कोलमोगोरोव समीकरण: Difference between revisions

From Vigyanwiki
No edit summary
Line 43: Line 43:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 05/12/2023]]
[[Category:Created On 05/12/2023]]
[[Category:Vigyan Ready]]

Revision as of 10:55, 14 December 2023

संभाव्यता सिद्धांत में, कोलमोगोरोव समीकरण, जिसमें कोलमोगोरोव फॉरवर्ड समीकरण और कोलमोगोरोव बैकवर्ड समीकरण सम्मिलित हैं, निरंतर-समय मार्कोव प्रक्रियाओं की विशेषता बताते हैं। विशेष रूप से, वे वर्णन करते हैं कि निरंतर-समय मार्कोव प्रक्रिया के निश्चित स्थिति में होने की संभावना समय के साथ कैसे बदलती है।

प्रसार प्रक्रियाएं बनाम जंप प्रक्रियाएं

1931 में लिखते हुए, आंद्रेई कोलमोगोरोव ने असतत समय मार्कोव प्रक्रियाओं के सिद्धांत से प्रारंभ की, जो चैपमैन-कोलमोगोरोव समीकरण द्वारा वर्णित हैं, और इस समीकरण का विस्तार करके निरंतर समय मार्कोव प्रक्रियाओं के सिद्धांत को प्राप्त करने का प्रयास किया है। उन्होंने पाया कि समय के छोटे अंतराल पर कल्पित व्यवहार के आधार पर निरंतर समय मार्कोव प्रक्रियाएँ दो प्रकार की होती हैं:

यदि आप यह मान लें कि छोटे से समय अंतराल में इस बात की अत्यधिक संभावना है कि स्थिति अपरिवर्तित रहेगी; चूँकि, यदि यह बदलता है, तो परिवर्तन मौलिक हो सकता है,[1] तब आपको उस ओर ले जाया जाता है जिसे जंप प्रक्रियाएँ कहा जाता है।

दूसरी स्थति ऐसी प्रक्रियाओं की ओर ले जाती है जो प्रसार और ब्राउनियन गति द्वारा दर्शायी जाती हैं; वहाँ यह निश्चित है कि किसी भी समय अंतराल में कुछ परिवर्तन घटित होंगे, चाहे वह कितना भी छोटा क्यों न हो; केवल, यहाँ यह निश्चित है कि छोटे समय अंतराल के समय परिवर्तन भी छोटे होंगे।[1]

इन दो प्रकार की प्रक्रियाओं में से प्रत्येक के लिए, कोलमोगोरोव ने समीकरणों की एक आगे और एक पिछली प्रणाली (कुल मिलाकर चार) निकाली है।

इतिहास

समीकरणों का नाम आंद्रेई कोलमोगोरोव के नाम पर रखा गया है क्योंकि उन्हें उनके 1931 के मूलभूत कार्य में उजागर किया गया था।[2]

1949 में विलियम फेलर ने, जंप और प्रसार दोनों प्रक्रियाओं में, कोलमोगोरोव की जोड़ी के अपने अधिक सामान्य संस्करण के लिए फॉरवर्ड समीकरण और बैकवर्ड समीकरण नामों का उपयोग किया था।[1] बहुत बाद में, 1956 में, उन्होंने जंप प्रक्रिया के समीकरणों को कोलमोगोरोव फॉरवर्ड समीकरण और कोलमोगोरोव बैकवर्ड समीकरण के रूप में संदर्भित किया था।[3]

अन्य लेखक, जैसे मोटू किमुरा ,[4] ने प्रसार (फोककर-प्लैंक) समीकरण को कोलमोगोरोव फॉरवर्ड समीकरण के रूप में संदर्भित किया जाता है, एक ऐसा नाम जो उपस्थित है।

आधुनिक दृष्टिकोण

जीवविज्ञान से एक उदाहरण

जीव विज्ञान से एक उदाहरण नीचे दिया गया है:[5]

यह समीकरण जन्म के साथ जनसंख्या वृद्धि के मॉडल पर प्रयुक्त होता है। जहाँ जनसंख्या सूचकांक है, प्रारंभिक जनसंख्या के संदर्भ में, जन्म दर है, और अंत में , अर्थात निश्चित जनसंख्या आकार प्राप्त करने की संभावना है।

विश्लेषणात्मक समाधान है:[5]

यह पूर्ववर्ती के संदर्भ में संभाव्यता का सूत्र है, अर्थात .

संदर्भ

  1. 1.0 1.1 1.2 Feller, W. (1949). "On the Theory of Stochastic Processes, with Particular Reference to Applications". गणितीय सांख्यिकी और संभाव्यता पर (प्रथम) बर्कले संगोष्ठी की कार्यवाही. pp. 403–432.
  2. Kolmogorov, Andrei (1931). "Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung" [On Analytical Methods in the Theory of Probability]. Mathematische Annalen (in Deutsch). 104: 415–458. doi:10.1007/BF01457949. S2CID 119439925.
  3. Feller, William (1957). "कोलमोगोरोव विभेदक समीकरणों के लिए सीमाओं और पार्श्व स्थितियों पर". Annals of Mathematics. 65 (3): 527–570. doi:10.2307/1970064. JSTOR 1970064.
  4. Kimura, Motoo (1957). "आनुवंशिकी में स्टोकेस्टिक प्रक्रियाओं की कुछ समस्याएं". Annals of Mathematical Statistics. 28 (4): 882–901. doi:10.1214/aoms/1177706791. JSTOR 2237051.
  5. 5.0 5.1 Logan, J. David; Wolesensky, William R. (2009). जीवविज्ञान में गणितीय तरीके. Pure and Applied Mathematics. John Wiley& Sons. pp. 325–327. ISBN 978-0-470-52587-6.