अंतिम मान प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[गणितीय विश्लेषण]] में, '''अंतिम मान प्रमेय''' ('''एफवीटी''') कई समान प्रमेयों में से एक है जिसका उपयोग [[आवृत्ति डोमेन]] अभिव्यक्तियों को समय डोमेन व्यवहार से संबंधित करने के लिए किया जाता है क्योंकि समय अनंत तक पहुंचता है।<ref name="RWang2010">{{cite web |url=http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/node17.html |title=प्रारंभिक और अंतिम मूल्य प्रमेय|first=Ruye |last=Wang |date=2010-02-17 |accessdate=2011-10-21}}</ref><ref name="OppenheimWillskyNawab1997">{{cite book |isbn=0-13-814757-4 |title=Signals &amp; Systems |author1=Alan V. Oppenheim |author2=Alan S. Willsky |author3=S. Hamid Nawab |location=New Jersey, USA |publisher=Prentice Hall |year=1997}}</ref><ref name="Schiff1999">{{cite book |last1=Schiff |first1=Joel L. |title=The Laplace Transform: Theory and Applications |date=1999 |publisher=Springer |location=New York |isbn=978-1-4757-7262-3}}</ref><ref name="Graf2004">{{cite book |last1=Graf |first1=Urs |title=वैज्ञानिकों और इंजीनियरों के लिए एप्लाइड लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म|date=2004 |publisher=Birkhäuser Verlag |location=Basel |isbn=3-7643-2427-9}}</ref>
[[गणितीय विश्लेषण]] में, '''अंतिम मान प्रमेय''' ('''एफवीटी''') कई समान प्रमेयों में से एक है जिसका उपयोग [[आवृत्ति डोमेन]] अभिव्यक्तियों को समय डोमेन व्यवहार से संबंधित करने के लिए किया जाता है क्योंकि समय अनंत तक पहुंचता है।<ref name="RWang2010">{{cite web |url=http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/node17.html |title=प्रारंभिक और अंतिम मूल्य प्रमेय|first=Ruye |last=Wang |date=2010-02-17 |accessdate=2011-10-21}}</ref><ref name="OppenheimWillskyNawab1997">{{cite book |isbn=0-13-814757-4 |title=Signals &amp; Systems |author1=Alan V. Oppenheim |author2=Alan S. Willsky |author3=S. Hamid Nawab |location=New Jersey, USA |publisher=Prentice Hall |year=1997}}</ref><ref name="Schiff1999">{{cite book |last1=Schiff |first1=Joel L. |title=The Laplace Transform: Theory and Applications |date=1999 |publisher=Springer |location=New York |isbn=978-1-4757-7262-3}}</ref><ref name="Graf2004">{{cite book |last1=Graf |first1=Urs |title=वैज्ञानिकों और इंजीनियरों के लिए एप्लाइड लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म|date=2004 |publisher=Birkhäuser Verlag |location=Basel |isbn=3-7643-2427-9}}</ref>


गणितीय रूप से, यदि <math>f(t)</math> निरंतर समय में (एकतरफा) [[लाप्लास परिवर्तन]] <math>F(s)</math> होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
गणितीय रूप से, यदि <math>f(t)</math> निरंतर समय में (एकतरफा) [[लाप्लास परिवर्तन]] <math>F(s)                                                                                                                                                                                             </math> होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
:<math>\lim_{t\to\infty}f(t) = \lim_{s\,\to\, 0}{sF(s)}</math>
:<math>\lim_{t\to\infty}f(t) = \lim_{s\,\to\, 0}{sF(s)}</math>
इसी प्रकार यदि <math>f[k]</math> असतत समय में (एकतरफा) Z-परिवर्तन <math>F(z)</math> होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
इसी प्रकार यदि <math>f[k]</math> असतत समय में (एकतरफा) Z-परिवर्तन <math>F(z)</math> होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत
Line 7: Line 7:
एबेलियन अंतिम मान प्रमेय <math>\lim_{s\,\to\, 0}{sF(s)}</math> की गणना करने के लिए <math>f(t)</math> (या <math>f[k]</math>) के समय-डोमेन व्यवहार के बारे में धारणा बनाता है।
एबेलियन अंतिम मान प्रमेय <math>\lim_{s\,\to\, 0}{sF(s)}</math> की गणना करने के लिए <math>f(t)</math> (या <math>f[k]</math>) के समय-डोमेन व्यवहार के बारे में धारणा बनाता है।


इसके विपरीत, एक टूबेरियन अंतिम मूल्य प्रमेय <math>\lim_{t\to\infty}f(t)</math> (या <math>\lim_{k\to\infty}f[k]</math>) (अभिन्न परिवर्तनों के लिए [[एबेलियन और टूबेरियन प्रमेय]] देखें) की गणना करने के लिए <math>F(s)</math> के आवृत्ति-डोमेन व्यवहार के बारे में धारणा बनाता है।
इसके विपरीत, एक टूबेरियन अंतिम मान प्रमेय <math>\lim_{t\to\infty}f(t)</math> (या <math>\lim_{k\to\infty}f[k]</math>) (अभिन्न परिवर्तनों के लिए [[एबेलियन और टूबेरियन प्रमेय]] देखें) की गणना करने के लिए <math>F(s)</math> के आवृत्ति-डोमेन व्यवहार के बारे में धारणा बनाता है।


== लाप्लास परिवर्तन के लिए अंतिम मान प्रमेय ==
== लाप्लास परिवर्तन के लिए अंतिम मान प्रमेय ==


=== {{math|lim<sub>''t'' → ∞</sub> ''f''(''t'')}} को घटाना ===
=== {{math|lim<sub>''t'' → ∞</sub> ''f''(''t'')}} का अनुमान ===


निम्नलिखित कथनों में, संकेतन '<math>s \to 0</math>' का अर्थ है कि <math>s</math> 0 की ओर अग्रसर है, जबकि '<math>s \downarrow 0</math>' का अर्थ है कि <math>s</math> धनात्मक संख्याओं के माध्यम से 0 की ओर अग्रसर है।
निम्नलिखित कथनों में, संकेतन '<math>s \to 0</math>' का अर्थ है कि <math>s</math> 0 की ओर अग्रसर है, जबकि '<math>s \downarrow 0</math>' का अर्थ है कि <math>s</math> धनात्मक संख्याओं के माध्यम से 0 की ओर अग्रसर है।
Line 18: Line 18:


मान लीजिए कि <math>F(s)</math> का प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल बिंदु पर है, और <math>F(s)</math> के मूल बिंदु पर अधिकतम एक ही ध्रुव है। जैसे <math>sF(s) \to L \in \mathbb{R}</math> को <math>s \to 0</math>, और <math>\lim_{t\to\infty}f(t) = L</math> के रूप में।<ref name="ChenLundbergDavisonBernstein2007">{{cite journal |last1=Chen |first1=Jie |last2=Lundberg |first2=Kent H. |last3=Davison |first3=Daniel E. |last4=Bernstein |first4=Dennis S. |title=अंतिम मूल्य प्रमेय पर दोबारा गौर किया गया - अनंत सीमाएँ और अपरिमेय कार्य|journal=IEEE Control Systems Magazine |date=June 2007 |volume=27 |issue=3 |pages=97-99 |doi=10.1109/MCS.2007.365008}}</ref>
मान लीजिए कि <math>F(s)</math> का प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल बिंदु पर है, और <math>F(s)</math> के मूल बिंदु पर अधिकतम एक ही ध्रुव है। जैसे <math>sF(s) \to L \in \mathbb{R}</math> को <math>s \to 0</math>, और <math>\lim_{t\to\infty}f(t) = L</math> के रूप में।<ref name="ChenLundbergDavisonBernstein2007">{{cite journal |last1=Chen |first1=Jie |last2=Lundberg |first2=Kent H. |last3=Davison |first3=Daniel E. |last4=Bernstein |first4=Dennis S. |title=अंतिम मूल्य प्रमेय पर दोबारा गौर किया गया - अनंत सीमाएँ और अपरिमेय कार्य|journal=IEEE Control Systems Magazine |date=June 2007 |volume=27 |issue=3 |pages=97-99 |doi=10.1109/MCS.2007.365008}}</ref>
==== व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय ====
==== व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय ====


Line 34: Line 32:


यदि <math>sF(s) \to L \in \mathbb{C}</math> जैसा <math>s \to 0</math> तब <math>\lim_{t\to\infty}f(t) = L</math>.<ref name="UllrichTauberian">{{cite web |last1=Ullrich |first1=David C. |title=टूबेरियन अंतिम मूल्य प्रमेय|url=https://math.stackexchange.com/q/2795640 |website=Math Stack Exchange |date=2018-05-26}}</ref>
यदि <math>sF(s) \to L \in \mathbb{C}</math> जैसा <math>s \to 0</math> तब <math>\lim_{t\to\infty}f(t) = L</math>.<ref name="UllrichTauberian">{{cite web |last1=Ullrich |first1=David C. |title=टूबेरियन अंतिम मूल्य प्रमेय|url=https://math.stackexchange.com/q/2795640 |website=Math Stack Exchange |date=2018-05-26}}</ref>
==== विस्तारित अंतिम मान प्रमेय ====
==== विस्तारित अंतिम मान प्रमेय ====


Line 44: Line 39:
# <math>sF(s) \to -\infty \in \mathbb{R}</math> जैसा <math>s \downarrow 0</math>, और <math>f(t) \to -\infty</math> जैसा <math>t \to \infty</math>.
# <math>sF(s) \to -\infty \in \mathbb{R}</math> जैसा <math>s \downarrow 0</math>, और <math>f(t) \to -\infty</math> जैसा <math>t \to \infty</math>.
विशेष रूप से, यदि <math>s = 0</math>, <math>F(s)</math> का एक बहु ध्रुव है तो स्थिति 2 या 3 (<math>f(t) \to +\infty</math> या <math>f(t) \to -\infty</math>) प्रयुक्त होती है।<ref name="ChenLundbergDavisonBernstein2007"/>
विशेष रूप से, यदि <math>s = 0</math>, <math>F(s)</math> का एक बहु ध्रुव है तो स्थिति 2 या 3 (<math>f(t) \to +\infty</math> या <math>f(t) \to -\infty</math>) प्रयुक्त होती है।<ref name="ChenLundbergDavisonBernstein2007"/>
==== सामान्यीकृत अंतिम मान प्रमेय ====
==== सामान्यीकृत अंतिम मान प्रमेय ====


Line 51: Line 44:
:<math>\lim_{t\to\infty}\frac{f(t)}{t^\lambda} = \frac{1}{\Gamma(\lambda+1)} \lim_{s\downarrow0}{s^{\lambda+1}F(s)}</math>
:<math>\lim_{t\to\infty}\frac{f(t)}{t^\lambda} = \frac{1}{\Gamma(\lambda+1)} \lim_{s\downarrow0}{s^{\lambda+1}F(s)}</math>
जहाँ <math>\Gamma(x)</math> [[गामा फ़ंक्शन|गामा फलन]] को दर्शाता है।<ref name="ChenLundbergDavisonBernstein2007"/>
जहाँ <math>\Gamma(x)</math> [[गामा फ़ंक्शन|गामा फलन]] को दर्शाता है।<ref name="ChenLundbergDavisonBernstein2007"/>
==== अनुप्रयोग ====
==== अनुप्रयोग ====


<math>\lim_{t\to\infty}f(t)</math> प्राप्त करने के लिए अंतिम मान प्रमेय का किसी [[नियंत्रण सिद्धांत]] की दीर्घकालिक स्थिरता स्थापित करने में अनुप्रयोग होता है।
<math>\lim_{t\to\infty}f(t)</math> प्राप्त करने के लिए अंतिम मान प्रमेय का किसी [[नियंत्रण सिद्धांत]] की दीर्घकालिक स्थिरता स्थापित करने में अनुप्रयोग होता है।


=== {{math|lim<sub>''s'' → 0</sub> ''s''&thinsp;''F''(''s'')}} को घटाना ===
=== {{math|lim<sub>''s'' → 0</sub> ''s''&thinsp;''F''(''s'')}} का अनुमान ===


==== एबेलियन अंतिम मान प्रमेय ====
==== एबेलियन अंतिम मान प्रमेय ====
Line 91: Line 82:


प्रमाण [[प्रभुत्व अभिसरण प्रमेय]] का उपयोग करता है।<ref name="SopasakisUsingDominatedConvergenceTheorem"/>
प्रमाण [[प्रभुत्व अभिसरण प्रमेय]] का उपयोग करता है।<ref name="SopasakisUsingDominatedConvergenceTheorem"/>


==== किसी फलन के माध्य के लिए अंतिम मान प्रमेय ====
==== किसी फलन के माध्य के लिए अंतिम मान प्रमेय ====
Line 98: Line 88:
:<math>\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} f(t) \, dt = \alpha \in \mathbb{C}</math>
:<math>\lim_{T\to\infty} \frac{1}{T} \int_{0}^{T} f(t) \, dt = \alpha \in \mathbb{C}</math>
तब <math>\lim_{s\,\to\, 0, \, s>0}{sF(s)} = \alpha</math>.<ref name="KaviRamaMurthy">{{cite web |last1=Murthy |first1=Kavi Rama |title=लाप्लास ट्रांसफॉर्म के लिए अंतिम मूल्य प्रमेय का वैकल्पिक संस्करण|url=https://math.stackexchange.com/questions/3216837/alternative-version-of-the-final-value-theorem-for-laplace-transform |website=Math Stack Exchange |date=2019-05-07}}</ref>
तब <math>\lim_{s\,\to\, 0, \, s>0}{sF(s)} = \alpha</math>.<ref name="KaviRamaMurthy">{{cite web |last1=Murthy |first1=Kavi Rama |title=लाप्लास ट्रांसफॉर्म के लिए अंतिम मूल्य प्रमेय का वैकल्पिक संस्करण|url=https://math.stackexchange.com/questions/3216837/alternative-version-of-the-final-value-theorem-for-laplace-transform |website=Math Stack Exchange |date=2019-05-07}}</ref>


==== नियतकालिक फलनों के स्पर्शोन्मुख योग के लिए अंतिम मान प्रमेय ====
==== नियतकालिक फलनों के स्पर्शोन्मुख योग के लिए अंतिम मान प्रमेय ====
Line 105: Line 94:
:<math>| f(t) - f_{\mathrm{as}}(t) | < \phi(t)</math>
:<math>| f(t) - f_{\mathrm{as}}(t) | < \phi(t)</math>
जहाँ <math>\phi(t)</math> <math>[0,\infty)</math> में पूर्णतः समाकलनीय है और अनंत पर लुप्त हो जाता है। तब
जहाँ <math>\phi(t)</math> <math>[0,\infty)</math> में पूर्णतः समाकलनीय है और अनंत पर लुप्त हो जाता है। तब
:<math>\lim_{s \to 0}sF(s) = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} f(x) \, dx</math>.<ref>{{cite journal |last1=Gluskin |first1=Emanuel |title=आइए हम अंतिम-मूल्य प्रमेय के इस सामान्यीकरण को सिखाएं|journal=European Journal of Physics |date=1 November 2003 |volume=24 |issue=6 |pages=591–597 |doi=10.1088/0143-0807/24/6/005}}</ref>
:<math>\lim_{s \to 0}sF(s) = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} f(x) \, dx</math>.<ref>{{cite journal |last1=Gluskin |first1=Emanuel |title=आइए हम अंतिम-मूल्य प्रमेय के इस सामान्यीकरण को सिखाएं|journal=European Journal of Physics |date=1 November 2003 |volume=24 |issue=6 |pages=591–597 |doi=10.1088/0143-0807/24/6/005}}</ref><br />
 
 
==== अनंत तक विचलन करने वाले फलन के लिए अंतिम मान प्रमेय ====
==== अनंत तक विचलन करने वाले फलन के लिए अंतिम मान प्रमेय ====


मान लीजिये <math>f(t) : [0,\infty) \to \mathbb{R}</math> और <math>F(s)</math> का लाप्लास रूपांतरण <math>f(t)</math> हो। मान लीजिए कि <math>f(t)</math> निम्नलिखित सभी शर्तों को पूरा करता है:
मान लीजिये <math>f(t) : [0,\infty) \to \mathbb{R}</math> और <math>F(s)</math> का लाप्लास रूपांतरण <math>f(t)</math> हो। मान लीजिए कि <math>f(t)</math> निम्नलिखित सभी नियम को पूरा करता है:
# <math>f(t)</math> शून्य पर असीम रूप से भिन्न है
# <math>f(t)</math> शून्य पर असीम रूप से भिन्न है
# <math>f^{(k)}(t)</math> में सभी गैर-ऋणात्मक पूर्णांक <math>k</math> के लिए लाप्लास परिवर्तन है।  
# <math>f^{(k)}(t)</math> में सभी गैर-ऋणात्मक पूर्णांक <math>k</math> के लिए लाप्लास परिवर्तन है।  
#<math>f(t)</math> <math>t \to \infty</math> के रूप में अनंत की ओर विचलन करता है।
#<math>f(t)</math> <math>t \to \infty</math> के रूप में अनंत की ओर विचलन करता है।
तब <math>sF(s)</math> <math>s \to 0^{+}</math>अनंत की ओर विचरण करता है।<ref name="HewDivergesToInfinity">{{cite web |last1=Hew |first1=Patrick |title=Final Value Theorem for function that diverges to infinity? |url=https://math.stackexchange.com/q/3637843 |website=Math Stack Exchange |date=2020-04-22}}</ref>
तब <math>sF(s)</math> <math>s \to 0^{+}</math>अनंत की ओर विचरण करता है।<ref name="HewDivergesToInfinity">{{cite web |last1=Hew |first1=Patrick |title=Final Value Theorem for function that diverges to infinity? |url=https://math.stackexchange.com/q/3637843 |website=Math Stack Exchange |date=2020-04-22}}</ref>


==== अनुचित रूप से पूर्णांकित फलनों के लिए अंतिम मान प्रमेय (अभिन्न के लिए एबेल का प्रमेय) ====
==== अनुचित रूप से पूर्णांकित फलनों के लिए अंतिम मान प्रमेय (अभिन्न के लिए एबेल का प्रमेय) ====
Line 161: Line 147:


:<math>H(s) = \frac{9}{s^2 + 9},</math>
:<math>H(s) = \frac{9}{s^2 + 9},</math>
ऐसा प्रतीत होता है कि अंतिम मान प्रमेय आवेग प्रतिक्रिया का अंतिम मान 0 और चरण प्रतिक्रिया का अंतिम मान 1 होने की भविष्यवाणी करता है। चूँकि, कोई भी समय-डोमेन सीमा उपस्थित नहीं है, और इसलिए अंतिम मान प्रमेय की भविष्यवाणियाँ मान्य नहीं हैं। वास्तव में, आवेग प्रतिक्रिया और चरण प्रतिक्रिया दोनों दोलन करते हैं, और (इस विशेष स्थिति में) अंतिम मान प्रमेय उन औसत मूल्यों का वर्णन करता है जिनके आसपास प्रतिक्रियाएं दोलन करती हैं।
ऐसा प्रतीत होता है कि अंतिम मान प्रमेय आवेग प्रतिक्रिया का अंतिम मान 0 और चरण प्रतिक्रिया का अंतिम मान 1 होने की भविष्यवाणी करता है। चूँकि, कोई भी समय-डोमेन सीमा उपस्थित नहीं है, और इसलिए अंतिम मान प्रमेय की भविष्यवाणियाँ मान्य नहीं हैं। वास्तव में, आवेग प्रतिक्रिया और चरण प्रतिक्रिया दोनों दोलन करते हैं, और (इस विशेष स्थिति में) अंतिम मान प्रमेय उन औसत मान का वर्णन करता है जिनके आसपास प्रतिक्रियाएं दोलन करती हैं।


नियंत्रण सिद्धांत में दो जाँचें की जाती हैं जो अंतिम मान प्रमेय के लिए वैध परिणामों की पुष्टि करती हैं:
नियंत्रण सिद्धांत में दो जाँचें की जाती हैं जो अंतिम मान प्रमेय के लिए वैध परिणामों की पुष्टि करती हैं:
Line 171: Line 157:
== Z परिवर्तन के लिए अंतिम मान प्रमेय ==
== Z परिवर्तन के लिए अंतिम मान प्रमेय ==


=== {{math|lim<sub>''k'' → ∞</sub> ''f''[''k'']}} को घटाना ===
=== {{math|lim<sub>''k'' → ∞</sub> ''f''[''k'']}} का अनुमान ===


==== अंतिम मान प्रमेय ====
==== अंतिम मान प्रमेय ====
Line 196: Line 182:
:<math>\mathbf{\Phi}(h_{i})=e^{\mathbf{A}h_{i}}</math>,  <math>\mathbf{\Gamma}(h_{i})=\int_0^{h_{i}} e^{\mathbf{A}s} \,ds</math>
:<math>\mathbf{\Phi}(h_{i})=e^{\mathbf{A}h_{i}}</math>,  <math>\mathbf{\Gamma}(h_{i})=\int_0^{h_{i}} e^{\mathbf{A}s} \,ds</math>
एक चरण इनपुट के जवाब में इस प्रणाली का अंतिम मान <math>\mathbf{u}(t)</math> आयाम के साथ <math>R</math> यह इसकी मूल सतत-समय प्रणाली के अंतिम मान के समान है। <ref name="MohajeriMadadiTavassoli2021">{{cite journal |last1=Mohajeri |first1=Kamran |last2=Madadi |first2=Ali |last3=Tavassoli |first3=Babak |title= विलंब और ड्रॉपआउट वाले नेटवर्क पर एपेरियोडिक सैंपलिंग के साथ ट्रैकिंग नियंत्रण|journal= International Journal of Systems Science |date=2021 |volume=52 |issue=10 |pages= 1987-2002 |doi=10.1080/00207721.2021.1874074}}</ref>
एक चरण इनपुट के जवाब में इस प्रणाली का अंतिम मान <math>\mathbf{u}(t)</math> आयाम के साथ <math>R</math> यह इसकी मूल सतत-समय प्रणाली के अंतिम मान के समान है। <ref name="MohajeriMadadiTavassoli2021">{{cite journal |last1=Mohajeri |first1=Kamran |last2=Madadi |first2=Ali |last3=Tavassoli |first3=Babak |title= विलंब और ड्रॉपआउट वाले नेटवर्क पर एपेरियोडिक सैंपलिंग के साथ ट्रैकिंग नियंत्रण|journal= International Journal of Systems Science |date=2021 |volume=52 |issue=10 |pages= 1987-2002 |doi=10.1080/00207721.2021.1874074}}</ref>
==यह भी देखें==
==यह भी देखें==
* [[प्रारंभिक मूल्य प्रमेय|प्रारंभिक मान प्रमेय]]
* [[प्रारंभिक मूल्य प्रमेय|प्रारंभिक मान प्रमेय]]
Line 206: Line 190:
==टिप्पणियाँ==
==टिप्पणियाँ==
<references />
<references />


==बाहरी संबंध==
==बाहरी संबंध==

Revision as of 10:23, 12 December 2023

गणितीय विश्लेषण में, अंतिम मान प्रमेय (एफवीटी) कई समान प्रमेयों में से एक है जिसका उपयोग आवृत्ति डोमेन अभिव्यक्तियों को समय डोमेन व्यवहार से संबंधित करने के लिए किया जाता है क्योंकि समय अनंत तक पहुंचता है।[1][2][3][4]

गणितीय रूप से, यदि निरंतर समय में (एकतरफा) लाप्लास परिवर्तन होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत

इसी प्रकार यदि असतत समय में (एकतरफा) Z-परिवर्तन होता है, तो एक अंतिम मान प्रमेय उन स्थितियों को स्थापित करता है जिनके अंतर्गत

एबेलियन अंतिम मान प्रमेय की गणना करने के लिए (या ) के समय-डोमेन व्यवहार के बारे में धारणा बनाता है।

इसके विपरीत, एक टूबेरियन अंतिम मान प्रमेय (या ) (अभिन्न परिवर्तनों के लिए एबेलियन और टूबेरियन प्रमेय देखें) की गणना करने के लिए के आवृत्ति-डोमेन व्यवहार के बारे में धारणा बनाता है।

लाप्लास परिवर्तन के लिए अंतिम मान प्रमेय

limt → ∞ f(t) का अनुमान

निम्नलिखित कथनों में, संकेतन '' का अर्थ है कि 0 की ओर अग्रसर है, जबकि '' का अर्थ है कि धनात्मक संख्याओं के माध्यम से 0 की ओर अग्रसर है।

मानक अंतिम मान प्रमेय

मान लीजिए कि का प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल बिंदु पर है, और के मूल बिंदु पर अधिकतम एक ही ध्रुव है। जैसे को , और के रूप में।[5]

व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय

मान लीजिए कि और दोनों में लाप्लास परिवर्तन हैं जो सभी के लिए उपस्थित हैं। यदि उपस्थित है और उपस्थित है तो [3]: Theorem 2.36 [4]: 20 [6]

टिप्पणी

प्रमेय को धारण करने के लिए दोनों सीमाएँ उपस्थित होनी चाहिए। उदाहरण के लिए, यदि तब उपस्थित नहीं है, किन्तु

.[3]: Example 2.37 [4]: 20 

उन्नत टूबेरियन परिवर्तित अंतिम मान प्रमेय

मान लीजिए कि परिबद्ध और अवकलनीय है, और वह भी पर परिबद्ध है।

यदि जैसा तब .[7]

विस्तारित अंतिम मान प्रमेय

मान लीजिए कि प्रत्येक ध्रुव या तो खुले बाएँ आधे तल में है या मूल में है। तब निम्न में से एक होता है:

  1. जैसा , और .
  2. जैसा , और जैसा .
  3. जैसा , और जैसा .

विशेष रूप से, यदि , का एक बहु ध्रुव है तो स्थिति 2 या 3 ( या ) प्रयुक्त होती है।[5]

सामान्यीकृत अंतिम मान प्रमेय

मान लीजिए कि लाप्लास परिवर्तनीय है। मान लीजिये . यदि उपस्थित है और तब उपस्थित है

जहाँ गामा फलन को दर्शाता है।[5]

अनुप्रयोग

प्राप्त करने के लिए अंतिम मान प्रमेय का किसी नियंत्रण सिद्धांत की दीर्घकालिक स्थिरता स्थापित करने में अनुप्रयोग होता है।

lims → 0 sF(s) का अनुमान

एबेलियन अंतिम मान प्रमेय

मान लीजिए कि परिबद्ध और मापने योग्य है और .

फिर सभी और के लिए उपस्थित है।[7]

प्राथमिक प्रमाण[7]

सुविधा के लिए मान लीजिए कि पर , और को रहने दें।

मान लीजिये , और चुनें सभी के लिए के बाद से, हमारे पास प्रत्येक के लिए

इस प्रकार

अब प्रत्येक के लिए हमारे पास है

.

दूसरी ओर, चूंकि निश्चित है इसलिए यह स्पष्ट है कि , इसलिए यदि अत्यंत छोटा है।

व्युत्पन्न के लाप्लास परिवर्तन का उपयोग करते हुए अंतिम मान प्रमेय

मान लीजिए कि निम्नलिखित सभी शर्तें पूरी हो गई हैं:

  1. निरंतर भिन्न है और दोनों और एक लाप्लास परिवर्तन है
  2. बिल्कुल अभिन्न है - अर्थात, परिमित है
  3. अस्तित्व में है और सीमित है

तब

.[8]

टिप्पणी

प्रमाण प्रभुत्व अभिसरण प्रमेय का उपयोग करता है।[8]

किसी फलन के माध्य के लिए अंतिम मान प्रमेय

मान लीजिये एक सतत और परिबद्ध फलन इस प्रकार हो कि निम्नलिखित सीमा उपस्थित हो

तब .[9]

नियतकालिक फलनों के स्पर्शोन्मुख योग के लिए अंतिम मान प्रमेय

मान लीजिए कि में सतत और पूर्णतः समाकलनीय है। आगे मान लीजिए नियतकालिक फलनों के एक सीमित योग के बराबर है, वह है

जहाँ में पूर्णतः समाकलनीय है और अनंत पर लुप्त हो जाता है। तब

.[10]

अनंत तक विचलन करने वाले फलन के लिए अंतिम मान प्रमेय

मान लीजिये और का लाप्लास रूपांतरण हो। मान लीजिए कि निम्नलिखित सभी नियम को पूरा करता है:

  1. शून्य पर असीम रूप से भिन्न है
  2. में सभी गैर-ऋणात्मक पूर्णांक के लिए लाप्लास परिवर्तन है।
  3. के रूप में अनंत की ओर विचलन करता है।

तब अनंत की ओर विचरण करता है।[11]

अनुचित रूप से पूर्णांकित फलनों के लिए अंतिम मान प्रमेय (अभिन्न के लिए एबेल का प्रमेय)

मान लीजिये मापने योग्य हो और ऐसा हो कि (संभवतः अनुचित) अभिन्न हो के लिए एकत्रित होता है। तब

यह एबल के प्रमेय का एक संस्करण है।

इसे देखने के लिए उस पर ध्यान दें और भागों द्वारा एकीकरण के बाद अंतिम मान प्रमेय को पर प्रयुक्त करें: के लिए,

अंतिम मान प्रमेय के अनुसार, बाईं ओर का भाग के लिए पर परिवर्तित हो जाता है।

व्यवहार में अनुचित इंटीग्रल के अभिसरण को स्थापित करने के लिए, अनुचित इंटीग्रल के लिए डिरिक्लेट का परीक्षण अधिकांश सहायक होता है। एक उदाहरण डिरिचलेट इंटीग्रल है।

अनुप्रयोग

प्राप्त करने के लिए अंतिम मान प्रमेय क्षण (गणित) की गणना करने के लिए संभाव्यता और सांख्यिकी में अनुप्रयोग हैं। मान लीजिये एक सतत यादृच्छिक वेरिएबल का संचयी वितरण फलन बनें और मान लीजिए का लाप्लास-स्टिल्टजेस रूपांतरण है। फिर -वें क्षण का के रूप में गणना की जा सकती है

रणनीति लिखने की है

जहाँ निरंतर है और

प्रत्येक के लिए, एक फलन के लिए प्रत्येक के लिए, मान लीजिये के व्युत्क्रम लाप्लास परिवर्तन के रूप में , प्राप्त

, और निष्कर्ष निकालने के लिए अंतिम मान प्रमेय प्रयुक्त करें
. तब
और इसलिए प्राप्त होना।

उदाहरण

उदाहरण जहां FVT धारण करता है

उदाहरण के लिए, स्थानांतरण फलन द्वारा वर्णित प्रणाली के लिए

आवेग प्रतिक्रिया परिवर्तित हो जाती है

अर्थात्, एक छोटे आवेग से परेशान होने के बाद प्रणाली शून्य पर लौट आता है। चूँकि, चरण प्रतिक्रिया का लाप्लास परिवर्तन है

और इस प्रकार चरण प्रतिक्रिया अभिसरित हो जाती है

तो एक शून्य-अवस्था प्रणाली 3 के अंतिम मान तक तेजी से वृद्धि का अनुसरण करेगी।

उदाहरण जहां FVT मान्य नहीं है

स्थानांतरण फलन द्वारा वर्णित प्रणाली के लिए

ऐसा प्रतीत होता है कि अंतिम मान प्रमेय आवेग प्रतिक्रिया का अंतिम मान 0 और चरण प्रतिक्रिया का अंतिम मान 1 होने की भविष्यवाणी करता है। चूँकि, कोई भी समय-डोमेन सीमा उपस्थित नहीं है, और इसलिए अंतिम मान प्रमेय की भविष्यवाणियाँ मान्य नहीं हैं। वास्तव में, आवेग प्रतिक्रिया और चरण प्रतिक्रिया दोनों दोलन करते हैं, और (इस विशेष स्थिति में) अंतिम मान प्रमेय उन औसत मान का वर्णन करता है जिनके आसपास प्रतिक्रियाएं दोलन करती हैं।

नियंत्रण सिद्धांत में दो जाँचें की जाती हैं जो अंतिम मान प्रमेय के लिए वैध परिणामों की पुष्टि करती हैं:

  1. हर के सभी गैर-शून्य मूल ऋणात्मक वास्तविक भाग होने चाहिए।
  2. मूल स्थान पर एक से अधिक ध्रुव नहीं होने चाहिए।

इस उदाहरण में नियम 1 संतुष्ट नहीं था, इसमें प्रत्येक और के मूल हैं.

Z परिवर्तन के लिए अंतिम मान प्रमेय

limk → ∞ f[k] का अनुमान

अंतिम मान प्रमेय

यदि का अस्तित्व है और का अस्तित्व है तो का अस्तित्व है।[4]: 101 

रैखिक प्रणालियों का अंतिम मान

सतत-समय एलटीआई प्रणाली

प्रणाली का अंतिम मान

एक चरण इनपुट के जवाब में आयाम के साथ है:


नमूना-डेटा प्रणाली

उपरोक्त निरंतर-समय एलटीआई प्रणाली की नमूना-डेटा प्रणाली, एपेरियोडिक नमूनाकरण समय पर असतत-समय प्रणाली है

जहाँ और

,

एक चरण इनपुट के जवाब में इस प्रणाली का अंतिम मान आयाम के साथ यह इसकी मूल सतत-समय प्रणाली के अंतिम मान के समान है। [12]

यह भी देखें

टिप्पणियाँ

  1. Wang, Ruye (2010-02-17). "प्रारंभिक और अंतिम मूल्य प्रमेय". Retrieved 2011-10-21.
  2. Alan V. Oppenheim; Alan S. Willsky; S. Hamid Nawab (1997). Signals & Systems. New Jersey, USA: Prentice Hall. ISBN 0-13-814757-4.
  3. 3.0 3.1 3.2 Schiff, Joel L. (1999). The Laplace Transform: Theory and Applications. New York: Springer. ISBN 978-1-4757-7262-3.
  4. 4.0 4.1 4.2 4.3 Graf, Urs (2004). वैज्ञानिकों और इंजीनियरों के लिए एप्लाइड लाप्लास ट्रांसफॉर्म और जेड-ट्रांसफॉर्म. Basel: Birkhäuser Verlag. ISBN 3-7643-2427-9.
  5. 5.0 5.1 5.2 Chen, Jie; Lundberg, Kent H.; Davison, Daniel E.; Bernstein, Dennis S. (June 2007). "अंतिम मूल्य प्रमेय पर दोबारा गौर किया गया - अनंत सीमाएँ और अपरिमेय कार्य". IEEE Control Systems Magazine. 27 (3): 97–99. doi:10.1109/MCS.2007.365008.
  6. "लाप्लास ट्रांसफॉर्म का अंतिम मूल्य प्रमेय". ProofWiki. Retrieved 12 April 2020.
  7. 7.0 7.1 7.2 Ullrich, David C. (2018-05-26). "टूबेरियन अंतिम मूल्य प्रमेय". Math Stack Exchange.
  8. 8.0 8.1 Sopasakis, Pantelis (2019-05-18). "डोमिनेटेड कन्वर्जेन्स प्रमेय का उपयोग करके अंतिम मूल्य प्रमेय के लिए एक प्रमाण". Math Stack Exchange.
  9. Murthy, Kavi Rama (2019-05-07). "लाप्लास ट्रांसफॉर्म के लिए अंतिम मूल्य प्रमेय का वैकल्पिक संस्करण". Math Stack Exchange.
  10. Gluskin, Emanuel (1 November 2003). "आइए हम अंतिम-मूल्य प्रमेय के इस सामान्यीकरण को सिखाएं". European Journal of Physics. 24 (6): 591–597. doi:10.1088/0143-0807/24/6/005.
  11. Hew, Patrick (2020-04-22). "Final Value Theorem for function that diverges to infinity?". Math Stack Exchange.
  12. Mohajeri, Kamran; Madadi, Ali; Tavassoli, Babak (2021). "विलंब और ड्रॉपआउट वाले नेटवर्क पर एपेरियोडिक सैंपलिंग के साथ ट्रैकिंग नियंत्रण". International Journal of Systems Science. 52 (10): 1987–2002. doi:10.1080/00207721.2021.1874074.

बाहरी संबंध