फलनात्मक पुनर्सामान्यीकरण समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 63: Line 63:
* गेज क्वांटम क्षेत्र सिद्धांत में, उदाहरण के लिए, क्यूसीडी और इसके बड़े-स्वाद विस्तार के चिरल चरण संक्रमण और अवरक्त गुणों की जांच के लिए एफआरजी का उपयोग किया गया था।
* गेज क्वांटम क्षेत्र सिद्धांत में, उदाहरण के लिए, क्यूसीडी और इसके बड़े-स्वाद विस्तार के चिरल चरण संक्रमण और अवरक्त गुणों की जांच के लिए एफआरजी का उपयोग किया गया था।
* संघनित पदार्थ भौतिकी में, यह विधि जाली मॉडल (उदाहरण के लिए [[हबर्ड मॉडल]] या कुंठित चुंबकीय प्रणाली), प्रतिकारक बोस गैस, दो-घटक फर्मी गैस के लिए बीईसी/बीसीएस क्रॉसओवर, [[कोंडो प्रभाव]], अव्यवस्थित प्रणाली और गैर-संतुलन घटना का इलाज करने में सफल प्रमाणित हुई। .
* संघनित पदार्थ भौतिकी में, यह विधि जाली मॉडल (उदाहरण के लिए [[हबर्ड मॉडल]] या कुंठित चुंबकीय प्रणाली), प्रतिकारक बोस गैस, दो-घटक फर्मी गैस के लिए बीईसी/बीसीएस क्रॉसओवर, [[कोंडो प्रभाव]], अव्यवस्थित प्रणाली और गैर-संतुलन घटना का इलाज करने में सफल प्रमाणित हुई। .
* गुरुत्वाकर्षण के लिए एफआरजी के अनुप्रयोग ने चार स्थानटाइम आयामों में [[क्वांटम गुरुत्व|क्वांटम गुरुत्वा]]कर्षण की गैर-विपरीत पुनर्सामान्यीकरण के पक्ष में तर्क प्रदान किए, जिसे एसिम्प्टोटिक सुरक्षा परिदृश्य के रूप में जाना जाता है।
* गुरुत्वाकर्षण के लिए एफआरजी के अनुप्रयोग ने चार स्पेसटाइम आयामों में [[क्वांटम गुरुत्व|क्वांटम गुरुत्वा]]कर्षण की गैर-विपरीत पुनर्सामान्यीकरण के पक्ष में तर्क प्रदान किए, जिसे एसिम्प्टोटिक सुरक्षा परिदृश्य के रूप में जाना जाता है।
* गणितीय भौतिकी में एफआरजी का उपयोग विभिन्न क्षेत्र सिद्धांतों की पुनर्सामान्यीकरण क्षमता को प्रमाणित करने के लिए किया गया था।
* गणितीय भौतिकी में एफआरजी का उपयोग विभिन्न क्षेत्र सिद्धांतों की पुनर्सामान्यीकरण क्षमता को प्रमाणित करने के लिए किया गया था।



Revision as of 12:58, 24 November 2023

सैद्धांतिक भौतिकी में, कार्यात्मक पुनर्सामान्यीकरण समूह (एफआरजी) पुनर्सामान्यीकरण समूह (आरजी) अवधारणा का कार्यान्वयन है जिसका उपयोग क्वांटम और सांख्यिकीय क्षेत्र सिद्धांत में किया जाता है, विशेषकर जब दृढ़ता से वार्तालाप करने वाले प्रणाली से निपटते हैं। और यह विधि क्वांटम क्षेत्र सिद्धांत के कार्यात्मक विधियों को केनेथ जी. विल्सन के सहज पुनर्सामान्यीकरण समूह विचार के साथ जोड़ती है। यह तकनीक ज्ञात सूक्ष्म नियम और भौतिक प्रणालियों में सम्मिश्र स्थूल घटनाओं के बीच सुचारू रूप से अंतरण करने की अनुमति देती है। इस अर्थ में, यह सूक्ष्मभौतिकी की सरलता से स्थूलभौतिकी की सम्मिश्रता तक संक्रमण को पाटता है। इस प्रकार से लाक्षणिक रूप से कहें तो, एफआरजी एक परिवर्तनीय संकल्प वाले सूक्ष्मदर्शी के रूप में कार्य करता है। एक ज्ञात सूक्ष्मभौतिकीय नियम की उच्च-संकल्प वाली छवि से प्रारंभ होता है और बाद में स्थूल सामूहिक घटनाओं की अशिष्ट कणयुक्त वाली छवि प्राप्त करने के लिए संकल्प कम हो जाता है। अतः विधि अविचलित करने वाली नहीं है, जिसका अर्थ है कि यह एक छोटे युग्मन स्थिरांक में विस्तार पर निर्भर नहीं करती है। और गणितीय रूप से, एफआरजी स्केल-निर्भर प्रभावी क्रिया के लिए एक स्पष्ट कार्यात्मक अंतर समीकरण पर आधारित है।

प्रभावी क्रिया के लिए प्रवाह समीकरण

क्वांटम क्षेत्र सिद्धांत में, प्रभावी क्रिया मौलिक भौतिकी क्रिया (भौतिकी) का एक एनालॉग है और किसी दिए गए सिद्धांत के क्षेत्रों पर निर्भर करता है। इसमें सभी क्वांटम और थर्मल उतार-चढ़ाव सम्मिलित हैं। की विविधता स्पष्ट क्वांटम क्षेत्र समीकरण उत्पन्न करता है, उदाहरण के लिए ब्रह्माण्ड विज्ञान या सुपरकंडक्टर्स के विद्युत का गतिविज्ञान के लिए। गणितीय रूप से, एक-कण इरेड्यूसेबल फेनमैन आरेखों का उत्पादक कार्य है। इस प्रकार से रोचक भौतिकी, प्रचारकों और अंतःक्रियाओं के लिए प्रभावी युग्मन के रूप में, इसे सीधे रूप से निकाला जा सकता है। एक सामान्य अंतःक्रिया क्षेत्र सिद्धांत में प्रभावी क्रिया चूंकि, इसे प्राप्त करना कठिन है। किन्तु एफआरजी पुनर्सामान्यीकरण समूह अवधारणा को नियोजित करते हुए की गणना करने के लिए एक व्यावहारिक उपकरण प्रदान करता है।

एफआरजी में केंद्रीय वस्तु एक माप पर निर्भर प्रभावी क्रिया कार्यात्मक है जिसे प्रायः निम्नलिखित क्रियाओं की औसत क्रिया कहा जाता है। आरजी स्लाइडिंग स्केल पर निर्भरता को पूर्ण व्युत्क्रम प्रोपेगेटर में एक रेगुलेटर (इन्फ्रारेड कटऑफ) जोड़कर प्रस्तुत किया जाता है। स्पष्ट रूप से कहें तो, रेगुलेटर धीमे मोड को एक उच्च द्रव्यमान देकर मोमेंटा के साथ अलग करता है, जबकि उच्च गति मोड नहीं होते हैं। प्रभावित इस प्रकार, में क्षण के साथ सभी क्वांटम और सांख्यिकीय उतार-चढ़ाव सम्मिलित हैं। इस प्रकार से प्रवाहमय क्रिया स्पष्ट कार्यात्मक प्रवाह समीकरण का पालन करती है



इस प्रकार से 1993 में क्रिस्टोफ़ वेटेरिच और टिम आर. मॉरिस द्वारा व्युत्पन्न। जहाँ फ़ील्ड के निश्चित मानों पर आरजी स्केल के संबंध में एक व्युत्पन्न को दर्शाता है। इसके अतिरिक्त, समीकरण की टेंसर संरचना के कारण, क्रमशः बाईं ओर और दाईं ओर से के कार्यात्मक व्युत्पन्न को दर्शाता है। इस सुविधा को अधिकांशतः प्रभावी क्रिया के दूसरे व्युत्पन्न द्वारा सरलीकृत दिखाया जाता है। के लिए कार्यात्मक अंतर समीकरण को प्रारंभिक स्थिति के साथ पूरक किया जाना चाहिए जहां "मौलिक क्रिया" सूक्ष्म पराबैंगनी माप पर भौतिकी का वर्णन करता है। महत्वपूर्ण रूप से, अवरक्त सीमा में पूर्ण प्रभावी क्रिया प्राप्त होती है। वेटेरिच समीकरण में एक सुपरट्रेस को दर्शाता है जो संवेग, आवृत्तियों, आंतरिक सूचकांकों और क्षेत्रों का योग करता है (प्लस के साथ बोसॉन और माइनस चिह्न के साथ फर्मियन को लेते हुए)। के सटीक प्रवाह समीकरण में एक-लूप संरचना है। यह व्याकुलता सिद्धांत की तुलना में एक महत्वपूर्ण सरलीकरण है, जहां मल्टी-लूप आरेखों को सम्मिलित किया जाना चाहिए। इस प्रकार से दूसरा कार्यात्मक व्युत्पन्न नियामक की उपस्थिति द्वारा संशोधित पूर्ण व्युत्क्रम क्षेत्र प्रचारक है।

का पुनर्सामान्यीकरण समूह विकास सिद्धांत स्थान में चित्रित किया जा सकता है, जो समस्या की समरूपता द्वारा अनुमत सभी संभावित चल रहे कपलिंग का एक बहु-आयामी स्थान है। जैसा कि चित्र में योजनाबद्ध रूप से सूक्ष्म पराबैंगनी माप पर दिखाया गया है एक प्रारंभिक स्थिति से प्रारंभ होता है.

समरूपता द्वारा अनुमत सभी संभावित युग्मों के सिद्धांत स्थान में पुनर्सामान्यीकरण समूह प्रवाह।

जैसे ही स्लाइडिंग स्केल माप के रूप में कम किया जाता है, बहती हुई क्रिया कार्यात्मक प्रवाह समीकरण के अनुसार सिद्धांत स्थान में विकसित होता है। नियामक का चयन अद्वितीय नहीं है, जो पुनर्सामान्यीकरण समूह प्रवाह में कुछ योजना निर्भरता का परिचय देता है। इस कारण से, नियामक के विभिन्न विकल्प चित्र में विभिन्न पथों के अनुरूप। चूंकि, इन्फ्रारेड स्केल पर, कट-ऑफ के प्रत्येक विकल्प के लिए पूर्ण प्रभावी क्रिया पुनर्प्राप्त की जाती है और सभी प्रक्षेपवक्र सिद्धांत स्थान में एक ही बिंदु पर मिलते हैं।

इस प्रकार से रुचि के अधिकांश स्तिथियों में वेटेरिच समीकरण को केवल लगभग ही हल किया जा सकता है। सामान्यतः किसी प्रकार का विस्तार निष्पादित किया जाता है, जिसे बाद में सीमित क्रम में छोटा कर दिया जाता है, जिससे सामान्य अंतर समीकरणों की एक सीमित प्रणाली बन जाती है। विभिन्न व्यवस्थित विस्तार योजनाएँ (जैसे व्युत्पन्न विस्तार, शीर्ष विस्तार, आदि) विकसित की गईं। उपयुक्त योजना का चुनाव शारीरिक रूप से प्रेरित होना चाहिए और दी गई समस्या पर निर्भर होना चाहिए। विस्तार में आवश्यक रूप से एक छोटा पैरामीटर (जैसे इंटरेक्शन युग्मन स्थिरांक) सम्मिलित नहीं होता है और इस प्रकार वे सामान्य रूप से, अविचलित प्रकृति के होते हैं।

चूंकि, ध्यान दें कि (प्रीफैक्टर-) सम्मेलनों और प्रभावी क्रिया की स्थूल परिभाषा के संबंध में अनेक विकल्पों के कारण, साहित्य में वेटेरिच समीकरण के अन्य (समकक्ष) संस्करण मिल सकते हैं।[1]


कार्यात्मक पुनर्सामान्यीकरण के भाग

  • वेटेरिच प्रवाह समीकरण एक स्पष्ट समीकरण है। चूंकि, व्यवहार में, कार्यात्मक अंतर समीकरण को छोटा किया जाना चाहिए, अर्थात इसे कुछ वेरिएबल के कार्यों या जहाँ तक ​​कि कुछ परिमित-आयामी उप-सिद्धांत स्थान पर भी प्रक्षेपित किया जाना चाहिए। जैसा कि हर अविचलित करने वाली विधि में होता है, कार्यात्मक पुनर्सामान्यीकरण में त्रुटि अनुमान का प्रश्न गैर-तुच्छ है। एफआरजी में त्रुटि का अनुमान लगाने का विधिया क्रमिक चरणों में ट्रंकेशन में सुधार करना है, अर्थात अधिक से अधिक चलने वाले कपलिंग को सम्मिलित करके उप-सिद्धांत स्थान को बढ़ाना है। विभिन्न ट्रंकेशन के लिए प्रवाह में अंतर त्रुटि का एक अच्छा अनुमान देता है। किन्तु वैकल्पिक रूप से, कोई दिए गए (निश्चित) ट्रंकेशन में विभिन्न नियामक फलन का उपयोग कर सकता है और संबंधित नियामक विकल्पों के लिए इन्फ्रारेड में आरजी प्रवाह का अंतर निर्धारित करें। यदि बोसोनाइजेशन का उपयोग किया जाता है, तो कोई विभिन्न बोसोनाइजेशन प्रक्रियाओं के संबंध में अंतिम परिणामों की असंवेदनशीलता की जांच कर सकता है।
  • एफआरजी में, सभी आरजी विधियों की तरह, आरजी प्रवाह की टोपोलॉजी से भौतिक प्रणाली के बारे में बहुत सारी जानकारी प्राप्त की जा सकती है। विशेष रूप से, पुनर्सामान्यीकरण समूह विकास के निश्चित बिंदु (गणित) की पहचान बहुत महत्वपूर्ण है। निश्चित बिंदुओं के निकट रनिंग कपलिंग का प्रवाह प्रभावी रूप से रुक जाता है और आर.जी -फलन शून्य तक पहुंचते हैं। (आंशिक रूप से) स्थिर अवरक्त निश्चित बिंदुओं की उपस्थिति सार्वभौमिकता (गतिशील प्रणालियों) की अवधारणा से निकटता से जुड़ी हुई है। सार्वभौमिकता इस अवलोकन में प्रकट होती है कि कुछ बहुत विशिष्ट भौतिक प्रणालियों का आलोचनात्मक व्यवहार समान होता है। उदाहरण के लिए, उचित स्पष्टता के लिए, जल में तरल-गैस चरण संक्रमण और चुंबक में लौहचुंबकीय चरण संक्रमण के महत्वपूर्ण घातांक समान हैं। पुनर्सामान्यीकरण समूह भाषा में, एक ही सार्वभौमिकता वर्ग से विभिन्न प्रणालियाँ एक ही (आंशिक रूप से) स्थिर अवरक्त निश्चित बिंदु पर प्रवाहित होती हैं। इस तरह मैक्रोफिजिक्स विशेष भौतिक मॉडल के सूक्ष्म विवरण से स्वतंत्र हो जाता है।
  • व्याकुलता सिद्धांत की तुलना में, कार्यात्मक पुनर्सामान्यीकरण पुनर्सामान्यीकरण योग्य और गैर-सामान्यीकरण योग्य युग्मन के बीच सशक्त अंतर नहीं करता है। समस्या की समरूपता द्वारा अनुमत सभी चलने वाले कपलिंग एफआरजी प्रवाह के समय उत्पन्न होते हैं। चूंकि, इन्फ्रारेड की ओर विकास के समय गैर-असामान्यीकरण योग्य कपलिंग आंशिक रूप से निश्चित बिंदुओं तक बहुत तेजी से पहुंचते हैं, और इस प्रकार प्रवाह प्रभावी रूप से पुनर्सामान्यीकरण योग्य कपलिंग की संख्या द्वारा दिए गए आयाम की हाइपरसतह पर ढह जाता है। गैर-सामान्यीकृत युग्मनों को ध्यान में रखते हुए उन गैर-सार्वभौमिक विशेषताओं का अध्ययन करने की अनुमति मिलती है जो सूक्ष्म क्रिया की और परिमित पराबैंगनी कटऑफ़ स्थूल पसंद के प्रति संवेदनशील हैं.
  • वेटेरिच समीकरण को 1984 में जोसेफ पोल्चिंस्की द्वारा प्राप्त पोल्चिंस्की कार्यात्मक समीकरण के लीजेंड्रे परिवर्तन से प्राप्त किया जा सकता है। एफआरजी में उपयोग की जाने वाली प्रभावी औसत क्रिया की अवधारणा, चूंकि, पोल्चिंस्की में प्रवाहित नग्न क्रिया की तुलना में अधिक सहज समीकरण है। इसके अतिरिक्त, व्यावहारिक गणना के लिए एफआरजी पद्धति अधिक उपयुक्त प्रमाणित हुई।
  • सामान्यतः, दृढ़ता से वार्तालाप करने वाली प्रणालियों की कम-ऊर्जा भौतिकी को स्वतंत्रता की स्थूल डिग्री (अर्थात कण उत्तेजना) द्वारा वर्णित किया जाता है जो स्वतंत्रता की सूक्ष्म उच्च-ऊर्जा डिग्री से बहुत अलग हैं। इस प्रकार से उदाहरण के लिए, क्वांटम क्रोमोडायनामिक्स क्वार्क और ग्लूऑन की परस्पर क्रिया का एक क्षेत्र सिद्धांत है। चूंकि, कम ऊर्जा पर, स्वतंत्रता की उचित डिग्री बैरियन और मेसन हैं। एक अन्य उदाहरण संघनित पदार्थ भौतिकी में बीईसी/बीसीएस क्रॉसओवर समस्या है। जबकि सूक्ष्म सिद्धांत को दो-घटक गैर-सापेक्षवादी फ़र्मियन के संदर्भ में परिभाषित किया गया है, कम ऊर्जा पर समग्र (कण-कण) डिमर स्वतंत्रता की अतिरिक्त डिग्री बन जाता है, और इसे मॉडल में स्पष्ट रूप से सम्मिलित करने की सलाह दी जाती है। जिससे स्वतंत्रता की निम्न-ऊर्जा समग्र डिग्री को आंशिक बोसोनाइजेशन (हबर्ड-स्ट्रैटनोविच परिवर्तन) की विधि द्वारा विवरण में प्रस्तुत किया जा सकता है। चूंकि, यह परिवर्तन यूवी माप पर एक बार और सभी के लिए किया जाता है. एफआरजी में स्वतंत्रता की स्थूल डिग्री को सम्मिलित करने की एक अधिक कुशल विधिया प्रस्तुत कि गयी थी, जिसे फ्लोइंग बोसोनाइजेशन या रीबोसोनाइजेशन के रूप में जाना जाता है। इस प्रकार से स्केल-निर्भर फ़ील्ड परिवर्तन की सहायता से, यह सभी आरजी स्केल पर निरंतर हबर्ड-स्ट्रैटोनोविच परिवर्तन करने की अनुमति देता है .

विक-आदेशित प्रभावी इंटरैक्शन के लिए कार्यात्मक पुनर्सामान्यीकरण-समूह

प्रभावी क्रिया के लिए प्रवाह समीकरण के विपरीत, यह योजना प्रभावी वार्तालाप के लिए तैयार की गई है

जो n-कण अंतःक्रिया शीर्ष उत्पन्न करता है, अरक्षित प्रोपेगेटर्स ; द्वारा विच्छेदित n-कण ग्रीन फ़ंक्शंस के लिए "मानक" उत्पन्न करने वाला कार्यात्मक है।

ग्रीन फलन के संबंध में प्रभावी परस्पर क्रिया का विक आदेश द्वारा परिभाषित किया जा सकता है

.

जहाँ फ़ील्ड स्थान में लाप्लासियन है। यह ऑपरेशन सामान्य क्रम के समान है और संबंधित ग्रीन फलन D के साथ स्रोत फ़ील्ड के कनवल्शन द्वारा गठित सभी संभावित शब्दों को इंटरैक्शन से बाहर करता है। कुछ कटऑफ का परिचय पोल्किंस्की समीकरण

विक-आदेशित समीकरण का रूप लेता है

जहाँ



अनुप्रयोग

इस पद्धति को भौतिकी में अनेक समस्याओं पर प्रयुक्त किया गया था, उदाहरण के लिए:

  • सांख्यिकीय क्षेत्र सिद्धांत में, एफआरजी ने मौलिक रैखिक में चरण संक्रमणों की एक एकीकृत छवि प्रदान की -विभिन्न आयामों में सममित अदिश सिद्धांत , के लिए महत्वपूर्ण प्रतिपादकों सहित और बेरेज़िंस्की-कोस्टरलिट्ज़-थूलेस चरण संक्रमण के लिए , है.
  • गेज क्वांटम क्षेत्र सिद्धांत में, उदाहरण के लिए, क्यूसीडी और इसके बड़े-स्वाद विस्तार के चिरल चरण संक्रमण और अवरक्त गुणों की जांच के लिए एफआरजी का उपयोग किया गया था।
  • संघनित पदार्थ भौतिकी में, यह विधि जाली मॉडल (उदाहरण के लिए हबर्ड मॉडल या कुंठित चुंबकीय प्रणाली), प्रतिकारक बोस गैस, दो-घटक फर्मी गैस के लिए बीईसी/बीसीएस क्रॉसओवर, कोंडो प्रभाव, अव्यवस्थित प्रणाली और गैर-संतुलन घटना का इलाज करने में सफल प्रमाणित हुई। .
  • गुरुत्वाकर्षण के लिए एफआरजी के अनुप्रयोग ने चार स्पेसटाइम आयामों में क्वांटम गुरुत्वाकर्षण की गैर-विपरीत पुनर्सामान्यीकरण के पक्ष में तर्क प्रदान किए, जिसे एसिम्प्टोटिक सुरक्षा परिदृश्य के रूप में जाना जाता है।
  • गणितीय भौतिकी में एफआरजी का उपयोग विभिन्न क्षेत्र सिद्धांतों की पुनर्सामान्यीकरण क्षमता को प्रमाणित करने के लिए किया गया था।

यह भी देखें

संदर्भ

कागजात

  • Wetterich, C. (1993), "Exact evolution equation for the effective potential", Phys. Lett. B, 301 (1): 90, arXiv:1710.05815, Bibcode:1993PhLB..301...90W, doi:10.1016/0370-2693(93)90726-X, S2CID 119536989
  • Morris, T. R. (1994), "The Exact renormalization group and approximate solutions", Int. J. Mod. Phys. A, A (14): 2411–2449, arXiv:hep-ph/9308265, Bibcode:1994IJMPA...9.2411M, doi:10.1142/S0217751X94000972, S2CID 15749927
  • Polchinski, J. (1984), "Renormalization and Effective Lagrangians", Nucl. Phys. B, 231 (2): 269, Bibcode:1984NuPhB.231..269P, doi:10.1016/0550-3213(84)90287-6
  1. Kopietz, Peter; Bartosch, Lorenz; Schütz, Florian (2010). कार्यात्मक नवीनीकरण समूह का परिचय. Springer. ISBN 9783642050947.

शैक्षणिक समीक्षाएँ

  • H.Gies (2006). "Introduction to the functional RG and applications to gauge theories". बहु-निकाय प्रणालियों के लिए पुनर्सामान्यीकरण समूह और प्रभावी क्षेत्र सिद्धांत दृष्टिकोण. Lecture Notes in Physics. Vol. 852. pp. 287–348. arXiv:hep-ph/0611146. doi:10.1007/978-3-642-27320-9_6. ISBN 978-3-642-27319-3. S2CID 15127186.
  • B. Delamotte (2007). "An introduction to the nonperturbative renormalization group". बहु-निकाय प्रणालियों के लिए पुनर्सामान्यीकरण समूह और प्रभावी क्षेत्र सिद्धांत दृष्टिकोण. Lecture Notes in Physics. Vol. 852. pp. 49–132. arXiv:cond-mat/0702365. doi:10.1007/978-3-642-27320-9_2. ISBN 978-3-642-27319-3. S2CID 34308305.
  • M. Reuter and F. Saueressig; Frank Saueressig (2007). "कार्यात्मक पुनर्सामान्यीकरण समूह समीकरण, स्पर्शोन्मुख सुरक्षा, और क्वांटम आइंस्टीन गुरुत्वाकर्षण". arXiv:0708.1317 [hep-th].

श्रेणी:सांख्यिकीय यांत्रिकी

श्रेणी:पुनर्सामान्यीकरण समूह

श्रेणी:स्केलिंग समरूपताएँ

श्रेणी:निश्चित अंक (गणित)