जेडएन मॉडल: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (8 revisions imported from alpha:जेडएन_मॉडल) |
(No difference)
|
Latest revision as of 14:29, 14 December 2023
मॉडल (क्लॉक मॉडल के रूप में भी जाना जाता है) एक सरलीकृत सांख्यिकीय यांत्रिकी स्पिन मॉडल है। यह आइसिंग मॉडल का सामान्यीकरण है। यद्यपि इसे एक अर्बिट्ररी आरेख पर परिभाषित किया जा सकता है, यह विभिन्न विशेष स्थितियों में केवल एक और दो-आयामी अक्षांशों पर ही एकीकृत है।
परिभाषा
इस प्रकार मॉडल को आरेख पर प्रत्येक नोड पर एक स्पिन मान निर्दिष्ट करके परिभाषित किया जाता है, जिसमें स्पिन मान लेते हैं। इसलिए स्पिन एकता की सम्मिश्र रूट के रूप में मूल्य लेते हैं। सामान्यतः, हम मॉडल के प्रत्येक नोड को निर्दिष्ट स्पिन को समदूरस्थ दिशाओं में से किसी एक की ओर संकेत करने के रूप में विचार कर सकते हैं। सामान्य एज बोल्ट्ज़मैन वेट हैं:
जहां सम्मिश्र संयुग्मन को दर्शाता है और किनारे के साथ अंतःक्रिया बल से संबंधित है। ध्यान दें कि को अधिकांशतः 1 पर सेट किया जाता है। (वास्तविक मान) बोल्ट्ज़मैन वेट और , परिवर्तनों के अनुसार अपरिवर्तनीय होते हैं, जो क्रमशः सार्वभौमिक रोटेशन और प्रतिबिंब के अनुरूप होते हैं।
स्व-द्वैत महत्वपूर्ण समाधान
सामान्य अनिसोट्रोपिक वर्ग जालक पर परिभाषित मॉडल के समाधानों का एक वर्ग है। यदि मॉडल क्रेमर्स-वानियर अर्थ में स्व-द्वैत है और इस प्रकार महत्वपूर्ण है, और जालक ऐसी है कि दो संभावित किनारे अभिविन्यासों के लिए दो संभावित 'वेट' और हैं, तो हम में निम्नलिखित पैरामीट्रिजेशन प्रस्तुत कर सकते हैं
- –
इस प्रकार द्वैत संबंध और स्टार-त्रिकोण संबंध की आवश्यकता है जो इसे बनाए रखने के लिए पूर्णता सुनिश्चित करता है, समाधान खोजना संभव है:
इस प्रकार के साथ मॉडल के इस विशेष स्थिति को अधिकांशतः V.A के पश्चात् अपने आप में एफजेड मॉडल कहा जाता है। इस प्रकार फतेयेव और ए.बी. ज़मोलोडचिकोव जिन्होंने सबसे पहले इस समाधान की गणना की थी। इस प्रकार एफजेड मॉडल की सीमा में XY मॉडल तक पहुंचता है। यह चिरल पॉट्स मॉडल और काशीवारा-मिवा मॉडल का भी एक विशेष स्थिति है।
समाधान योग्य विशेष स्थिति
जैसा कि सांख्यिकीय यांत्रिकी में अधिकांश जालक मॉडल के स्थिति में होता है, तीन आयामों में मॉडल का कोई ज्ञात स्पष्ट समाधान नहीं है। चूंकि, दो आयामों में, यह और/या 'वेट' के कुछ मानों के लिए एक वर्गाकार जालक पर पूर्णतः हल करने योग्य है। संभवतः सबसे प्रसिद्ध उदाहरण आइसिंग मॉडल है, जो दो विपरीत दिशाओं में घूमने की अनुमति देता है (अर्थात यह पूर्णतः के लिए मॉडल है, और इसलिए मॉडल को आइसिंग मॉडल के सामान्यीकरण के रूप में विचार किया जा सकता है। इस प्रकार मॉडल के विशेष स्थितियों के अनुरूप अन्य स्पष्ट रूप से हल करने योग्य मॉडल में और के साथ तीन-स्थिति पॉट्स मॉडल सम्मिलित हैं। जहां एक निश्चित महत्वपूर्ण मान (एफजेड) है और महत्वपूर्ण एस्किन-टेलर मॉडल है जहां है।
क्वांटम संस्करण
इस प्रकार क्लॉक मॉडल का एक क्वांटम संस्करण अनुप्रस्थ-क्षेत्र आइसिंग मॉडल के अनुरूप बनाया जा सकता है। इस मॉडल का हैमिल्टनियन निम्नलिखित है:
यहां, सबस्क्रिप्ट जालक समष्टि को संदर्भित करते हैं, और योग निकटतम समूह समष्टि i और j के जोड़े पर किया जाता है। क्लॉक आव्यूह Xj और Zj पाउली आव्यूह के सामान्यीकरण हैं
और
यदि और समान समष्टि हैं तो जहां 1 है और अन्यथा शून्य है। इस प्रकार ऊर्जा के आयामों वाला एक प्रीफैक्टर है और एक अन्य युग्मन गुणांक है जो निकटतम समूह इंटरैक्शन की तुलना में बाहरी क्षेत्र की सापेक्ष बल निर्धारित करता है।
संदर्भ
- V. A. Fateev and A. B. Zamolodchikov (1982); "Self-dual solutions of the star-triangle relations in -models", Physics Letters A, 92, pp. 37–39
- M.A. Rajabpour and J. Cardy (2007); "Discretely holomorphic parafermions in lattice models" J. Phys. A 22 40, 14703–14714