमेय हैं।
प्रमेय 3.1
अगर , फिर प्रक्रिया ठीक हो जाती है।
प्रमेय 3.2
एक आयाम में दहलीज वोटर मॉडल () साथ , क्लस्टर।
सबूत
प्रमाण का विचार यादृच्छिक समय के दो अनुक्रमों का निर्माण करना है , के लिए निम्नलिखित गुणों के साथ:
- ,
- i.i.d.के साथ हैं ,
- i.i.d.के साथ हैं ,
- (बी) और (सी) में यादृच्छिक चर एक दूसरे से स्वतंत्र हैं,
- घटना ए= निरंतर चालू है , और घटना ए प्रत्येक के लिए मान्य है .
एक बार यह निर्माण हो जाने के बाद, यह नवीनीकरण सिद्धांत का पालन करेगा
इस तरह,, ताकि प्रक्रिया क्लस्टर हो जाए।
टिप्पणियाँ: (ए) उच्च आयामों में थ्रेशोल्ड मॉडल आवश्यक रूप से क्लस्टर नहीं करते हैं . उदाहरण के लिए, लीजिए और . अगर बारी-बारी से ऊर्ध्वाधर अनंत पट्टियों पर स्थिर है, जो कि सभी के लिए है :
तब कभी कोई संक्रमण नहीं होता, और प्रक्रिया स्थिर हो जाती है।
(बी) प्रमेय 3.2 की धारणा के तहत, प्रक्रिया स्थिर नहीं होती है। इसे देखने के लिए, प्रारंभिक कॉन्फ़िगरेशन पर विचार करें , जिसमें अनंत अनेक शून्यों के बाद अनंत अनेक शून्य आते हैं। तब सीमा पर केवल शून्य और एक पलट सकते हैं, जिससे विन्यास सदैव एक जैसा दिखेगा सिवाय इसके कि सीमा एक सरल सममित यादृच्छिक चाल की तरह चलेगी। तथ्य यह है कि यह यादृच्छिक चलना आवर्ती है, इसका तात्पर्य यह है कि प्रत्येक साइट अनंत बार फ़्लिप करती है।
गुण 3 इंगित करती है कि थ्रेसहोल्ड वोटर मॉडल रैखिक वोटर मॉडल से काफी अलग है, जिसमें सह-अस्तित्व एक आयाम में भी होता है, बशर्ते कि पड़ोस बहुत छोटा न हो। थ्रेशोल्ड मॉडल का झुकाव स्थानीय अल्पसंख्यक की ओर है, जो रैखिक मामले में मौजूद नहीं है।
थ्रेशोल्ड वोटर मॉडल के लिए सह-अस्तित्व के अधिकांश प्रमाण हाइब्रिड मॉडल के साथ तुलना पर आधारित हैं जिन्हें पैरामीटर के साथ थ्रेशोल्ड संपर्क प्रक्रिया के रूप में जाना जाता है . यह प्रक्रिया जारी है फ़्लिप दरों के साथ:
प्रस्ताव 3.3
किसी के लिए और , यदि दहलीज संपर्क प्रक्रिया के साथ एक गैर-तुच्छ अपरिवर्तनीय माप है, तो दहलीज वोटर मॉडल सह-अस्तित्व में है।
दहलीज टी के साथ मॉडल = 1
मामला यह है कि विशेष रुचि का है क्योंकि यह एकमात्र मामला है जिसमें यह ज्ञात है कि कौन से मॉडल सह-अस्तित्व में हैं और कौन से मॉडल क्लस्टर हैं।
विशेष रूप से, एक प्रकार के थ्रेसहोल्ड T=1 मॉडल में रुचि है वह इसके द्वारा दिया गया है:
पड़ोस की त्रिज्या के रूप में व्याख्या की जा सकती है ; पड़ोस का आकार निर्धारित करता है (अर्थात, यदि , तब ; जबकि इसके लिए , इसी ).
प्रमेय 3.2 के अनुसार, मॉडल के साथ और समूह. निम्नलिखित प्रमेय इंगित करता है कि अन्य सभी विकल्पों के लिए और , मॉडल सह-अस्तित्व में है।
प्रमेय 3.4
लगता है कि , लेकिन . फिर दहलीज मॉडल चालू पैरामीटर के साथ सहअस्तित्व।
इस प्रमेय का प्रमाण थॉमस एम. लिगेट द्वारा सह-अस्तित्व इन थ्रेशोल्ड वोटर मॉडल्स नामक पेपर में दिया गया है।
यह भी देखें
टिप्पणियाँ
- ↑ Holley, Richard A.; Liggett, Thomas M. (1975). "कमजोर अंतःक्रियात्मक अनंत प्रणालियों और मतदाता मॉडल के लिए एर्गोडिक प्रमेय". The Annals of Probability (in English). 3 (4): 643–663. doi:10.1214/aop/1176996306. ISSN 0091-1798.
संदर्भ
- Clifford, Peter; Aidan W Sudbury (1973). "A Model for Spatial Conflict". Biometrika. 60 (3): 581–588. doi:10.1093/biomet/60.3.581.
- Liggett, Thomas M. (1997). "Stochastic Models of Interacting Systems". The Annals of Probability. Institute of Mathematical Statistics. 25 (1): 1–29. doi:10.1214/aop/1024404276. ISSN 0091-1798.
- Liggett, Thomas M. (1994). "Coexistence in Threshold Voter Models". The Annals of Probability. 22 (2): 764–802. doi:10.1214/aop/1176988729.
- Cox, J. Theodore; David Griffeath (1983). "Occupation Time Limit Theorems for the Voter Model". The Annals of Probability. 11 (4): 876–893. doi:10.1214/aop/1176993438.
- Durrett, Richard; Kesten, Harry (1991). Random walks, Brownian motion, and interacting particle systems. ISBN 0817635092.
- Liggett, Thomas M. (1985). Interacting Particle Systems. New York: Springer Verlag. ISBN 0-387-96069-4.
- Thomas M. Liggett, "Stochastic Interacting Systems: Contact, Voter and Exclusion Processes", Springer-Verlag, 1999.