आस्टेंपरिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:Austempering.jpg|thumb|समय-तापमान परिवर्तन (टीटीटी) आरेख हैं। लाल रेखा ऑस्टेम्परिंग के लिए शीतलन वक्र को दर्शाती है।]]'''ऑस्टेम्परिंग''' ऊष्मा उपचार है जिसे [[लौह]] [[धातु|धातुओं]], विशेष रूप से स्टील और स्मूथ लोहे पर प्रयुक्त किया जाता है। स्टील में यह [[बैनाइट]] माइक्रोस्ट्रक्चर का निर्माण करता है जबकि कच्चे लोहे में यह एसिकुलर फेराइट और उच्च कार्बन, स्थिर [[ ऑस्टेनाईट austenite |ऑस्टेनाईट]] की संरचना का निर्माण करता है जिसे ''ऑस्फेराइट'' के रूप में जाना जाता है। इसका उपयोग मुख्य रूप से यांत्रिक गुणों में सुधार या विकृति को कम/समाप्त करने के लिए किया जाता है। ऑस्टेम्परिंग को प्रक्रिया और परिणामी माइक्रोस्ट्रक्चर दोनों द्वारा परिभाषित किया गया है। अनुपयुक्त सामग्री पर प्रयुक्त विशिष्ट ऑस्टेम्परिंग प्रक्रिया मापदंडों के परिणामस्वरूप बैनाइट या ऑस्फेराइट का निर्माण नहीं होगा और इस प्रकार अंतिम उत्पाद को ऑस्टेम्पर्ड नहीं कहा जा सकता हैं। दोनों माइक्रोस्ट्रक्चर अन्य विधियों से भी तैयार किए जा सकते हैं। उदाहरण के लिए, उन्हें उचित मिश्र धातु सामग्री के साथ कास्ट या एयर कूल्ड के रूप में उत्पादित किया जा सकता है। इन सामग्रियों को ऑस्टेम्पर्ड भी नहीं कहा जाता है।
[[File:Austempering.jpg|thumb|समय-तापमान परिवर्तन (टीटीटी) आरेख हैं। लाल रेखा ऑस्टेम्परिंग के लिए शीतलन वक्र को दर्शाती है।]]'''ऑस्टेम्परिंग''' ऊष्मा उपचार है जिसे [[लौह]] [[धातु|धातुओं]], विशेष रूप से स्टील और स्मूथ लोहे पर प्रयुक्त किया जाता है। स्टील में यह [[बैनाइट]] माइक्रोस्ट्रक्चर का निर्माण करता है जबकि कच्चे लोहे में यह एसिकुलर फेराइट और उच्च कार्बन, स्थिर [[ ऑस्टेनाईट austenite |ऑस्टेनाईट]] की संरचना का निर्माण करता है जिसे ''ऑस्फेराइट'' के रूप में जाना जाता है। इसका उपयोग मुख्य रूप से यांत्रिक गुणों में सुधार या विकृति को कम/समाप्त करने के लिए किया जाता है। ऑस्टेम्परिंग को प्रक्रिया और परिणामी माइक्रोस्ट्रक्चर दोनों द्वारा परिभाषित किया गया है। अनुपयुक्त सामग्री पर प्रयुक्त विशिष्ट ऑस्टेम्परिंग प्रक्रिया मापदंडों के परिणामस्वरूप बैनाइट या ऑस्फेराइट का निर्माण नहीं होता हैं और इस प्रकार अंतिम उत्पाद को ऑस्टेम्पर्ड नहीं कहा जा सकता हैं। दोनों माइक्रोस्ट्रक्चर अन्य विधियों से भी तैयार किए जा सकते हैं। उदाहरण के लिए, उन्हें उचित मिश्र धातु सामग्री के साथ कास्ट या एयर कूल्ड के रूप में उत्पादित किया जा सकता है। इन सामग्रियों को ऑस्टेम्पर्ड भी नहीं कहा जाता है।


== इतिहास ==
== इतिहास ==
स्टील की ऑस्टेम्परिंग की प्रारंभ सबसे पहले 1930 के दशक में एडगर सी. बेन और एडमंड एस. डेवनपोर्ट ने की थी, जो उस समय यूनाइटेड स्टेट्स स्टील कॉरपोरेशन के लिए कार्य कर रहे थे। बैनाइट अपनी स्वीकृत खोज तिथि से बहुत पूर्व स्टील्स में उपस्थित रहा होगा, किन्तु उपलब्ध सीमित मेटलोग्राफिक तकनीकों और उस समय के ताप उपचार प्रथाओं द्वारा गठित मिश्रित सूक्ष्म संरचनाओं के कारण इसकी समानता नहीं की गई थी। आकस्मिक परिस्थितियों ने बेन को इज़ोटेर्मल चरण परिवर्तनों का अध्ययन करने के लिए प्रेरित किया हैं। ऑस्टेनाइट और स्टील के उच्च तापमान चरणों को अधिक से अधिक समझा जा रहा था और यह पूर्व से ही ज्ञात था कि ऑस्टेनाइट को कमरे के तापमान पर बनाए रखा जा सकता है। अमेरिकन स्टील एंड वायर कंपनी में अपने संपर्कों के माध्यम से, बेन के उद्योग में उपयोग किए जा रहे थे इज़ोटेर्मल परिवर्तनों के बारे में पता चला और उन्होंने इसमें नए प्रयोगों की कल्पना करना प्रारंभ कर दिया था। <ref name="Bhadeshia">Bhadeshia, H. K. D. H.,  "Bainite in Steels: Transformations, Microstructure, and properties" second edition, IOM Communications, London, England, 2001</ref>
स्टील की ऑस्टेम्परिंग के प्रारंभ में सबसे पहले 1930 के दशक में एडगर सी. बेन और एडमंड एस. डेवनपोर्ट ने की थी, जो उस समय यूनाइटेड स्टेट्स स्टील कॉरपोरेशन के लिए कार्य कर रहे थे। बैनाइट अपनी स्वीकृत खोज तिथि से बहुत पहले स्टील्स में उपस्थित रहा होगा, किन्तु उपलब्ध सीमित मेटलोग्राफिक तकनीकों और उस समय के ताप उपचार प्रथाओं द्वारा गठित मिश्रित सूक्ष्म संरचनाओं के कारण इसकी समानता नहीं की गई थी। आकस्मिक परिस्थितियों ने बेन को इज़ोटेर्मल चरण परिवर्तनों का अध्ययन करने के लिए प्रेरित किया हैं। ऑस्टेनाइट और स्टील के उच्च तापमान चरणों को अधिक से अधिक समझा जा रहा था और यह पूर्व से ही ज्ञात था कि ऑस्टेनाइट को कमरे के तापमान पर बनाए रखा जा सकता है। अमेरिकन स्टील एंड वायर कंपनी में अपने संपर्कों के माध्यम से, बेन के उद्योग में उपयोग किए जा रहे थे इज़ोटेर्मल परिवर्तनों के बारे में पता चला और उन्होंने इसमें नए प्रयोगों की कल्पना करना प्रारंभ कर दिया था। <ref name="Bhadeshia">Bhadeshia, H. K. D. H.,  "Bainite in Steels: Transformations, Microstructure, and properties" second edition, IOM Communications, London, England, 2001</ref>


स्टील्स के इज़ोटेर्मल परिवर्तन में आगे का शोध बेन और डेवनपोर्ट की नवीन माइक्रोस्ट्रक्चर की खोज का परिणाम था जिसमें "एसिक्यूलर, डार्क एचिंग एग्रीगेट" सम्मिलित था। यह सूक्ष्म संरचना "टेम्पर्ड मार्टेंसाइट की तुलना में समान कठोरता के लिए अधिक कठोर" पाई गई थी। <ref>Bain, Edgar C., "Functions of the Alloying Elements in Steel" American Society for Metals, Cleveland, Ohio, 1939</ref> बैनिटिक स्टील का व्यावसायिक दोहन तीव्र नहीं था। उस समय सामान्य ताप-उपचार प्रथाओं में निरंतर शीतलन विधियाँ सम्मिलित थीं और यह व्यवहार में, पूर्णता से बैनिटिक माइक्रोस्ट्रक्चर का उत्पादन करने में सक्षम नहीं थीं। उपलब्ध मिश्र धातुओं की श्रेणी में या तब मिश्रित माइक्रोस्ट्रक्चर या अत्यधिक मात्रा में मार्टेंसाइट का उत्पादन होता है। 1958 में बोरान और मोलिब्डेनम युक्त कम कार्बन स्टील के आगमन ने निरंतर शीतलन द्वारा पूर्णता से बैनिटिक स्टील का उत्पादन करने की अनुमति दी थी।<ref name="Bhadeshia" /><ref>Irvine, K.J. and Pickering, F.B JISI 188, 1958.</ref> इस प्रकार बैनिटिक स्टील का व्यावसायिक उपयोग नवीन ताप-उपचार विधियों के विकास के परिणामस्वरूप हुआ था, जिसमें चरण सम्मिलित होता है जिसमें वर्कपीस को निश्चित तापमान पर पर्याप्त समय के लिए रखा जाता है जिससे कि आस्टेंपरिंग परिवर्तन को सामूहिक रूप से जाना जा सकता हैं।  
स्टील्स के इज़ोटेर्मल परिवर्तन में आगे का शोध बेन और डेवनपोर्ट की नवीन माइक्रोस्ट्रक्चर की खोज का परिणाम था जिसमें "एसिक्यूलर, डार्क एचिंग एग्रीगेट" सम्मिलित था। यह सूक्ष्म संरचना "टेम्पर्ड मार्टेंसाइट की तुलना में समान कठोरता के लिए अधिक कठोर" पाई गई थी। <ref>Bain, Edgar C., "Functions of the Alloying Elements in Steel" American Society for Metals, Cleveland, Ohio, 1939</ref> बैनिटिक स्टील का व्यावसायिक दोहन तीव्र नहीं था। उस समय सामान्य ताप-उपचार प्रथाओं में निरंतर शीतलन विधियाँ सम्मिलित थीं और यह व्यवहार में, पूर्णता से बैनिटिक माइक्रोस्ट्रक्चर का उत्पादन करने में सक्षम नहीं थीं। और उपलब्ध मिश्र धातुओं की श्रेणी में यह तब मिश्रित माइक्रोस्ट्रक्चर के अत्यधिक मात्रा में मार्टेंसाइट का उत्पादन होता है। 1958 में बोरान और मोलिब्डेनम युक्त कम कार्बन स्टील के आगमन ने निरंतर शीतलन द्वारा पूर्णता से बैनिटिक स्टील का उत्पादन करने की अनुमति दी थी।<ref name="Bhadeshia" /><ref>Irvine, K.J. and Pickering, F.B JISI 188, 1958.</ref> इस प्रकार बैनिटिक स्टील का व्यावसायिक उपयोग नवीन ताप-उपचार विधियों के विकास के परिणामस्वरूप हुआ था, जिसमें यह चरण सम्मिलित होता है जिसमें वर्कपीस को निश्चित तापमान पर पर्याप्त समय के लिए रखा जाता है जिससे कि आस्टेंपरिंग परिवर्तन को सामूहिक रूप से जाना जा सकता हैं।  


ऑस्टेम्पर्ड स्टील का प्रथम उपयोग द्वितीय विश्व युद्ध के समय राइफल बोल्ट में किया गया था।<ref name="Applied Process">{{cite web|url=http://www.appliedprocess.com |title=घर|publisher=Applied Process |date= |accessdate=2022-04-24}}</ref> उच्च कठोरता पर संभव उच्च प्रभाव शक्ति, और घटकों के अपेक्षाकृत छोटे खंड आकार ने ऑस्टेम्पर्ड स्टील को इस अनुप्रयोग के लिए आदर्श बना दिया था। इसके पश्चात् के दशकों में ऑस्टेम्परिंग ने स्प्रिंग उद्योग में क्रांति ला दी थी, जिसके पश्चात् क्लिप और क्लैंप आए थे। यह घटक, जो सामान्यतः पतले, गठित भाग होते हैं, और इनको महंगी मिश्र धातुओं की आवश्यकता भी नहीं होती है और यह सामान्यतः उनके टेम्पर्ड मार्टेंसाइट समकक्षों की तुलना में उत्तम प्रफुल्ल गुणों के होते हैं। और अंत में ऑस्टेम्पर्ड स्टील ने ऑटोमोटिव उद्योग में अपनी जगह बनाई, जहां इसका प्रथम उपयोग सुरक्षा के महत्वपूर्ण घटकों के रूप में हुआ था। कार सीट ब्रैकेट और सीट बेल्ट के अधिकांश घटक इसकी उच्च शक्ति और तन्यता के कारण ऑस्टेम्पर्ड स्टील से बने होते हैं। <ref name="Applied Process" /> यह गुण इसे दुर्घटना के समय भंगुर विफलता के कठिन परिस्थिति के बिना अधिक ऊर्जा अवशोषित करने की अनुमति देते हैं। वर्तमान में, ऑस्टेम्पर्ड स्टील का उपयोग बीयरिंग, घास काटने की मशीन ब्लेड, ट्रांसमिशन गियर, वेव प्लेट और टर्फ वातन टाइन में भी किया जाता है।<ref name="Applied Process" /> 20वीं शताब्दी के उत्तरार्ध में कच्चा लोहा बनाने के लिए कठिन प्रक्रिया को व्यावसायिक रूप से प्रयुक्त किया जाने लगा हैं। ऑस्टेम्पर्ड डक्टाइल आयरन (एडीआई) का पहली बार 1970 के दशक के प्रारंभ में व्यावसायीकरण किया गया था और तब से यह प्रमुख उद्योग बन गया है।
ऑस्टेम्पर्ड स्टील का प्रथम उपयोग द्वितीय विश्व युद्ध के समय राइफल बोल्ट में किया गया था।<ref name="Applied Process">{{cite web|url=http://www.appliedprocess.com |title=घर|publisher=Applied Process |date= |accessdate=2022-04-24}}</ref> उच्च कठोरता पर संभव उच्च प्रभाव शक्ति, और घटकों के अपेक्षाकृत छोटे भाग आकार ने ऑस्टेम्पर्ड स्टील को इस अनुप्रयोग के लिए आदर्श बना दिया था। इसके पश्चात् इनके दशकों में ऑस्टेम्परिंग ने स्प्रिंग उद्योग में क्रांति ला दी थी, जिसके पश्चात् क्लिप और क्लैंप आए थे। यह घटक, जो सामान्यतः पतले, गठित भाग होते हैं, और इनको महंगी मिश्र धातुओं की आवश्यकता भी नहीं होती है यह सामान्यतः उनके टेम्पर्ड मार्टेंसाइट समकक्षों की तुलना में उत्तम प्रफुल्ल गुणों के होते हैं। और अंत में ऑस्टेम्पर्ड स्टील ने ऑटोमोटिव उद्योग में अपनी जगह बनाई हैं, जहां इसका प्रथम उपयोग सुरक्षा के महत्वपूर्ण घटकों के रूप में हुआ था। कार सीट ब्रैकेट और सीट बेल्ट के अधिकांश घटक इसकी उच्च शक्ति और तन्यता के कारण ऑस्टेम्पर्ड स्टील से बने होते हैं। <ref name="Applied Process" /> यह गुण इसे दुर्घटना के समय भंगुर विफलता के कठिन परिस्थिति के अतिरिक्त अधिक ऊर्जा अवशोषित करने की अनुमति देते हैं। वर्तमान में, ऑस्टेम्पर्ड स्टील का उपयोग बीयरिंग, घास काटने की मशीन ब्लेड, ट्रांसमिशन गियर, वेव प्लेट और टर्फ वातन टाइन में भी किया जाता है।<ref name="Applied Process" /> 20वीं शताब्दी के उत्तरार्ध में कच्चा लोहा बनाने के लिए कठिन प्रक्रिया को व्यावसायिक रूप से प्रयुक्त किया जाने लगा हैं। ऑस्टेम्पर्ड डक्टाइल आयरन (एडीआई) को पहली बार 1970 के दशक के प्रारंभ में व्यावसायीकरण किया गया था और तब से यह प्रमुख उद्योग बन गया है।


== प्रक्रिया                                                                                                                                    ==
== प्रक्रिया                                                                                                                                    ==
Line 13: Line 13:


=== ऑस्टेनिटाइज़िंग ===
=== ऑस्टेनिटाइज़िंग ===
किसी भी परिवर्तन के लिए, धातु की सूक्ष्म संरचना ऑस्टेनाइट संरचना होनी चाहिए। ऑस्टेनाइट चरण क्षेत्र की स्पष्ट सीमाएं गर्मी से उपचारित किए जाने वाले मिश्र धातु के रसायन विज्ञान पर निर्भर करती हैं। चूँकि, ऑस्टेनिटाइज़िंग तापमान सामान्यतः 790 और 915°C (1455 से 1680°F) के मध्य होता है।<ref name="Guide">"Heat Treater's Guide: Practices and procedures for Irons and Steels" ASM International, Materials Park, Ohio, Second Edition,1995</ref> इस तापमान पर बिताए गए समय की मात्रा कठोर भाग के लिए मिश्र धातु और प्रक्रिया की विशिष्टताओं के साथ भिन्न-भिन्न होती हैं। सर्वोत्तम परिणाम तब प्राप्त होते हैं जब ऑस्टेनिटाइजेशन सुसंगत कार्बन सामग्री के साथ पूर्णता से ऑस्टेनिटिक धातु माइक्रोस्ट्रक्चर (कच्चा लोहा में अभी भी ग्रेफाइट उपस्थित होगा) का उत्पादन करने के लिए पर्याप्त लंबा होता है। स्टील्स में पूरे भाग के अनुभाग में ऑस्टेनिटाइजिंग तापमान पहुंचने के पश्चात् इसमें केवल कुछ मिनट लग सकते हैं, किन्तु कच्चा लोहा में इसमें अधिक समय लगता है। ऐसा इसलिए है क्योंकि कार्बन को ग्रेफाइट से बाहर तब तक फैलना चाहिए जब तक कि यह तापमान और चरण आरेख द्वारा निर्धारित संतुलन एकाग्रता तक नहीं पहुंच जाता हैं। यह चरण अनेक प्रकार की भट्टियों में, उच्च तापमान वाले लवण अवगाह में, या सीधी लौ या प्रेरण हीटिंग के माध्यम से किया जा सकता है। इसमें अनेक पेटेंट विशिष्ट विधियों और विविधताओं का वर्णन करते हैं।
किसी भी परिवर्तन के लिए, धातु की सूक्ष्म संरचना ऑस्टेनाइट संरचना होनी चाहिए। ऑस्टेनाइट चरण क्षेत्र की स्पष्ट सीमाएं उष्मा से उपचारित किए जाने वाले मिश्र धातु के रसायन विज्ञान पर निर्भर करती हैं। चूँकि, ऑस्टेनिटाइज़िंग तापमान सामान्यतः 790 और 915°C (1455 से 1680°F) के मध्य होता है।<ref name="Guide">"Heat Treater's Guide: Practices and procedures for Irons and Steels" ASM International, Materials Park, Ohio, Second Edition,1995</ref> इस तापमान पर बिताए गए समय की मात्रा कठोर भाग के लिए मिश्र धातु और प्रक्रिया की विशिष्टताओं के साथ भिन्न-भिन्न होती हैं। सर्वोत्तम परिणाम तब प्राप्त होते हैं जब ऑस्टेनिटाइजेशन सुसंगत कार्बन सामग्री के साथ पूर्णता से ऑस्टेनिटिक धातु माइक्रोस्ट्रक्चर (कच्चा लोहा में अभी भी ग्रेफाइट उपस्थित होगा) का उत्पादन करने के लिए पर्याप्त लंबा होता है। स्टील्स में पूरे भाग के अनुभाग में ऑस्टेनिटाइजिंग तापमान पहुंचने के पश्चात् इसमें केवल कुछ मिनट लग सकते हैं, किन्तु कच्चा लोहे को इसमें अधिक समय लगता है। ऐसा इसलिए है क्योंकि कार्बन को ग्रेफाइट से बाहर तब तक फैलना चाहिए जब तक कि यह तापमान और चरण आरेख द्वारा निर्धारित संतुलन एकाग्रता तक नहीं पहुंच जाता हैं। यह चरण अनेक प्रकार की भट्टियों में, उच्च तापमान वाले लवण अवगाह में, या सीधी लौ या प्रेरण हीटिंग के माध्यम से किया जा सकता है। इसमें अनेक पेटेंट विशिष्ट विधियों और विविधताओं का वर्णन करते हैं।


=== कुइंचिंग ===
=== कुइंचिंग ===
पारंपरिक क्वेंच और टेम्परिंग के साथ हीट ट्रीट की जाने वाली सामग्री को [[मोती जैसा|पर्लाइट]] के निर्माण से बचने के लिए ऑस्टेनिटाइजिंग तापमान से शीघ्रता से ठंडा किया जाना चाहिए। पर्लाइट के निर्माण से बचने के लिए आवश्यक विशिष्ट शीतलन दर ऑस्टेनाइट चरण के रसायन विज्ञान का उत्पाद है और इस प्रकार मिश्र धातु को संसाधित किया जाता है। वास्तविक शीतलन दर क्वेंच तीव्रता दोनों का उत्पाद है, जो क्वेंच मीडिया, आंदोलन, भार (क्वेंच अनुपात, आदि), और भाग की मोटाई और ज्यामिति से प्रभावित होता है। और परिणामस्वरूप, भारी अनुभाग घटकों को अधिक कठोरता की आवश्यकता होती है। ऑस्टेम्परिंग में हीट ट्रीट लोड को ऐसे तापमान तक कुइंचिंग किया जाता है जो सामान्यतः ऑस्टेनाइट के मार्टेंसाइट प्रारंभ से ऊपर होता है और उसे बनाए रखा जाता है। कुछ पेटेंट प्रक्रियाओं में भागों को मार्टेंसाइट प्रारंभ के ठीक नीचे कुइंचिंग जाता है जिससे कि परिणामी सूक्ष्म संरचना मार्टेंसाइट और बैनाइट का नियंत्रित मिश्रण होना संभव हो सकता हैं।
पारंपरिक क्वेंच और टेम्परिंग के साथ हीट ट्रीट की जाने वाली सामग्री को [[मोती जैसा|पर्लाइट]] के निर्माण से बचने के लिए ऑस्टेनिटाइजिंग तापमान से शीघ्रता से ठंडा किया जाना चाहिए। पर्लाइट के निर्माण से बचने के लिए आवश्यक विशिष्ट शीतलन दर ऑस्टेनाइट चरण के रसायन विज्ञान का उत्पाद है और इस प्रकार मिश्र धातु को संसाधित किया जाता है। वास्तविक शीतलन दर क्वेंच तीव्रता दोनों के उत्पाद होते है, जो क्वेंच मीडिया, आंदोलन, भार (क्वेंच अनुपात, आदि), और भाग की मोटाई और ज्यामिति से प्रभावित होता है। और परिणामस्वरूप, भारी अनुभाग में घटकों को अधिक कठोरता की आवश्यकता होती है। ऑस्टेम्परिंग में हीट ट्रीट लोड को ऐसे तापमान तक कुइंचिंग किया जाता है जो सामान्यतः ऑस्टेनाइट के मार्टेंसाइट प्रारंभ से ऊपर होता है और उसे बनाए रखा जाता है। कुछ पेटेंट प्रक्रियाओं में भागों को मार्टेंसाइट प्रारंभ के ठीक नीचे कुइंचिंग किया जाता है जिससे कि परिणामी सूक्ष्म संरचना मार्टेंसाइट और बैनाइट का नियंत्रित मिश्रण होना संभव हो सकता हैं।


क्वेंच के दो महत्वपूर्ण पक्ष शीतलन दर और धारण करने का समय हैं। सबसे सामान्य अभ्यास तरल नाइट्राइट-नाइट्रेट लवण के अवगाह में क्वेंच और ऊष्म में रखना है। प्रसंस्करण के लिए सीमित तापमान सीमा के कारण इसे सामान्यतः पानी या नमकीन पानी में क्वेंच संभव नहीं होता है, किन्तु उच्च तापमान वाले तेल का उपयोग संकीर्ण तापमान सीमा के लिए किया जाता है। कुछ प्रक्रियाओं में क्वेंच करना और फिर क्वेंच मीडिया से निकालना, फिर भट्टी में रखना सम्मिलित होता है। क्वेंच और धारण तापमान प्राथमिक प्रसंस्करण पैरामीटर हैं जो अंतिम कठोरता और इस प्रकार के सामग्री के गुणों को नियंत्रित करते हैं।
क्वेंच के दो महत्वपूर्ण पक्ष शीतलन दर और धारण करने का समय हैं। सबसे सामान्य अभ्यास तरल नाइट्राइट-नाइट्रेट लवण के अवगाह में क्वेंच और ऊष्म में रखना है। प्रसंस्करण के लिए सीमित तापमान सीमा के कारण इसे सामान्यतः पानी या नमकीन पानी में क्वेंच करना संभव नहीं है, किन्तु उच्च तापमान वाले तेल का उपयोग संकीर्ण तापमान सीमा के लिए किया जाता है। कुछ प्रक्रियाओं में क्वेंच करना और फिर क्वेंच मीडिया से निकालना, फिर भट्टी में रखना सम्मिलित होता है। क्वेंच और धारण तापमान प्राथमिक प्रसंस्करण पैरामीटर हैं जो अंतिम कठोरता और इस प्रकार के सामग्री के गुणों को नियंत्रित करते हैं।


=== शीतलक                                                                                                                                                  ===
=== शीतलक                                                                                                                                                  ===
कुइंचिंग और होल्डिंग के पश्चात् टूटने का कोई संकट नहीं रहता हैं इसमें भागों को सामान्यतः हवा में ठंडा किया जाता है और यह सीधे कमरे के तापमान वाले वॉश सिस्टम में डाल दिया जाता है।
कुइंचिंग और होल्डिंग के पश्चात् टूटने का कोई संकट नहीं रहता हैं इसमें भागों को सामान्यतः हवा में ठंडा किया जाता है और इनको सीधे कमरे के तापमान वाले वॉश सिस्टम में डाल दिया जाता है।


=== टेम्परिंग ===
=== टेम्परिंग ===
यदि भाग कठिन हो गया है और पूर्णता से बैनाइट या ऑस्फेराइट में परिवर्तित हो गया है, तब ऑस्टेम्परिंग के पश्चात् किसी टेम्परिंग की आवश्यकता नहीं होती है। <ref name="Guide" /> यह टेम्परिंग और चरण जोड़ता है और इस प्रकार की प्रक्रिया में निवेश होता है; यह बैनाइट या ऑस्फेराइट में वही गुण संशोधन और तनाव राहत प्रदान नहीं करता है जो यह वर्जिन मार्टेंसाइट के लिए करता है।
यदि भाग कठिन हो गया है और पूर्णता से बैनाइट या ऑस्फेराइट में परिवर्तित हो गया है, तब ऑस्टेम्परिंग के पश्चात् किसी टेम्परिंग की आवश्यकता नहीं होती है। <ref name="Guide" /> यह टेम्परिंग में और चरण जोड़ता है और इस प्रकार इसका प्रक्रिया में निवेश होता है; यह बैनाइट या ऑस्फेराइट में वही गुण संशोधन और तनाव राहत प्रदान नहीं करते है जो यह वर्जिन मार्टेंसाइट के लिए करता है।


==लाभ==
==लाभ==
ऑस्टेम्परिंग पारंपरिक सामग्री/प्रक्रिया संयोजनों की तुलना में अनेक विनिर्माण और प्रदर्शन लाभ प्रदान करता है। इसे अनेक सामग्रियों पर प्रयुक्त किया जा सकता है, और प्रत्येक संयोजन के अपने लाभ होते हैं, जो नीचे सूचीबद्ध हैं। वह लाभ जो सभी ऑस्टेम्पर्ड सामग्रियों में सामान्य है, वह क्वेंच और टेम्परिंग की तुलना में विरूपण की कम दर है। इसे संपूर्ण विनिर्माण प्रक्रिया के समायोजन द्वारा निवेश संग्रह में परिवर्तित किया जा सकता है। गर्मी उपचार से पूर्व मशीनिंग द्वारा सबसे तत्काल निवेश संग्रह प्राप्त की जाती है। क्वेंच-एंड-टेम्पर्ड स्टील घटक को ऑस्टेम्पर्ड डक्टाइल आयरन (एडीआई) में परिवर्तित करने के विशिष्ट स्थितियों में ऐसी अनेक बचतें संभव हैं। तन्य लोहा स्टील की तुलना में 10% कम घना होता है और इसे जाल के आकार के समीप भूमिका आबंटन कार्य किया जा सकता है, दोनों विशेषताएं भूमिका आबंटन कार्य के वजन को कम करती हैं। नियर-नेट-शेप कास्टिंग से मशीनिंग निवेश भी कम हो जाती है, जो कठोर स्टील के अतिरिक्त नरम स्मूथ लोहे की मशीनिंग से पूर्व ही कम हो जाती है। यह कम तैयार भाग वाले माल ले जाने वाले शुल्क को कम करता है और सुव्यवस्थित उत्पादन प्रवाह प्रायः लीड समय को कम करता है। और अनेक स्थितियों में शक्ति और घिसाव प्रतिरोध में भी सुधार किया जा सकता है।<ref name="Applied Process" />
ऑस्टेम्परिंग पारंपरिक सामग्री/प्रक्रिया संयोजनों की तुलना में अनेक विनिर्माण और प्रदर्शन लाभ प्रदान करता है। इसे अनेक सामग्रियों पर प्रयुक्त किया जा सकता है, और प्रत्येक संयोजन के अपने लाभ होते हैं, जो नीचे सूचीबद्ध हैं। वह लाभ जो सभी ऑस्टेम्पर्ड सामग्रियों में सामान्य है, वह क्वेंच और टेम्परिंग की तुलना में विरूपण की दर को कम करते है। इसे संपूर्ण विनिर्माण प्रक्रिया के समायोजन द्वारा निवेश संग्रह में परिवर्तित किया जा सकता है। उष्मा उपचार से पूर्व मशीनिंग द्वारा सबसे तत्काल निवेश संग्रह प्राप्त किया जाता है। क्वेंच-एंड-टेम्पर्ड स्टील घटक को ऑस्टेम्पर्ड डक्टाइल आयरन (एडीआई) में परिवर्तित करने के विशिष्ट स्थितियों में ऐसी अनेक बचतें संभव हैं। तन्य लोहा स्टील की तुलना में 10% कम घना होता है और इसमें जालक के आकार के समीप भूमिका आबंटन कार्य किया जा सकता है, दोनों विशेषताएं भूमिका आबंटन कार्य के वजन को कम करती हैं। नियर-नेट-शेप कास्टिंग से मशीनिंग निवेश भी कम हो जाता है, और कठोर स्टील के अतिरिक्त नरम स्मूथ लोहे की मशीनिंग से पूर्व ही कम हो जाती है। यह कम तैयार माल वाले भाग को ले जाने वाले शुल्क को कम करता है और सुव्यवस्थित उत्पादन प्रवाह प्रायः लीड समय को कम करता है। और इसके द्वारा अनेक स्थितियों में शक्ति और घिसाव प्रतिरोध में भी सुधार किया जा सकता है।<ref name="Applied Process" />


प्रक्रिया/सामग्री संयोजन में सम्मिलित हैं:
यह प्रक्रिया/सामग्री संयोजन में सम्मिलित हैं:
*ऑस्टम्पर्ड स्टील
*ऑस्टम्पर्ड स्टील
*कार्बो-ऑस्टेम्पर्ड स्टील
*कार्बो-ऑस्टेम्पर्ड स्टील
Line 42: Line 42:
प्रदर्शन में सुधार के संबंध में, ऑस्टेम्पर्ड सामग्रियों की तुलना सामान्यतः टेम्पर्ड मार्टेंसाइट माइक्रोस्ट्रक्चर के साथ पारंपरिक रूप से क्वेंच-एंड-टेम्पर्ड सामग्रियों से की जाती है।
प्रदर्शन में सुधार के संबंध में, ऑस्टेम्पर्ड सामग्रियों की तुलना सामान्यतः टेम्पर्ड मार्टेंसाइट माइक्रोस्ट्रक्चर के साथ पारंपरिक रूप से क्वेंच-एंड-टेम्पर्ड सामग्रियों से की जाती है।


40 [[रॉकवेल स्केल]] से ऊपर के स्टील्स में इन सुधारों में सम्मिलित हैं:
40 [[रॉकवेल स्केल]] से ऊपर के स्टील्स भी इन सुधारों में सम्मिलित हैं:
*किसी दी गई कठोरता के लिए उच्च तन्यता, प्रभाव शक्ति और घिसाव प्रतिरोध,
*किसी दी गई कठोरता के लिए उच्च तन्यता, प्रभाव शक्ति और विघर्षण प्रतिरोध,
*कम-विरूपण, दोहराने योग्य आयामी प्रतिक्रिया,
*अल्प-विरूपण, दोहराने योग्य आयामी प्रतिक्रिया,
* श्रम शक्ति में वृद्धि,
* श्रम शक्ति में वृद्धि,
*हाइड्रोजन और पर्यावरणीय क्षणस्थायता का प्रतिरोध।
*हाइड्रोजन और पर्यावरणीय क्षणस्थायता का प्रतिरोध।


कच्चा लोहा (250-550 [[ब्रिनेल स्केल]] से) इन सुधारों में सम्मिलित हैं:
कच्चा लोहा (250-550 [[ब्रिनेल स्केल]] के) इन सुधारों में सम्मिलित हैं:
*किसी दी गई कठोरता के लिए उच्च तन्यता और प्रभाव प्रतिरोध,
*किसी दी गई कठोरता के लिए उच्च तन्यता और प्रभाव प्रतिरोध,
*कम-विरूपण, दोहराने योग्य आयामी प्रतिक्रिया,
*अल्प-विरूपण, दोहराने योग्य आयामी प्रतिक्रिया,
* श्रम शक्ति में वृद्धि,
* श्रम शक्ति में वृद्धि,
*किसी दी गई कठोरता के लिए घिसाव प्रतिरोध में वृद्धि।
*किसी दी गई कठोरता के लिए विघर्षण प्रतिरोध में वृद्धि।


== संदर्भ ==
== संदर्भ ==

Revision as of 22:14, 11 December 2023

समय-तापमान परिवर्तन (टीटीटी) आरेख हैं। लाल रेखा ऑस्टेम्परिंग के लिए शीतलन वक्र को दर्शाती है।

ऑस्टेम्परिंग ऊष्मा उपचार है जिसे लौह धातुओं, विशेष रूप से स्टील और स्मूथ लोहे पर प्रयुक्त किया जाता है। स्टील में यह बैनाइट माइक्रोस्ट्रक्चर का निर्माण करता है जबकि कच्चे लोहे में यह एसिकुलर फेराइट और उच्च कार्बन, स्थिर ऑस्टेनाईट की संरचना का निर्माण करता है जिसे ऑस्फेराइट के रूप में जाना जाता है। इसका उपयोग मुख्य रूप से यांत्रिक गुणों में सुधार या विकृति को कम/समाप्त करने के लिए किया जाता है। ऑस्टेम्परिंग को प्रक्रिया और परिणामी माइक्रोस्ट्रक्चर दोनों द्वारा परिभाषित किया गया है। अनुपयुक्त सामग्री पर प्रयुक्त विशिष्ट ऑस्टेम्परिंग प्रक्रिया मापदंडों के परिणामस्वरूप बैनाइट या ऑस्फेराइट का निर्माण नहीं होता हैं और इस प्रकार अंतिम उत्पाद को ऑस्टेम्पर्ड नहीं कहा जा सकता हैं। दोनों माइक्रोस्ट्रक्चर अन्य विधियों से भी तैयार किए जा सकते हैं। उदाहरण के लिए, उन्हें उचित मिश्र धातु सामग्री के साथ कास्ट या एयर कूल्ड के रूप में उत्पादित किया जा सकता है। इन सामग्रियों को ऑस्टेम्पर्ड भी नहीं कहा जाता है।

इतिहास

स्टील की ऑस्टेम्परिंग के प्रारंभ में सबसे पहले 1930 के दशक में एडगर सी. बेन और एडमंड एस. डेवनपोर्ट ने की थी, जो उस समय यूनाइटेड स्टेट्स स्टील कॉरपोरेशन के लिए कार्य कर रहे थे। बैनाइट अपनी स्वीकृत खोज तिथि से बहुत पहले स्टील्स में उपस्थित रहा होगा, किन्तु उपलब्ध सीमित मेटलोग्राफिक तकनीकों और उस समय के ताप उपचार प्रथाओं द्वारा गठित मिश्रित सूक्ष्म संरचनाओं के कारण इसकी समानता नहीं की गई थी। आकस्मिक परिस्थितियों ने बेन को इज़ोटेर्मल चरण परिवर्तनों का अध्ययन करने के लिए प्रेरित किया हैं। ऑस्टेनाइट और स्टील के उच्च तापमान चरणों को अधिक से अधिक समझा जा रहा था और यह पूर्व से ही ज्ञात था कि ऑस्टेनाइट को कमरे के तापमान पर बनाए रखा जा सकता है। अमेरिकन स्टील एंड वायर कंपनी में अपने संपर्कों के माध्यम से, बेन के उद्योग में उपयोग किए जा रहे थे इज़ोटेर्मल परिवर्तनों के बारे में पता चला और उन्होंने इसमें नए प्रयोगों की कल्पना करना प्रारंभ कर दिया था। [1]

स्टील्स के इज़ोटेर्मल परिवर्तन में आगे का शोध बेन और डेवनपोर्ट की नवीन माइक्रोस्ट्रक्चर की खोज का परिणाम था जिसमें "एसिक्यूलर, डार्क एचिंग एग्रीगेट" सम्मिलित था। यह सूक्ष्म संरचना "टेम्पर्ड मार्टेंसाइट की तुलना में समान कठोरता के लिए अधिक कठोर" पाई गई थी। [2] बैनिटिक स्टील का व्यावसायिक दोहन तीव्र नहीं था। उस समय सामान्य ताप-उपचार प्रथाओं में निरंतर शीतलन विधियाँ सम्मिलित थीं और यह व्यवहार में, पूर्णता से बैनिटिक माइक्रोस्ट्रक्चर का उत्पादन करने में सक्षम नहीं थीं। और उपलब्ध मिश्र धातुओं की श्रेणी में यह तब मिश्रित माइक्रोस्ट्रक्चर के अत्यधिक मात्रा में मार्टेंसाइट का उत्पादन होता है। 1958 में बोरान और मोलिब्डेनम युक्त कम कार्बन स्टील के आगमन ने निरंतर शीतलन द्वारा पूर्णता से बैनिटिक स्टील का उत्पादन करने की अनुमति दी थी।[1][3] इस प्रकार बैनिटिक स्टील का व्यावसायिक उपयोग नवीन ताप-उपचार विधियों के विकास के परिणामस्वरूप हुआ था, जिसमें यह चरण सम्मिलित होता है जिसमें वर्कपीस को निश्चित तापमान पर पर्याप्त समय के लिए रखा जाता है जिससे कि आस्टेंपरिंग परिवर्तन को सामूहिक रूप से जाना जा सकता हैं।

ऑस्टेम्पर्ड स्टील का प्रथम उपयोग द्वितीय विश्व युद्ध के समय राइफल बोल्ट में किया गया था।[4] उच्च कठोरता पर संभव उच्च प्रभाव शक्ति, और घटकों के अपेक्षाकृत छोटे भाग आकार ने ऑस्टेम्पर्ड स्टील को इस अनुप्रयोग के लिए आदर्श बना दिया था। इसके पश्चात् इनके दशकों में ऑस्टेम्परिंग ने स्प्रिंग उद्योग में क्रांति ला दी थी, जिसके पश्चात् क्लिप और क्लैंप आए थे। यह घटक, जो सामान्यतः पतले, गठित भाग होते हैं, और इनको महंगी मिश्र धातुओं की आवश्यकता भी नहीं होती है यह सामान्यतः उनके टेम्पर्ड मार्टेंसाइट समकक्षों की तुलना में उत्तम प्रफुल्ल गुणों के होते हैं। और अंत में ऑस्टेम्पर्ड स्टील ने ऑटोमोटिव उद्योग में अपनी जगह बनाई हैं, जहां इसका प्रथम उपयोग सुरक्षा के महत्वपूर्ण घटकों के रूप में हुआ था। कार सीट ब्रैकेट और सीट बेल्ट के अधिकांश घटक इसकी उच्च शक्ति और तन्यता के कारण ऑस्टेम्पर्ड स्टील से बने होते हैं। [4] यह गुण इसे दुर्घटना के समय भंगुर विफलता के कठिन परिस्थिति के अतिरिक्त अधिक ऊर्जा अवशोषित करने की अनुमति देते हैं। वर्तमान में, ऑस्टेम्पर्ड स्टील का उपयोग बीयरिंग, घास काटने की मशीन ब्लेड, ट्रांसमिशन गियर, वेव प्लेट और टर्फ वातन टाइन में भी किया जाता है।[4] 20वीं शताब्दी के उत्तरार्ध में कच्चा लोहा बनाने के लिए कठिन प्रक्रिया को व्यावसायिक रूप से प्रयुक्त किया जाने लगा हैं। ऑस्टेम्पर्ड डक्टाइल आयरन (एडीआई) को पहली बार 1970 के दशक के प्रारंभ में व्यावसायीकरण किया गया था और तब से यह प्रमुख उद्योग बन गया है।

प्रक्रिया

ऑस्टेम्परिंग और पारंपरिक क्वेंच और टेम्परिंग के मध्य सबसे उल्लेखनीय अंतर यह है कि इसमें वर्कपीस को लंबे समय तक क्वेंच तापमान पर रखना सम्मिलित है। फिर चाहे यह कच्चा लोहा या स्टील पर प्रयुक्त किया जाए, और इस प्रकार इसके मूलभूत चरण समान होते हैं

ऑस्टेनिटाइज़िंग

किसी भी परिवर्तन के लिए, धातु की सूक्ष्म संरचना ऑस्टेनाइट संरचना होनी चाहिए। ऑस्टेनाइट चरण क्षेत्र की स्पष्ट सीमाएं उष्मा से उपचारित किए जाने वाले मिश्र धातु के रसायन विज्ञान पर निर्भर करती हैं। चूँकि, ऑस्टेनिटाइज़िंग तापमान सामान्यतः 790 और 915°C (1455 से 1680°F) के मध्य होता है।[5] इस तापमान पर बिताए गए समय की मात्रा कठोर भाग के लिए मिश्र धातु और प्रक्रिया की विशिष्टताओं के साथ भिन्न-भिन्न होती हैं। सर्वोत्तम परिणाम तब प्राप्त होते हैं जब ऑस्टेनिटाइजेशन सुसंगत कार्बन सामग्री के साथ पूर्णता से ऑस्टेनिटिक धातु माइक्रोस्ट्रक्चर (कच्चा लोहा में अभी भी ग्रेफाइट उपस्थित होगा) का उत्पादन करने के लिए पर्याप्त लंबा होता है। स्टील्स में पूरे भाग के अनुभाग में ऑस्टेनिटाइजिंग तापमान पहुंचने के पश्चात् इसमें केवल कुछ मिनट लग सकते हैं, किन्तु कच्चा लोहे को इसमें अधिक समय लगता है। ऐसा इसलिए है क्योंकि कार्बन को ग्रेफाइट से बाहर तब तक फैलना चाहिए जब तक कि यह तापमान और चरण आरेख द्वारा निर्धारित संतुलन एकाग्रता तक नहीं पहुंच जाता हैं। यह चरण अनेक प्रकार की भट्टियों में, उच्च तापमान वाले लवण अवगाह में, या सीधी लौ या प्रेरण हीटिंग के माध्यम से किया जा सकता है। इसमें अनेक पेटेंट विशिष्ट विधियों और विविधताओं का वर्णन करते हैं।

कुइंचिंग

पारंपरिक क्वेंच और टेम्परिंग के साथ हीट ट्रीट की जाने वाली सामग्री को पर्लाइट के निर्माण से बचने के लिए ऑस्टेनिटाइजिंग तापमान से शीघ्रता से ठंडा किया जाना चाहिए। पर्लाइट के निर्माण से बचने के लिए आवश्यक विशिष्ट शीतलन दर ऑस्टेनाइट चरण के रसायन विज्ञान का उत्पाद है और इस प्रकार मिश्र धातु को संसाधित किया जाता है। वास्तविक शीतलन दर क्वेंच तीव्रता दोनों के उत्पाद होते है, जो क्वेंच मीडिया, आंदोलन, भार (क्वेंच अनुपात, आदि), और भाग की मोटाई और ज्यामिति से प्रभावित होता है। और परिणामस्वरूप, भारी अनुभाग में घटकों को अधिक कठोरता की आवश्यकता होती है। ऑस्टेम्परिंग में हीट ट्रीट लोड को ऐसे तापमान तक कुइंचिंग किया जाता है जो सामान्यतः ऑस्टेनाइट के मार्टेंसाइट प्रारंभ से ऊपर होता है और उसे बनाए रखा जाता है। कुछ पेटेंट प्रक्रियाओं में भागों को मार्टेंसाइट प्रारंभ के ठीक नीचे कुइंचिंग किया जाता है जिससे कि परिणामी सूक्ष्म संरचना मार्टेंसाइट और बैनाइट का नियंत्रित मिश्रण होना संभव हो सकता हैं।

क्वेंच के दो महत्वपूर्ण पक्ष शीतलन दर और धारण करने का समय हैं। सबसे सामान्य अभ्यास तरल नाइट्राइट-नाइट्रेट लवण के अवगाह में क्वेंच और ऊष्म में रखना है। प्रसंस्करण के लिए सीमित तापमान सीमा के कारण इसे सामान्यतः पानी या नमकीन पानी में क्वेंच करना संभव नहीं है, किन्तु उच्च तापमान वाले तेल का उपयोग संकीर्ण तापमान सीमा के लिए किया जाता है। कुछ प्रक्रियाओं में क्वेंच करना और फिर क्वेंच मीडिया से निकालना, फिर भट्टी में रखना सम्मिलित होता है। क्वेंच और धारण तापमान प्राथमिक प्रसंस्करण पैरामीटर हैं जो अंतिम कठोरता और इस प्रकार के सामग्री के गुणों को नियंत्रित करते हैं।

शीतलक

कुइंचिंग और होल्डिंग के पश्चात् टूटने का कोई संकट नहीं रहता हैं इसमें भागों को सामान्यतः हवा में ठंडा किया जाता है और इनको सीधे कमरे के तापमान वाले वॉश सिस्टम में डाल दिया जाता है।

टेम्परिंग

यदि भाग कठिन हो गया है और पूर्णता से बैनाइट या ऑस्फेराइट में परिवर्तित हो गया है, तब ऑस्टेम्परिंग के पश्चात् किसी टेम्परिंग की आवश्यकता नहीं होती है। [5] यह टेम्परिंग में और चरण जोड़ता है और इस प्रकार इसका प्रक्रिया में निवेश होता है; यह बैनाइट या ऑस्फेराइट में वही गुण संशोधन और तनाव राहत प्रदान नहीं करते है जो यह वर्जिन मार्टेंसाइट के लिए करता है।

लाभ

ऑस्टेम्परिंग पारंपरिक सामग्री/प्रक्रिया संयोजनों की तुलना में अनेक विनिर्माण और प्रदर्शन लाभ प्रदान करता है। इसे अनेक सामग्रियों पर प्रयुक्त किया जा सकता है, और प्रत्येक संयोजन के अपने लाभ होते हैं, जो नीचे सूचीबद्ध हैं। वह लाभ जो सभी ऑस्टेम्पर्ड सामग्रियों में सामान्य है, वह क्वेंच और टेम्परिंग की तुलना में विरूपण की दर को कम करते है। इसे संपूर्ण विनिर्माण प्रक्रिया के समायोजन द्वारा निवेश संग्रह में परिवर्तित किया जा सकता है। उष्मा उपचार से पूर्व मशीनिंग द्वारा सबसे तत्काल निवेश संग्रह प्राप्त किया जाता है। क्वेंच-एंड-टेम्पर्ड स्टील घटक को ऑस्टेम्पर्ड डक्टाइल आयरन (एडीआई) में परिवर्तित करने के विशिष्ट स्थितियों में ऐसी अनेक बचतें संभव हैं। तन्य लोहा स्टील की तुलना में 10% कम घना होता है और इसमें जालक के आकार के समीप भूमिका आबंटन कार्य किया जा सकता है, दोनों विशेषताएं भूमिका आबंटन कार्य के वजन को कम करती हैं। नियर-नेट-शेप कास्टिंग से मशीनिंग निवेश भी कम हो जाता है, और कठोर स्टील के अतिरिक्त नरम स्मूथ लोहे की मशीनिंग से पूर्व ही कम हो जाती है। यह कम तैयार माल वाले भाग को ले जाने वाले शुल्क को कम करता है और सुव्यवस्थित उत्पादन प्रवाह प्रायः लीड समय को कम करता है। और इसके द्वारा अनेक स्थितियों में शक्ति और घिसाव प्रतिरोध में भी सुधार किया जा सकता है।[4]

यह प्रक्रिया/सामग्री संयोजन में सम्मिलित हैं:

  • ऑस्टम्पर्ड स्टील
  • कार्बो-ऑस्टेम्पर्ड स्टील
  • मार्बेन स्टील
  • ऑस्टेम्पर्ड डक्टाइल आयरन (एडीआई)
  • स्थानीय रूप से ऑस्टेम्पर्ड डक्टाइल आयरन (एलएडीआई)
  • ऑस्टम्पर्ड ग्रे आयरन (एजीआई)
  • कार्बिडिक ऑस्टेम्पर्ड डक्टाइल आयरन (सीएडीआई)
  • इंटरक्रिटिकली ऑस्टेम्पर्ड स्टील
  • इंटरक्रिटिकली ऑस्टेम्पर्ड डक्टाइल आयरन

प्रदर्शन में सुधार के संबंध में, ऑस्टेम्पर्ड सामग्रियों की तुलना सामान्यतः टेम्पर्ड मार्टेंसाइट माइक्रोस्ट्रक्चर के साथ पारंपरिक रूप से क्वेंच-एंड-टेम्पर्ड सामग्रियों से की जाती है।

40 रॉकवेल स्केल से ऊपर के स्टील्स भी इन सुधारों में सम्मिलित हैं:

  • किसी दी गई कठोरता के लिए उच्च तन्यता, प्रभाव शक्ति और विघर्षण प्रतिरोध,
  • अल्प-विरूपण, दोहराने योग्य आयामी प्रतिक्रिया,
  • श्रम शक्ति में वृद्धि,
  • हाइड्रोजन और पर्यावरणीय क्षणस्थायता का प्रतिरोध।

कच्चा लोहा (250-550 ब्रिनेल स्केल के) इन सुधारों में सम्मिलित हैं:

  • किसी दी गई कठोरता के लिए उच्च तन्यता और प्रभाव प्रतिरोध,
  • अल्प-विरूपण, दोहराने योग्य आयामी प्रतिक्रिया,
  • श्रम शक्ति में वृद्धि,
  • किसी दी गई कठोरता के लिए विघर्षण प्रतिरोध में वृद्धि।

संदर्भ

  1. 1.0 1.1 Bhadeshia, H. K. D. H., "Bainite in Steels: Transformations, Microstructure, and properties" second edition, IOM Communications, London, England, 2001
  2. Bain, Edgar C., "Functions of the Alloying Elements in Steel" American Society for Metals, Cleveland, Ohio, 1939
  3. Irvine, K.J. and Pickering, F.B JISI 188, 1958.
  4. 4.0 4.1 4.2 4.3 "घर". Applied Process. Retrieved 2022-04-24.
  5. 5.0 5.1 "Heat Treater's Guide: Practices and procedures for Irons and Steels" ASM International, Materials Park, Ohio, Second Edition,1995