पॉइसन मैनिफ़ोल्ड: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
डिफरेंशियल ज्योमेट्री में, गणित का एक क्षेत्र, '''पॉइसन मैनिफोल्ड''', पॉइसन संरचना से युक्त एक स्मूथ मैनिफोल्ड है। पॉइसन मैनिफोल्ड की धारणा सिंपलेक्टिक मैनिफोल्ड को सामान्य बनाती है, जो बदले में हैमिल्टनियन यांत्रिकी से चरण स्थान को सामान्यीकृत करती है। | |||
एक स्मूथ मैनिफोल्ड पर एक पॉइसन संरचना (या पॉइसन ब्रैकेट)। <math> M </math> एक फ़ंक्शन है<math display="block"> \{ \cdot,\cdot \}: \mathcal{C}^\infty(M) \times \mathcal{C}^\infty(M) \to \mathcal{C}^\infty(M) </math>[[ सदिश स्थल | सदिश स्थल]] पर <math> {C^{\infty}}(M) </math> [[सुचारू कार्य]] पर <math> M </math>, इसे एक उत्पाद नियम (जिसे [[पॉइसन बीजगणित]] के रूप में भी जाना जाता है) के अधीन एक [[झूठ बीजगणित|लाई बीजगणित]] में बना दिया गया है। | एक स्मूथ मैनिफोल्ड पर एक पॉइसन संरचना (या पॉइसन ब्रैकेट)। <math> M </math> एक फ़ंक्शन है<math display="block"> \{ \cdot,\cdot \}: \mathcal{C}^\infty(M) \times \mathcal{C}^\infty(M) \to \mathcal{C}^\infty(M) </math>[[ सदिश स्थल | सदिश स्थल]] पर <math> {C^{\infty}}(M) </math> [[सुचारू कार्य]] पर <math> M </math>, इसे एक उत्पाद नियम (जिसे [[पॉइसन बीजगणित]] के रूप में भी जाना जाता है) के अधीन एक [[झूठ बीजगणित|लाई बीजगणित]] में बना दिया गया है। | ||
Line 14: | Line 14: | ||
=== [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] के चरण स्थानों से लेकर सिंपलेक्टिक और पॉइसन मैनिफोल्ड्स तक === | === [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] के चरण स्थानों से लेकर सिंपलेक्टिक और पॉइसन मैनिफोल्ड्स तक === | ||
मौलिक यांत्रिकी में, एक भौतिक प्रणाली के चरण स्थान में स्थिति के सभी संभावित मान और प्रणाली द्वारा अनुमत गति | मौलिक यांत्रिकी में, एक भौतिक प्रणाली के चरण स्थान में स्थिति के सभी संभावित मान और प्रणाली द्वारा अनुमत गति वेरिएबल सम्मिलित होते हैं। यह स्वाभाविक रूप से पॉइसन ब्रैकेट/सिंपलेक्टिक फॉर्म (नीचे देखें) से संपन्न है, जो किसी को [[हैमिल्टन समीकरण]] तैयार करने और समय में चरण स्थान के माध्यम से प्रणाली की गतिशीलता का वर्णन करने की अनुमति देता है। | ||
उदाहरण के लिए, <math> n </math>-आयामी यूक्लिडियन स्पेस (अथार्थ कॉन्फ़िगरेशन स्पेस के रूप में <math> \mathbb{R}^n </math> में स्वतंत्र रूप से घूमने वाले एक कण में चरण स्पेस <math> \mathbb{R}^{2n} </math> होता है। निर्देशांक <math> (q^1,...,q^n,p_1,...,p_n) </math> क्रमशः स्थिति और सामान्यीकृत संवेग का वर्णन करते हैं। वेधशालाओं का स्थान, अथार्थ <math> \mathbb{R}^{2n} </math> पर सुचारू कार्य, स्वाभाविक रूप से पॉइसन ब्रैकेट नामक एक बाइनरी ऑपरेशन से संपन्न है, जिसे <math> \{ f,g \} := \sum_{i=1}^n \left( \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} \right) </math> के रूप में परिभाषित किया गया है। ऐसा ब्रैकेट लाई ब्रैकेट के मानक गुणों को संतुष्ट करता है, जो कि साथ ही फ़ंक्शंस के उत्पाद, अर्थात् लीबनिज़ पहचान <math> \{f,g \cdot h\} = g \cdot \{f,h\} + \{f,g\} \cdot h </math> के साथ एक और अनुकूलता प्रदान करता है। समान रूप से, <math> \mathbb{R}^{2n} </math> पर पॉइसन ब्रैकेट को सिंपलेक्टिक फॉर्म <math> \omega := \sum_{i=1}^n dp_i \wedge dq^i </math> का उपयोग करके पुन: तैयार किया जा सकता है। वास्तव में , यदि कोई फ़ंक्शन <math> f </math> से जुड़े हैमिल्टनियन सदिश क्षेत्र <math> X_f := \sum_{i=1}^n \frac{\partial f}{\partial p_i} \partial_{q_i} - \frac{\partial f}{\partial q_i} \partial_{p_i} </math> पर विचार करता है, तो पॉइसन ब्रैकेट को <math> \{f,g\} = \omega (X_f,X_g). </math>के रूप में फिर से लिखा जा सकता है। | उदाहरण के लिए, <math> n </math>-आयामी यूक्लिडियन स्पेस (अथार्थ कॉन्फ़िगरेशन स्पेस के रूप में <math> \mathbb{R}^n </math> में स्वतंत्र रूप से घूमने वाले एक कण में चरण स्पेस <math> \mathbb{R}^{2n} </math> होता है। निर्देशांक <math> (q^1,...,q^n,p_1,...,p_n) </math> क्रमशः स्थिति और सामान्यीकृत संवेग का वर्णन करते हैं। वेधशालाओं का स्थान, अथार्थ <math> \mathbb{R}^{2n} </math> पर सुचारू कार्य, स्वाभाविक रूप से पॉइसन ब्रैकेट नामक एक बाइनरी ऑपरेशन से संपन्न है, जिसे <math> \{ f,g \} := \sum_{i=1}^n \left( \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} \right) </math> के रूप में परिभाषित किया गया है। ऐसा ब्रैकेट लाई ब्रैकेट के मानक गुणों को संतुष्ट करता है, जो कि साथ ही फ़ंक्शंस के उत्पाद, अर्थात् लीबनिज़ पहचान <math> \{f,g \cdot h\} = g \cdot \{f,h\} + \{f,g\} \cdot h </math> के साथ एक और अनुकूलता प्रदान करता है। समान रूप से, <math> \mathbb{R}^{2n} </math> पर पॉइसन ब्रैकेट को सिंपलेक्टिक फॉर्म <math> \omega := \sum_{i=1}^n dp_i \wedge dq^i </math> का उपयोग करके पुन: तैयार किया जा सकता है। वास्तव में , यदि कोई फ़ंक्शन <math> f </math> से जुड़े हैमिल्टनियन सदिश क्षेत्र <math> X_f := \sum_{i=1}^n \frac{\partial f}{\partial p_i} \partial_{q_i} - \frac{\partial f}{\partial q_i} \partial_{p_i} </math> पर विचार करता है, तो पॉइसन ब्रैकेट को <math> \{f,g\} = \omega (X_f,X_g). </math>के रूप में फिर से लिखा जा सकता है। | ||
अधिक | अधिक एब्स्ट्रैक्ट डिफरेंशियल ज्यामितीय शब्दों में, कॉन्फ़िगरेशन स्थान एक <math> n </math>-आयामी स्मूथ मैनिफोल्ड <math> Q </math> है, और चरण स्थान इसका कोटैंजेंट बंडल <math> T^*Q </math> (आयाम <math> 2n </math> का मैनिफोल्ड) है। उत्तरार्द्ध स्वाभाविक रूप से एक विहित सहानुभूतिपूर्ण रूप से सुसज्जित है, जो विहित निर्देशांक में ऊपर वर्णित के साथ मेल खाता है। सामान्य रूप से , डार्बौक्स प्रमेय के अनुसार, कोई भी इच्छित सिंपलेक्टिक मैनिफोल्ड <math> (M,\omega) </math> विशेष निर्देशांक स्वीकार करता है, जहां फॉर्म <math> \omega </math> और ब्रैकेट <math> \{f,g\} = \omega (X_f,X_g) </math> क्रमशः, सिंपलेक्टिक फॉर्म और <math> \mathbb{R}^{2n} </math> के पॉइसन ब्रैकेट के समान होते हैं। इसलिए सिम्प्लेक्टिक ज्यामिति मौलिक हैमिल्टनियन यांत्रिकी का वर्णन करने के लिए प्राकृतिक गणितीय सेटिंग है। | ||
पॉइसन मैनिफोल्ड्स सिम्प्लेक्टिक मैनिफोल्ड्स के आगे सामान्यीकरण हैं, जो <math>\mathbb{R}^{2n}</math> पर पॉइसन ब्रैकेट द्वारा संतुष्ट गुणों को स्वयंसिद्ध करने से उत्पन्न होते हैं। अधिक स्पष्ट रूप से, एक पॉइसन मैनिफोल्ड में एक | पॉइसन मैनिफोल्ड्स सिम्प्लेक्टिक मैनिफोल्ड्स के आगे सामान्यीकरण हैं, जो <math>\mathbb{R}^{2n}</math> पर पॉइसन ब्रैकेट द्वारा संतुष्ट गुणों को स्वयंसिद्ध करने से उत्पन्न होते हैं। अधिक स्पष्ट रूप से, एक पॉइसन मैनिफोल्ड में एक एब्स्ट्रैक्ट ब्रैकेट <math>\{\cdot,\cdot\}: \mathcal{C}^\infty(M) \times \mathcal{C}^\infty(M) \to \mathcal{C}^\infty(M) </math> के साथ एक स्मूथ मैनिफोल्ड <math>M</math> (जरूरी नहीं कि समान आयाम का हो) होता है, जिसे अभी भी पॉइसन ब्रैकेट कहा जाता है, जो जरूरी नहीं कि एक सहानुभूतिपूर्ण रूप <math>\omega</math> से उत्पन्न होता है, किन्तु समान बीजगणित को संतुष्ट गुण करता है । | ||
पॉइसन ज्यामिति, सिम्प्लेक्टिक ज्यामिति से निकटता से संबंधित है: उदाहरण के लिए, प्रत्येक पॉइसन ब्रैकेट मैनिफोल्ड के सिम्पलेक्टिक [[सबमैनिफोल्ड]] में एक | पॉइसन ज्यामिति, सिम्प्लेक्टिक ज्यामिति से निकटता से संबंधित है: उदाहरण के लिए, प्रत्येक पॉइसन ब्रैकेट मैनिफोल्ड के सिम्पलेक्टिक [[सबमैनिफोल्ड]] में एक लीफ को निर्धारित करता है। चूँकि , पॉइसन ज्यामिति के अध्ययन के लिए ऐसी तकनीकों की आवश्यकता होती है जो सामान्य रूप से से सिम्प्लेक्टिक ज्यामिति में नियोजित नहीं होती हैं, जैसे कि लाई ग्रुपोइड्स और लाई अलजेब्रॉइड्स का सिद्धांत है । | ||
इसके अतिरिक्त , संरचनाओं के प्राकृतिक उदाहरण भी हैं जो नैतिक रूप से सहानुभूतिपूर्ण होने चाहिए, किन्तु विलक्षणता प्रदर्शित करते हैं, अथार्थ उनके सहानुभूतिपूर्ण स्वरूप को विकृत होने की अनुमति दी जानी चाहिए। उदाहरण के लिए, एक समूह द्वारा सिम्पलेक्टिक मैनिफोल्ड का सहज [[भागफल स्थान (टोपोलॉजी)]] [[लक्षणरूपता]] द्वारा समूह कार्रवाई एक पॉइसन मैनिफोल्ड है, जो सामान्य रूप से सिम्पलेक्टिक नहीं है। यह स्थिति एक भौतिक प्रणाली के स्थिति को मॉडल करती है जो [[समरूपता (भौतिकी)]] के अनुसार अपरिवर्तनीय है: समरूपता द्वारा मूल चरण स्थान को प्राप्त करने वाला कम चरण स्थान, सामान्य रूप से अब सहानुभूतिपूर्ण नहीं है, किन्तु पॉइसन है। | इसके अतिरिक्त , संरचनाओं के प्राकृतिक उदाहरण भी हैं जो नैतिक रूप से सहानुभूतिपूर्ण होने चाहिए, किन्तु विलक्षणता प्रदर्शित करते हैं, अथार्थ उनके सहानुभूतिपूर्ण स्वरूप को विकृत होने की अनुमति दी जानी चाहिए। उदाहरण के लिए, एक समूह द्वारा सिम्पलेक्टिक मैनिफोल्ड का सहज [[भागफल स्थान (टोपोलॉजी)]] [[लक्षणरूपता]] द्वारा समूह कार्रवाई एक पॉइसन मैनिफोल्ड है, जो सामान्य रूप से सिम्पलेक्टिक नहीं है। यह स्थिति एक भौतिक प्रणाली के स्थिति को मॉडल करती है जो [[समरूपता (भौतिकी)]] के अनुसार अपरिवर्तनीय है: समरूपता द्वारा मूल चरण स्थान को प्राप्त करने वाला कम चरण स्थान, सामान्य रूप से अब सहानुभूतिपूर्ण नहीं है, किन्तु पॉइसन है। | ||
Line 29: | Line 29: | ||
चूँकि पॉइसन मैनिफोल्ड की आधुनिक परिभाषा केवल 70-80 के दशक में सामने आई, किन्तु इसकी उत्पत्ति उन्नीसवीं सदी में हुई। एलन वीनस्टीन ने पॉइसन ज्यामिति के प्रारंभिक इतिहास को इस प्रकार संश्लेषित किया: पॉइसन ने मौलिक गतिशीलता के लिए एक उपकरण के रूप में अपने कोष्ठक का आविष्कार किया। जैकोबी ने इन कोष्ठकों के महत्व को समझा और उनके बीजगणितीय गुणों को स्पष्ट किया और ली ने उनकी ज्यामिति का अध्ययन प्रारंभ किया।<ref>{{Cite journal |last=Weinstein |first=Alan |author-link=Alan Weinstein |date=1998-08-01 |title=पॉइसन ज्यामिति|journal=Differential Geometry and Its Applications |series=Symplectic Geometry |language=en |volume=9 |issue=1 |pages=213–238 |doi=10.1016/S0926-2245(98)00022-9 |issn=0926-2245 |doi-access=free}}</ref> | चूँकि पॉइसन मैनिफोल्ड की आधुनिक परिभाषा केवल 70-80 के दशक में सामने आई, किन्तु इसकी उत्पत्ति उन्नीसवीं सदी में हुई। एलन वीनस्टीन ने पॉइसन ज्यामिति के प्रारंभिक इतिहास को इस प्रकार संश्लेषित किया: पॉइसन ने मौलिक गतिशीलता के लिए एक उपकरण के रूप में अपने कोष्ठक का आविष्कार किया। जैकोबी ने इन कोष्ठकों के महत्व को समझा और उनके बीजगणितीय गुणों को स्पष्ट किया और ली ने उनकी ज्यामिति का अध्ययन प्रारंभ किया।<ref>{{Cite journal |last=Weinstein |first=Alan |author-link=Alan Weinstein |date=1998-08-01 |title=पॉइसन ज्यामिति|journal=Differential Geometry and Its Applications |series=Symplectic Geometry |language=en |volume=9 |issue=1 |pages=213–238 |doi=10.1016/S0926-2245(98)00022-9 |issn=0926-2245 |doi-access=free}}</ref> | ||
वास्तव में, सिमोन डेनिस पॉइसन ने गति के नए | वास्तव में, सिमोन डेनिस पॉइसन ने गति के नए इंटीग्रल प्राप्त करने के लिए 1809 में जिसे हम पॉइसन ब्रैकेट कहते हैं, प्रस्तुत किया, अथार्थ वे मात्राएँ जो गति के समय संरक्षित रहती हैं। अधिक स्पष्ट रूप से, उन्होंने सिद्ध किया कि, यदि दो फलन f और g गतियों के इंटीग्रल हैं, तो एक तीसरा फलन है, जिसे <math> \{ f,g \} </math> द्वारा निरूपित किया जाता है, जो गति का भी इंटीग्रल है। यांत्रिकी के हैमिल्टनियन सूत्रीकरण में, जहां किसी भौतिक प्रणाली की गतिशीलता को किसी दिए गए फ़ंक्शन <math> h </math> (समान्य रूप से प्रणाली की ऊर्जा) द्वारा वर्णित किया जाता है, गति का एक इंटीग्रल केवल एक फ़ंक्शन f होता है, जो पॉइसन-h के साथ संचार करता है, अर्थात ऐसा कि <math> \{f,h\} = 0 </math> प्रमेय के नाम से जाना जाएगा, उसे इस प्रकार तैयार किया जा सकता है<ref>{{Cite journal |last=Poisson |first=Siméon Denis |author-link=Siméon Denis Poisson |date=1809 |title=Sur la variation des constantes arbitraires dans les questions de mécanique |trans-title=On the variation of arbitrary constants in the questions of mechanics |url=https://babel.hathitrust.org/cgi/pt?id=mdp.39015074785596&view=1up&seq=280 |journal={{Interlanguage link|Journal de l'École polytechnique|fr}} | ||
|language=fr |volume=15e cahier |issue=8 |pages=266–344 |via=[[HathiTrust]]}}</ref><math display="block"> \{f,h\} = 0, \{g,h\} = 0 \Rightarrow \{\{f,g\},h\} = 0.</math>पॉइसन की गणनाओं ने अनेक पृष्ठों पर अधिकृत कर लिया, और उनके परिणामों को दो दशक बाद [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा फिर से खोजा और सरल बनाया गया।<ref name=":5">{{Cite journal |last=Kosmann-Schwarzbach |first=Yvette |author-link=Yvette Kosmann-Schwarzbach |date=2022-11-29 |title=Seven Concepts Attributed to Siméon-Denis Poisson |url=https://www.emis.de/journals/SIGMA/2022/092/ |journal=SIGMA. Symmetry, Integrability and Geometry: Methods and Applications |language=en |volume=18 |pages=092 |doi=10.3842/SIGMA.2022.092 |doi-access=free}}</ref> जैकोबी बाइनरी ऑपरेशन के रूप में पॉइसन ब्रैकेट के सामान्य गुणों की पहचान करने वाले पहले व्यक्ति थे। इसके अतिरिक्त , उन्होंने दो फ़ंक्शंस के (पॉइसन) ब्रैकेट और उनके संबंधित [[हैमिल्टनियन वेक्टर फ़ील्ड|हैमिल्टनियन सदिश क्षेत्र]] के सदिश क्षेत्र (लाइ) ब्रैकेट के मध्य संबंध स्थापित किया था, अथार्थ ।<math display="block"> X_{\{f,g\}} = [X_f,X_g],</math>गति के | |language=fr |volume=15e cahier |issue=8 |pages=266–344 |via=[[HathiTrust]]}}</ref><math display="block"> \{f,h\} = 0, \{g,h\} = 0 \Rightarrow \{\{f,g\},h\} = 0.</math>पॉइसन की गणनाओं ने अनेक पृष्ठों पर अधिकृत कर लिया, और उनके परिणामों को दो दशक बाद [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा फिर से खोजा और सरल बनाया गया।<ref name=":5">{{Cite journal |last=Kosmann-Schwarzbach |first=Yvette |author-link=Yvette Kosmann-Schwarzbach |date=2022-11-29 |title=Seven Concepts Attributed to Siméon-Denis Poisson |url=https://www.emis.de/journals/SIGMA/2022/092/ |journal=SIGMA. Symmetry, Integrability and Geometry: Methods and Applications |language=en |volume=18 |pages=092 |doi=10.3842/SIGMA.2022.092 |doi-access=free}}</ref> जैकोबी बाइनरी ऑपरेशन के रूप में पॉइसन ब्रैकेट के सामान्य गुणों की पहचान करने वाले पहले व्यक्ति थे। इसके अतिरिक्त , उन्होंने दो फ़ंक्शंस के (पॉइसन) ब्रैकेट और उनके संबंधित [[हैमिल्टनियन वेक्टर फ़ील्ड|हैमिल्टनियन सदिश क्षेत्र]] के सदिश क्षेत्र (लाइ) ब्रैकेट के मध्य संबंध स्थापित किया था, अथार्थ ।<math display="block"> X_{\{f,g\}} = [X_f,X_g],</math>गति के इंटीग्रल पर पॉइसन के प्रमेय को दोबारा तैयार करने (और इसका बहुत छोटा प्रमाण देने) के लिए।<ref name=":32">{{Cite book |last1=Silva |first1=Ana Cannas da |url=https://math.berkeley.edu/~alanw/Models.pdf |title=गैर-अनुवांशिक बीजगणित के लिए ज्यामितीय मॉडल|last2=Weinstein |first2=Alan |date=1999 |publisher=American Mathematical Society |isbn=0-8218-0952-0 |location=Providence, R.I. |oclc=42433917 |author-link2=Alan Weinstein}}</ref> | ||
पॉइसन ब्रैकेट पर जैकोबी के काम ने [[अंतर समीकरण| | पॉइसन ब्रैकेट पर जैकोबी के काम ने [[अंतर समीकरण|डिफरेंशियल समीकरण]] की समरूपता पर [[सोफस झूठ|सोफस]] लाई के अग्रणी अध्ययन को प्रभावित किया था , जिसके कारण लाई समूह और लाई बीजगणित की खोज हुई। उदाहरण के लिए, जिसे अब रैखिक पॉइसन संरचनाएं कहा जाता है (अर्थात एक सदिश स्थान पर पॉइसन कोष्ठक जो रैखिक कार्यों को रैखिक कार्यों में भेजते हैं) स्पष्ट रूप से ली बीजगणित संरचनाओं के अनुरूप होते हैं। इसके अतिरिक्त , एक रेखीय पॉइसन संरचना की अभिन्नता (नीचे देखें) एक लाई समूह से संबंधित लाई बीजगणित की अभिन्नता से निकटता से संबंधित है। | ||
बीसवीं सदी में आधुनिक | बीसवीं सदी में आधुनिक डिफरेंशियल ज्यामिति का विकास हुआ, किन्तु केवल 1977 में आंद्रे लिचनेरोविक्ज़ ने स्मूथ मैनिफ़ोल्ड पर ज्यामितीय वस्तुओं के रूप में पॉइसन संरचनाओं को प्रस्तुत किया।<ref name=":02"/> पॉइसन मैनिफोल्ड्स का एलन वेनस्टीन के मूलभूत 1983 के पेपर में आगे अध्ययन किया गया, जहां अनेक मूलभूत संरचना प्रमेयों को पहली बार सिद्ध किया गया था।<ref name=":12">{{Cite journal |last=Weinstein |first=Alan |author-link=Alan Weinstein |date=1983-01-01 |title=पॉइसन की स्थानीय संरचना कई गुना है|journal=[[Journal of Differential Geometry]] |volume=18 |issue=3 |doi=10.4310/jdg/1214437787 |issn=0022-040X |doi-access=free}}</ref> | ||
इन कार्यों ने बाद के दशकों में पॉइसन ज्यामिति के विकास पर बहुत बड़ा प्रभाव डाला गया, जो आज अपना खुद का एक क्षेत्र है, और साथ ही उदाहरण के लिए गहराई से उलझा हुआ है। गैर-कम्यूटेटिव ज्यामिति, [[ एकीकृत प्रणाली |एकीकृत प्रणाली]] [[टोपोलॉजिकल क्षेत्र सिद्धांत]] सिद्धांत और [[प्रतिनिधित्व सिद्धांत]] है । | इन कार्यों ने बाद के दशकों में पॉइसन ज्यामिति के विकास पर बहुत बड़ा प्रभाव डाला गया, जो आज अपना खुद का एक क्षेत्र है, और साथ ही उदाहरण के लिए गहराई से उलझा हुआ है। गैर-कम्यूटेटिव ज्यामिति, [[ एकीकृत प्रणाली |एकीकृत प्रणाली]] [[टोपोलॉजिकल क्षेत्र सिद्धांत]] सिद्धांत और [[प्रतिनिधित्व सिद्धांत]] है । | ||
Line 54: | Line 54: | ||
=== बायसदिश के रूप में === | === बायसदिश के रूप में === | ||
स्मूथ मैनिफोल्ड <math> M </math> पर एक पॉइसन बायसदिश एक बायसदिश क्षेत्र <math> \pi \in \mathfrak{X}^2(M) := \Gamma \big( \wedge^{2} T M \big) </math> है जो गैर-रेखीय आंशिक | स्मूथ मैनिफोल्ड <math> M </math> पर एक पॉइसन बायसदिश एक बायसदिश क्षेत्र <math> \pi \in \mathfrak{X}^2(M) := \Gamma \big( \wedge^{2} T M \big) </math> है जो गैर-रेखीय आंशिक डिफरेंशियल समीकरण <math> [\pi,\pi] = 0 </math> को संतुष्ट करता है, जहां | ||
:<math> [\cdot,\cdot]: {\mathfrak{X}^{p}}(M) \times {\mathfrak{X}^{q}}(M) \to {\mathfrak{X}^{p + q - 1}}(M) </math> | :<math> [\cdot,\cdot]: {\mathfrak{X}^{p}}(M) \times {\mathfrak{X}^{q}}(M) \to {\mathfrak{X}^{p + q - 1}}(M) </math> | ||
बहुसदिश क्षेत्र पर स्काउटन-निजेनहुइस ब्रैकेट को दर्शाता है। स्थानीय निर्देशांक चुनना <math> (U, x^i) </math>, कोई भी पॉइसन बायसदिश द्वारा दिया जाता है<math display="block"> \pi_{\mid U} = \sum_{i,j} \pi^{ij} \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}, </math><math> U </math> पर <math> \pi^{ij} </math> तिरछा-सममित सुचारू कार्यों के लिए। | |||
=== परिभाषाओं की समतुल्यता === | === परिभाषाओं की समतुल्यता === | ||
Line 67: | Line 67: | ||
* <math> \pi </math> संतुष्ट <math> [\pi,\pi] = 0 </math> (इसलिए यह एक पॉइसन बायसदिश है); | * <math> \pi </math> संतुष्ट <math> [\pi,\pi] = 0 </math> (इसलिए यह एक पॉइसन बायसदिश है); | ||
*मानचित्र <math> {C^{\infty}}(M) \to \mathfrak{X}(M), f \mapsto X_f </math> एक लाई बीजगणित समरूपता है, अथार्त हैमिल्टनियन सदिश क्षेत्र <math> [X_f, X_g] = X_{\{f,g\}} </math> को संतुष्ट करते हैं। | *मानचित्र <math> {C^{\infty}}(M) \to \mathfrak{X}(M), f \mapsto X_f </math> एक लाई बीजगणित समरूपता है, अथार्त हैमिल्टनियन सदिश क्षेत्र <math> [X_f, X_g] = X_{\{f,g\}} </math> को संतुष्ट करते हैं। | ||
* लेखाचित्र <math> {\rm Graph}(\pi) \subset TM \oplus T^*M </math> एक डिराक संरचना को परिभाषित करता है, अथार्थ एक लैग्रेंजियन | * लेखाचित्र <math> {\rm Graph}(\pi) \subset TM \oplus T^*M </math> एक डिराक संरचना को परिभाषित करता है, अथार्थ एक लैग्रेंजियन उपबंडल <math> D \subset TM \oplus T^*M </math> जो मानक [[कूरेंट ब्रैकेट]] के अंतर्गत बंद है। | ||
उपरोक्त चार आवश्यकताओं में से किसी के बिना एक पॉइसन संरचना को लगभग पॉइसन संरचना भी कहा जाता है।<ref name=":32" /> | उपरोक्त चार आवश्यकताओं में से किसी के बिना एक पॉइसन संरचना को लगभग पॉइसन संरचना भी कहा जाता है।<ref name=":32" /> | ||
=== होलोमॉर्फिक पॉइसन संरचनाएं === | === होलोमॉर्फिक पॉइसन संरचनाएं === | ||
वास्तविक स्मूथ मैनिफ़ोल्ड के लिए पॉइसन संरचना की परिभाषा को | वास्तविक स्मूथ मैनिफ़ोल्ड के लिए पॉइसन संरचना की परिभाषा को सम्मिश्र स्थिति में भी अनुकूलित किया जा सकता है। | ||
एक होलोमोर्फिक पॉइसन मैनिफोल्ड एक | एक होलोमोर्फिक पॉइसन मैनिफोल्ड एक सम्मिश्र मैनिफोल्ड <math>M</math> है जिसका होलोमोर्फिक कार्यों का शीफ <math> \mathcal{O}_M </math> पॉइसन बीजगणित का एक शीफ है। समान रूप से, याद रखें कि एक सम्मिश्र मैनिफोल्ड <math>M</math> पर एक होलोमोर्फिक द्विसदिश क्षेत्र <math>\pi</math> एक खंड <math> \pi \in \Gamma (\wedge^2 T^{1,0}M)</math> है जैसे कि <math> \bar{\partial} \pi = 0</math> फिर <math>M </math> पर एक होलोमोर्फिक पॉइसन संरचना एक होलोमोर्फिक द्विसदिश क्षेत्र है जो समीकरण <math>[\pi,\pi]=0</math>} को संतुष्ट करता है। होलोमॉर्फिक पॉइसन मैनिफोल्ड्स को पॉइसन-निजेनहुइस संरचनाओं के संदर्भ में भी चित्रित किया जा सकता है<ref>{{Cite journal |last1=Laurent-Gengoux |first1=C. |last2=Stienon |first2=M. |last3=Xu |first3=P. |date=2010-07-08 |title=होलोमॉर्फिक पॉइसन मैनिफोल्ड्स और होलोमोर्फिक लाई अलजेब्रोइड्स|url=https://academic.oup.com/imrn/article-lookup/doi/10.1093/imrn/rnn088 |journal=[[International Mathematics Research Notices]] |language=en |volume=2008 |pages= |arxiv=0707.4253 |doi=10.1093/imrn/rnn088 |issn=1073-7928}}</ref> | ||
वास्तविक पॉइसन संरचनाओं के लिए अनेक परिणाम, उदा. उनकी अभिन्नता के संबंध में, होलोमोर्फिक तक भी विस्तार करें।<ref>{{Cite journal |last1=Laurent-Gengoux |first1=Camille |last2=Stiénon |first2=Mathieu |last3=Xu |first3=Ping |date=2009-12-01 |title=होलोमोर्फिक लाई बीजगणित का एकीकरण|url=https://doi.org/10.1007/s00208-009-0388-7 |journal=[[Mathematische Annalen]] |language=en |volume=345 |issue=4 |pages=895–923 |arxiv=0803.2031 |doi=10.1007/s00208-009-0388-7 |s2cid=41629 |issn=1432-1807}}</ref><ref>{{Cite journal |last1=Broka |first1=Damien |last2=Xu |first2=Ping |date=2022 |title=होलोमोर्फिक पॉइसन मैनिफोल्ड्स की प्रतीकात्मक अनुभूतियाँ|url=https://www.intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0029/0004/a001/index.php |journal=Mathematical Research Letters |language=EN |volume=29 |issue=4 |pages=903–944 |arxiv=1512.08847 |doi=10.4310/MRL.2022.v29.n4.a1 |issn=1945-001X |doi-access=free}}</ref> | वास्तविक पॉइसन संरचनाओं के लिए अनेक परिणाम, उदा. उनकी अभिन्नता के संबंध में, होलोमोर्फिक तक भी विस्तार करें।<ref>{{Cite journal |last1=Laurent-Gengoux |first1=Camille |last2=Stiénon |first2=Mathieu |last3=Xu |first3=Ping |date=2009-12-01 |title=होलोमोर्फिक लाई बीजगणित का एकीकरण|url=https://doi.org/10.1007/s00208-009-0388-7 |journal=[[Mathematische Annalen]] |language=en |volume=345 |issue=4 |pages=895–923 |arxiv=0803.2031 |doi=10.1007/s00208-009-0388-7 |s2cid=41629 |issn=1432-1807}}</ref><ref>{{Cite journal |last1=Broka |first1=Damien |last2=Xu |first2=Ping |date=2022 |title=होलोमोर्फिक पॉइसन मैनिफोल्ड्स की प्रतीकात्मक अनुभूतियाँ|url=https://www.intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0029/0004/a001/index.php |journal=Mathematical Research Letters |language=EN |volume=29 |issue=4 |pages=903–944 |arxiv=1512.08847 |doi=10.4310/MRL.2022.v29.n4.a1 |issn=1945-001X |doi-access=free}}</ref> | ||
होलोमोर्फिक पॉइसन संरचनाएं [[सामान्यीकृत जटिल संरचना]] के संदर्भ में स्वाभाविक रूप से प्रकट होती हैं: स्थानीय रूप से, कोई भी सामान्यीकृत | होलोमोर्फिक पॉइसन संरचनाएं [[सामान्यीकृत जटिल संरचना|सामान्यीकृत सम्मिश्र संरचना]] के संदर्भ में स्वाभाविक रूप से प्रकट होती हैं: स्थानीय रूप से, कोई भी सामान्यीकृत सम्मिश्र मैनिफोल्ड एक सिम्प्लेक्टिक मैनिफोल्ड और एक होलोमोर्फिक पॉइसन मैनिफोल्ड का उत्पाद होता है।<ref>{{Cite journal |last=Bailey |first=Michael |date=2013-08-01 |title=सामान्यीकृत जटिल संरचनाओं का स्थानीय वर्गीकरण|journal=[[Journal of Differential Geometry]] |volume=95 |issue=1 |arxiv=1201.4887 |doi=10.4310/jdg/1375124607 |issn=0022-040X |doi-access=free}}</ref> | ||
Line 84: | Line 84: | ||
==सिंपलेक्टिक पत्तियां== | ==सिंपलेक्टिक पत्तियां== | ||
एक पॉइसन मैनिफोल्ड को स्वाभाविक रूप से संभवतः विभिन्न आयामों के नियमित रूप से विसर्जित सिंपलेक्टिक मैनिफोल्ड में विभाजित किया जाता है, जिसे इसकी सिंपलेक्टिक | एक पॉइसन मैनिफोल्ड को स्वाभाविक रूप से संभवतः विभिन्न आयामों के नियमित रूप से विसर्जित सिंपलेक्टिक मैनिफोल्ड में विभाजित किया जाता है, जिसे इसकी सिंपलेक्टिक लीफ कहा जाता है। ये हैमिल्टनियन सदिश क्षेत्रों द्वारा फैलाए गए फोलिएशन या फोलिएशन और इंटीग्रैबिलिटी के अधिकतम अभिन्न उपमान के रूप में उत्पन्न होते हैं। | ||
=== पॉइसन संरचना का पद === | === पॉइसन संरचना का पद === | ||
Line 92: | Line 92: | ||
=== नियमित मामला === | === नियमित मामला === | ||
नियमित पॉइसन मैनिफोल्ड के लिए, छवि <math> {\pi^{\sharp}}(T^{*} M) \subset TM </math> एक [[वितरण (विभेदक ज्यामिति)]] है; इसलिए, फ्रोबेनियस प्रमेय ( | नियमित पॉइसन मैनिफोल्ड के लिए, छवि <math> {\pi^{\sharp}}(T^{*} M) \subset TM </math> एक [[वितरण (विभेदक ज्यामिति)|वितरण (डिफरेंशियल ज्यामिति)]] है; इसलिए, फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) द्वारा यह जांचना आसान है कि यह अनैच्छिक है, जिसमे <math> M </math> लीफ में विभाजन स्वीकार करता है। इसके अतिरिक्त , पॉइसन बाइसदिश प्रत्येक लीफ को अच्छी तरह से प्रतिबंधित करता है, जो इसलिए सहानुभूतिपूर्ण मैनिफोल्ड बन जाता है। | ||
=== गैर-नियमित मामला === | === गैर-नियमित मामला === | ||
वितरण के बाद से एक गैर-नियमित पॉइसन मैनिफोल्ड के लिए स्थिति अधिक | वितरण के बाद से एक गैर-नियमित पॉइसन मैनिफोल्ड के लिए स्थिति अधिक सम्मिश्र है जिसमे <math> {\pi^{\sharp}}(T^{*} M) \subset TM </math> [[एकवचन वितरण (विभेदक ज्यामिति)|एकवचन वितरण (डिफरेंशियल ज्यामिति)]] है, अथार्थ सदिश उप-स्थान <math> {\pi^{\sharp}}(T^{*}_x M) \subset T_xM </math> अलग-अलग आयाम हैं. | ||
<math> {\pi^{\sharp}}(T^{*} M) </math> के लिए एक इंटीग्रल सबमैनिफोल्ड एक पथ-कनेक्टेड सबमैनिफोल्ड <math> S \subseteq M </math> है जो सभी <math> x \in S </math> के लिए <math> T_{x} S = {\pi^{\sharp}}(T^{\ast}_{x} M) </math> को संतुष्ट करता है। <math> \pi </math> के इंटीग्रल सबमैनिफोल्ड स्वचालित रूप से नियमित रूप से विसर्जित मैनिफोल्ड होते हैं, और <math> \pi </math> के अधिकतम इंटीग्रल सबमैनिफोल्ड को <math> \pi </math> की | <math> {\pi^{\sharp}}(T^{*} M) </math> के लिए एक इंटीग्रल सबमैनिफोल्ड एक पथ-कनेक्टेड सबमैनिफोल्ड <math> S \subseteq M </math> है जो सभी <math> x \in S </math> के लिए <math> T_{x} S = {\pi^{\sharp}}(T^{\ast}_{x} M) </math> को संतुष्ट करता है। <math> \pi </math> के इंटीग्रल सबमैनिफोल्ड स्वचालित रूप से नियमित रूप से विसर्जित मैनिफोल्ड होते हैं, और <math> \pi </math> के अधिकतम इंटीग्रल सबमैनिफोल्ड को <math> \pi </math> की लीफ कहा जाता है। | ||
इसके अतिरिक्त , प्रत्येक लीफ <math> S </math> सभी <math> f,g \in {C^{\infty}}(M) </math> और <math> x \in S </math> के लिए स्थिति <math> [{\omega_{S}}(X_{f},X_{g})](x) = - \{ f,g \}(x) </math> द्वारा निर्धारित एक प्राकृतिक सहानुभूतिपूर्ण रूप <math> \omega_{S} \in {\Omega^{2}}(S) </math> रखती है, इसलिए , कोई <math> \pi </math> की सहानुभूतिपूर्ण लीफ की बात करता है। इसके अतिरिक्त , नियमित बिंदुओं का स्थान <math> M_{\mathrm{reg}} </math> और उसका पूरक दोनों ही सिम्प्लेक्टिक लीफ से संतृप्त होते हैं, इसलिए सिम्प्लेक्टिक पत्तियाँ या तो नियमित या एकवचन हो सकती हैं। | |||
इसके अतिरिक्त , प्रत्येक | |||
=== वीनस्टीन विभाजन प्रमेय === | === वीनस्टीन विभाजन प्रमेय === | ||
गैर-नियमित स्थिति में भी सहानुभूतिपूर्ण | गैर-नियमित स्थिति में भी सहानुभूतिपूर्ण लीफ के अस्तित्व को दिखाने के लिए, कोई वीनस्टीन विभाजन प्रमेय (या डार्बौक्स-वेनस्टीन प्रमेय) का उपयोग कर सकता है।<ref name=":12" /> इसमें कहा गया है कि कोई भी पॉइसन मैनिफोल्ड <math> (M^n, \pi) </math> स्थानीय रूप से एक बिंदु <math> x_0 \in M </math> के आसपास एक सिंपलेक्टिक मैनिफोल्ड <math> (S^{2k}, \omega) </math> और एक अनुप्रस्थ पॉइसन सबमैनिफोल्ड <math> (T^{n-2k}, \pi_T) </math> के उत्पाद के रूप में विभाजित होता है जो <math> x_0 </math> पर लुप्त हो जाता है। अधिक स्पष्ट रूप से, यदि <math> \mathrm{rank}(\pi_{x_0}) = 2k </math> तो स्थानीय निर्देशांक <math> (U, p_1,\ldots,p_k,q^1,\ldots, q^k,x^1,\ldots,x^{n-2k}) </math> हैं जैसे कि पॉइसन बायवेक्टर<math display="block"> \pi_{\mid U} = \sum_{i=1}^{k} \frac{\partial}{\partial q^i} \frac{\partial}{\partial p_i} + \frac{1}{2} \sum_{i,j=1}^{n-2k} \phi^{ij}(x) \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}, </math>जहाँ <math> \phi^{ij}(x_0) = 0 </math>. ध्यान दें कि, जब पद की <math> \pi </math> अधिकतम है (उदाहरण के लिए पॉइसन संरचना नॉनडीजेनरेट है), कोई सहानुभूति संरचनाओं के लिए मौलिक डार्बौक्स के प्रमेय को पुनः प्राप्त करता है। | ||
==उदाहरण== | ==उदाहरण== | ||
=== तुच्छ पॉइसन संरचनाएं === | === तुच्छ पॉइसन संरचनाएं === | ||
प्रत्येक मैनिफ़ोल्ड <math> M </math> में तुच्छ पॉइसन संरचना <math> \{ f,g \} = 0 </math> होती है, जिसे द्विसदिश <math> \pi=0 </math>{द्वारा समकक्ष रूप से वर्णित किया गया है। इसलिए <math> M </math> का प्रत्येक बिंदु एक शून्य-आयामी सिंपलेक्टिक | प्रत्येक मैनिफ़ोल्ड <math> M </math> में तुच्छ पॉइसन संरचना <math> \{ f,g \} = 0 </math> होती है, जिसे द्विसदिश <math> \pi=0 </math>{द्वारा समकक्ष रूप से वर्णित किया गया है। इसलिए <math> M </math> का प्रत्येक बिंदु एक शून्य-आयामी सिंपलेक्टिक लीफ है। | ||
=== नॉनडीजेनरेट पॉइसन संरचनाएं === | === नॉनडीजेनरेट पॉइसन संरचनाएं === | ||
एक द्विसदिश क्षेत्र <math> \pi </math> को नॉनडीजेनरेट कहा जाता है यदि <math> \pi^{\sharp}: T^{*} M \to T M </math> एक सदिश बंडल आइसोमोर्फिज्म है। नॉनडीजेनरेट पॉइसन द्विसदिश क्षेत्र वास्तव में सिम्पलेक्टिक मैनिफोल्ड्स <math> (M,\omega) </math> के समान ही हैं। | एक द्विसदिश क्षेत्र <math> \pi </math> को नॉनडीजेनरेट कहा जाता है यदि <math> \pi^{\sharp}: T^{*} M \to T M </math> एक सदिश बंडल आइसोमोर्फिज्म है। नॉनडीजेनरेट पॉइसन द्विसदिश क्षेत्र वास्तव में सिम्पलेक्टिक मैनिफोल्ड्स <math> (M,\omega) </math> के समान ही हैं। | ||
वास्तव में, नॉनडीजेनरेट बायसदिश क्षेत्रों के मध्य एक विशेषण पत्राचार है <math> \pi </math> और नॉनडीजेनरेट फॉर्म | वास्तव में, नॉनडीजेनरेट बायसदिश क्षेत्रों के मध्य एक विशेषण पत्राचार है <math> \pi </math> और नॉनडीजेनरेट फॉर्म या नॉनडीजेनरेट 2-फॉर्म <math> \omega </math>, द्वारा दिए गए<math display="block"> \pi^\sharp = (\omega^{\flat})^{-1}, </math>जहां <math> \omega </math> को <math> \omega^{\flat}: TM \to T^*M, \quad v \mapsto \omega(v,\cdot) </math> द्वारा एन्कोड किया गया है। इसके अतिरिक्त , <math> \pi </math> स्पष्ट रूप से पॉइसन है यदि और केवल यदि <math> \omega </math> बंद है; ऐसे स्थिति में, ब्रैकेट हैमिल्टनियन यांत्रिकी से विहित पॉइसन ब्रैकेट बन जाता है:<math display="block"> \{ f,g \} := \omega (X_f,X_g). </math>गैर-पतित पॉइसन संरचनाओं में केवल एक सहानुभूति लीफ होती है, अर्थात् <math> M </math> स्वयं, और उनका पॉइसन बीजगणित <math> (\mathcal{C}^{\infty}(M), \{\cdot, \cdot \}) </math> [[पॉइसन रिंग|पॉइसन वलय]] बनें। | ||
=== रैखिक पॉइसन संरचनाएं === | === रैखिक पॉइसन संरचनाएं === | ||
एक पॉइसन संरचना <math> \{ \cdot, \cdot \} </math> एक सदिश स्थान पर <math> V </math> रैखिक तब कहा जाता है जब दो रैखिक फलनों का कोष्ठक अभी भी रैखिक हो। | एक पॉइसन संरचना <math> \{ \cdot, \cdot \} </math> एक सदिश स्थान पर <math> V </math> रैखिक तब कहा जाता है जब दो रैखिक फलनों का कोष्ठक अभी भी रैखिक हो। | ||
रैखिक पॉइसन संरचनाओं के साथ सदिश रिक्त स्थान का वर्ग वास्तव में (दोहरे) ले बीजगणित के साथ मेल खाता है। वास्तव में, किसी भी परिमित-आयामी लाई बीजगणित <math> \mathfrak{g}^{*} </math> के दोहरे <math> (\mathfrak{g},[\cdot,\cdot]) </math> में एक रैखिक पॉइसन ब्रैकेट होता है, जिसे साहित्य में लाई-पॉइसन, किरिलोव-पॉइसन या केकेएस (कोस्टेंट-किरिलोव-सोरियाउ) संरचना के नाम से जाना जाता है:<math display="block"> \{ f, g \} (\xi) := \xi ([d_\xi f,d_\xi g]_{\mathfrak{g}}), </math>जहाँ <math> f,g \in \mathcal{C}^{\infty}(\mathfrak{g}^*), \xi \in \mathfrak{g}^* </math> और व्युत्पन्न <math> d_\xi f, d_\xi g: T_{\xi} \mathfrak{g}^* \to \mathbb{R} </math> बिडुअल के अवयव | रैखिक पॉइसन संरचनाओं के साथ सदिश रिक्त स्थान का वर्ग वास्तव में (दोहरे) ले बीजगणित के साथ मेल खाता है। वास्तव में, किसी भी परिमित-आयामी लाई बीजगणित <math> \mathfrak{g}^{*} </math> के दोहरे <math> (\mathfrak{g},[\cdot,\cdot]) </math> में एक रैखिक पॉइसन ब्रैकेट होता है, जिसे साहित्य में लाई-पॉइसन, किरिलोव-पॉइसन या केकेएस (कोस्टेंट-किरिलोव-सोरियाउ) संरचना के नाम से जाना जाता है:<math display="block"> \{ f, g \} (\xi) := \xi ([d_\xi f,d_\xi g]_{\mathfrak{g}}), </math>जहाँ <math> f,g \in \mathcal{C}^{\infty}(\mathfrak{g}^*), \xi \in \mathfrak{g}^* </math> और व्युत्पन्न <math> d_\xi f, d_\xi g: T_{\xi} \mathfrak{g}^* \to \mathbb{R} </math> बिडुअल के अवयव के रूप में व्याख्या की जाती है जो कि <math> \mathfrak{g}^{**} \cong \mathfrak{g} </math>. समान रूप से, पॉइसन बायसदिश को स्थानीय रूप से इस प्रकार व्यक्त किया जा सकता है | ||
<math display="block"> \pi = \sum_{i,j,k} c^{ij}_k x^k \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}, </math>जहां <math> x^i </math> <math> \mathfrak{g}^{*} </math> पर निर्देशांक हैं और <math> c_k^{ij} </math> <math> \mathfrak{g} </math> से संबंधित संरचना स्थिरांक हैं। | <math display="block"> \pi = \sum_{i,j,k} c^{ij}_k x^k \frac{\partial}{\partial x^i} \frac{\partial}{\partial x^j}, </math>जहां <math> x^i </math> <math> \mathfrak{g}^{*} </math> पर निर्देशांक हैं और <math> c_k^{ij} </math> <math> \mathfrak{g} </math> से संबंधित संरचना स्थिरांक हैं। | ||
Line 127: | Line 126: | ||
=== फ़ाइबरवाइज रैखिक पॉइसन संरचनाएं === | === फ़ाइबरवाइज रैखिक पॉइसन संरचनाएं === | ||
पिछले उदाहरण को निम्नानुसार सामान्यीकृत किया जा सकता है। एक सदिश बंडल <math> E \to M </math> के कुल स्थान पर एक पॉइसन संरचना को फ़ाइबरवाइज रैखिक कहा जाता है जब दो सुचारू कार्यों का ब्रैकेट <math> E \to \mathbb{R} </math>, जिनके तंतुओं पर प्रतिबंध रैखिक होते हैं, | पिछले उदाहरण को निम्नानुसार सामान्यीकृत किया जा सकता है। एक सदिश बंडल <math> E \to M </math> के कुल स्थान पर एक पॉइसन संरचना को फ़ाइबरवाइज रैखिक कहा जाता है जब दो सुचारू कार्यों का ब्रैकेट <math> E \to \mathbb{R} </math>, जिनके तंतुओं पर प्रतिबंध रैखिक होते हैं, फाइबर तक सीमित होने पर भी रैखिक होते हैं। समान रूप से, पॉइसन बाइसदिश क्षेत्र <math> \pi </math> को किसी भी <math> (m_t)^*\pi = t \pi </math> के लिए <math> t >0 </math> को संतुष्ट करने के लिए कहा जाता है, जहां <math> m_t: E \to E </math> अदिश गुणन <math> v \mapsto tv </math> है | ||
रैखिक पॉइसन संरचनाओं के साथ सदिश बंडलों का वर्ग वास्तव में (दोहरे) लेई बीजगणित के साथ मेल खाता है। वास्तव में, द्वैत <math> A^* </math> किसी भी लाई बीजगणित का <math> (A, [\cdot, \cdot]) </math> एक फ़ाइबरवाइज रैखिक पॉइसन ब्रैकेट रखता है,<ref name=":6">{{Cite journal |last1=Coste |first1=A. |last2=Dazord |first2=P. |last3=Weinstein |first3=A. |author-link3=Alan Weinstein |date=1987 |title=Groupoïdes symplectiques |trans-title=Symplectic groupoids |url=http://www.numdam.org/item/PDML_1987___2A_1_0/ |journal=Publications du Département de mathématiques (Lyon) |language=fr |issue=2A |pages=1–62 |issn=2547-6300}}</ref> द्वारा विशिष्ट रूप से परिभाषित किया गया है<math display="block"> \{ \mathrm{ev}_\alpha, \mathrm{ev}_\beta \}:= ev_{[\alpha,\beta]} \quad \quad \forall \alpha, \beta \in \Gamma(A), </math>जहाँ <math> \mathrm{ev}_\alpha: A^* \to \mathbb{R}, \phi \mapsto \phi(\alpha) </math> द्वारा मूल्यांकन है जहाँ <math> \alpha </math>. समान रूप से, पॉइसन बायसदिश को स्थानीय रूप से इस प्रकार व्यक्त किया जा सकता है<math display="block"> \pi = \sum_{i,a} B^i_a(x) \frac{\partial}{\partial y_a} \frac{\partial}{\partial x^i} + \sum_{a < b,c} C_{ab}^c(x) y_c \frac{\partial}{\partial y_a} \frac{\partial}{\partial y_b}, </math>जहां <math> x^i </math> एक बिंदु <math> x \in M </math> के आसपास निर्देशांक हैं <math> y_a </math> <math> A^* </math> पर फाइबर निर्देशांक हैं, जो <math> A </math> के स्थानीय फ्रेम <math> e_a </math> के दोहरे हैं, और <math> B^i_a </math> और <math> C^c_{ab} </math> <math> A </math> के संरचना कार्य हैं, अथार्त । अद्वितीय सुचारू कार्य संतोषजनक है <math display="block"> \rho(e_a) = \sum_i B^i_a (x) \frac{\partial}{\partial x^i}, \quad \quad [e_a, e_b] = \sum_c C^c_{ab} (x) e_c. </math> | रैखिक पॉइसन संरचनाओं के साथ सदिश बंडलों का वर्ग वास्तव में (दोहरे) लेई बीजगणित के साथ मेल खाता है। वास्तव में, द्वैत <math> A^* </math> किसी भी लाई बीजगणित का <math> (A, [\cdot, \cdot]) </math> एक फ़ाइबरवाइज रैखिक पॉइसन ब्रैकेट रखता है,<ref name=":6">{{Cite journal |last1=Coste |first1=A. |last2=Dazord |first2=P. |last3=Weinstein |first3=A. |author-link3=Alan Weinstein |date=1987 |title=Groupoïdes symplectiques |trans-title=Symplectic groupoids |url=http://www.numdam.org/item/PDML_1987___2A_1_0/ |journal=Publications du Département de mathématiques (Lyon) |language=fr |issue=2A |pages=1–62 |issn=2547-6300}}</ref> द्वारा विशिष्ट रूप से परिभाषित किया गया है<math display="block"> \{ \mathrm{ev}_\alpha, \mathrm{ev}_\beta \}:= ev_{[\alpha,\beta]} \quad \quad \forall \alpha, \beta \in \Gamma(A), </math>जहाँ <math> \mathrm{ev}_\alpha: A^* \to \mathbb{R}, \phi \mapsto \phi(\alpha) </math> द्वारा मूल्यांकन है जहाँ <math> \alpha </math>. समान रूप से, पॉइसन बायसदिश को स्थानीय रूप से इस प्रकार व्यक्त किया जा सकता है<math display="block"> \pi = \sum_{i,a} B^i_a(x) \frac{\partial}{\partial y_a} \frac{\partial}{\partial x^i} + \sum_{a < b,c} C_{ab}^c(x) y_c \frac{\partial}{\partial y_a} \frac{\partial}{\partial y_b}, </math>जहां <math> x^i </math> एक बिंदु <math> x \in M </math> के आसपास निर्देशांक हैं <math> y_a </math> <math> A^* </math> पर फाइबर निर्देशांक हैं, जो <math> A </math> के स्थानीय फ्रेम <math> e_a </math> के दोहरे हैं, और <math> B^i_a </math> और <math> C^c_{ab} </math> <math> A </math> के संरचना कार्य हैं, अथार्त । अद्वितीय सुचारू कार्य संतोषजनक है <math display="block"> \rho(e_a) = \sum_i B^i_a (x) \frac{\partial}{\partial x^i}, \quad \quad [e_a, e_b] = \sum_c C^c_{ab} (x) e_c. </math> | ||
इसके विपरीत, '''<math> E </math>''' पर कोई भी फ़ाइबरवाइज रैखिक पॉइसन संरचना '''<math> \{ \cdot, \cdot \} </math>''' इस रूप की होनी चाहिए, | |||
इसके विपरीत, '''<math> E </math>''' पर कोई भी फ़ाइबरवाइज रैखिक पॉइसन संरचना '''<math> \{ \cdot, \cdot \} </math>''' इस रूप की होनी चाहिए, अथार्त कि <math> A:=E^* </math> पर प्रेरित एक प्राकृतिक लाई बीजगणित संरचना उपस्थित है जिसका लाई-पॉइसन बैकेट <math> A:=E^* </math> को पुनर्प्राप्त करता है।<ref>{{Cite journal |last=Courant |first=Theodore James |author-link=Theodore James Courant |date=1990 |title=डिराक मैनिफोल्ड्स|url=https://www.ams.org/tran/1990-319-02/S0002-9947-1990-0998124-1/ |journal=[[Transactions of the American Mathematical Society]] |language=en |volume=319 |issue=2 |pages=631–661 |doi=10.1090/S0002-9947-1990-0998124-1 |issn=0002-9947 |doi-access=free}}</ref> | |||
<math> A^* </math>की सहानुभूति पत्तियाँ बीजगणित कक्षाओं <math> \mathcal{O} \subseteq A </math> के कोटैंजेंट बंडल हैं; समतुल्य रूप से, यदि <math> A </math> एक ली ग्रुपॉइड <math> \mathcal{G} \rightrightarrows M </math> के साथ पूर्णांकित है, तो वे कोटैंजेंट ग्रुपॉइड <math> T^* \mathcal{G} \rightrightarrows A^* </math> की कक्षाओं के जुड़े हुए घटक हैं। | <math> A^* </math>की सहानुभूति पत्तियाँ बीजगणित कक्षाओं <math> \mathcal{O} \subseteq A </math> के कोटैंजेंट बंडल हैं; समतुल्य रूप से, यदि <math> A </math> एक ली ग्रुपॉइड <math> \mathcal{G} \rightrightarrows M </math> के साथ पूर्णांकित है, तो वे कोटैंजेंट ग्रुपॉइड <math> T^* \mathcal{G} \rightrightarrows A^* </math> की कक्षाओं के जुड़े हुए घटक हैं। | ||
Line 143: | Line 144: | ||
*कोई भी पॉइसन बाइसदिश क्षेत्र दिया गया <math> \pi </math> [[3-कई गुना|3-मैनिफोल्ड]] या 3-आयामी मैनिफोल्ड पर <math> M </math>, बायसदिश क्षेत्र <math> f \pi </math>, किसी के लिए <math> f \in \mathcal{C}^\infty(M) </math>, स्वचालित रूप से पॉइसन है। | *कोई भी पॉइसन बाइसदिश क्षेत्र दिया गया <math> \pi </math> [[3-कई गुना|3-मैनिफोल्ड]] या 3-आयामी मैनिफोल्ड पर <math> M </math>, बायसदिश क्षेत्र <math> f \pi </math>, किसी के लिए <math> f \in \mathcal{C}^\infty(M) </math>, स्वचालित रूप से पॉइसन है। | ||
*कार्टेशियन उत्पाद <math> (M_{0} \times M_{1},\pi_{0} \times \pi_{1}) </math> दो पॉइसन मैनिफोल्ड्स का <math> (M_{0},\pi_{0}) </math> और <math> (M_{1},\pi_{1}) </math> यह फिर से एक पॉइसन मैनिफोल्ड है। | *कार्टेशियन उत्पाद <math> (M_{0} \times M_{1},\pi_{0} \times \pi_{1}) </math> दो पॉइसन मैनिफोल्ड्स का <math> (M_{0},\pi_{0}) </math> और <math> (M_{1},\pi_{1}) </math> यह फिर से एक पॉइसन मैनिफोल्ड है। | ||
*मान लीजिए कि <math> M </math> पर आयाम <math> 2 r </math> का (नियमित) पर्णसमूह (नियमित) है और <math> \omega \in {\Omega^{2}}(\mathcal{F}) </math> एक बंद पर्ण दो-रूप में है, जिसके लिए शक्ति <math> \omega^{r} </math>{{r}} कहीं लुप्त नहीं हो रही है। यह विशिष्ट रूप से <math> M </math> पर एक नियमित पॉइसन संरचना को निर्धारित करता है, जिसके लिए <math> \pi </math> की सहानुभूतिपूर्ण | *मान लीजिए कि <math> M </math> पर आयाम <math> 2 r </math> का (नियमित) पर्णसमूह (नियमित) है और <math> \omega \in {\Omega^{2}}(\mathcal{F}) </math> एक बंद पर्ण दो-रूप में है, जिसके लिए शक्ति <math> \omega^{r} </math>{{r}} कहीं लुप्त नहीं हो रही है। यह विशिष्ट रूप से <math> M </math> पर एक नियमित पॉइसन संरचना को निर्धारित करता है, जिसके लिए <math> \pi </math> की सहानुभूतिपूर्ण लीफ को प्रेरित सहानुभूतिपूर्ण रूप <math> \omega|_S </math> से सुसज्जित <math> \mathcal{F} </math> की लीफ <math> S </math> की आवश्यकता होती है। | ||
*मान लीजिए कि <math> G </math> एक लाई समूह है जो पॉइसन डिफियोमोर्फिज्म द्वारा पॉइसन मैनिफोल्ड <math> (M,\pi) </math> पर कार्य करता है। यदि कार्रवाई स्वतंत्र और उचित है, तो भागफल मैनिफोल्ड <math> M/G </math> को <math> \pi </math> से एक पॉइसन संरचना <math> \pi_{M/G} </math> विरासत में मिलती है (अर्थात्, यह एकमात्र ऐसा है कि विसर्जन <math> (M,\pi) \to (M/G,\pi_{M/G}) </math> एक पॉइसन मानचित्र है)। | *मान लीजिए कि <math> G </math> एक लाई समूह है जो पॉइसन डिफियोमोर्फिज्म द्वारा पॉइसन मैनिफोल्ड <math> (M,\pi) </math> पर कार्य करता है। यदि कार्रवाई स्वतंत्र और उचित है, तो भागफल मैनिफोल्ड <math> M/G </math> को <math> \pi </math> से एक पॉइसन संरचना <math> \pi_{M/G} </math> विरासत में मिलती है (अर्थात्, यह एकमात्र ऐसा है कि विसर्जन <math> (M,\pi) \to (M/G,\pi_{M/G}) </math> एक पॉइसन मानचित्र है)। | ||
== पॉइसन कोहोमोलॉजी == | == पॉइसन कोहोमोलॉजी == | ||
पॉइसन कोहोमोलॉजी समूह <math> H^k(M,\pi) </math> पॉइसन मैनिफोल्ड के [[कोचेन कॉम्प्लेक्स]] के कोहोमोलॉजी समूह हैं<math display="block"> \ldots \xrightarrow{d_\pi} \mathfrak{X}^\bullet(M) \xrightarrow{d_\pi} \mathfrak{X}^{\bullet+1}(M) \xrightarrow{d_\pi} \ldots \color{white}{\sum^i} </math> | पॉइसन कोहोमोलॉजी समूह <math> H^k(M,\pi) </math> पॉइसन मैनिफोल्ड के [[कोचेन कॉम्प्लेक्स]] के कोहोमोलॉजी समूह हैं<math display="block"> \ldots \xrightarrow{d_\pi} \mathfrak{X}^\bullet(M) \xrightarrow{d_\pi} \mathfrak{X}^{\bullet+1}(M) \xrightarrow{d_\pi} \ldots \color{white}{\sum^i} </math> | ||
जहां ऑपरेटर <math> d_\pi = [\pi,-] </math> <math> \pi </math> के साथ स्काउटन-निजेनहुइस ब्रैकेट है। ध्यान दें कि इस तरह के अनुक्रम को | जहां ऑपरेटर <math> d_\pi = [\pi,-] </math> <math> \pi </math> के साथ स्काउटन-निजेनहुइस ब्रैकेट है। ध्यान दें कि इस तरह के अनुक्रम को m पर प्रत्येक बायवेक्टर के लिए परिभाषित किया जा सकता है; स्थिति <math> d_\pi \circ d_\pi = 0 </math> <math> [\pi,\pi]=0 </math> के समान है, अर्थात <math> M </math> पॉइसन है। | ||
रूपवाद का उपयोग करना <math> \pi^{\sharp}: T^{*} M \to T M </math>, कोई [[राम परिसर का]] से एक रूपवाद प्राप्त करता है <math> (\Omega^\bullet(M),d_{dR}) </math> पॉइसन कॉम्प्लेक्स के लिए <math> (\mathfrak{X}^\bullet(M), d_\pi) </math>, एक समूह समरूपता को प्रेरित करना <math> H_{dR}^\bullet(M) \to H^\bullet(M,\pi) </math>. गैर-अपक्षयी स्थिति में, यह एक समरूपता बन जाता है, जिससे कि एक सिम्प्लेक्टिक मैनिफोल्ड की पॉइसन कोहॉमोलॉजी पूरी तरह से अपने [[उसके पास मेमने की तरह गर्भाशय है]] को पुनः प्राप्त कर लेती है। | रूपवाद का उपयोग करना <math> \pi^{\sharp}: T^{*} M \to T M </math>, कोई [[राम परिसर का]] से एक रूपवाद प्राप्त करता है <math> (\Omega^\bullet(M),d_{dR}) </math> पॉइसन कॉम्प्लेक्स के लिए <math> (\mathfrak{X}^\bullet(M), d_\pi) </math>, एक समूह समरूपता को प्रेरित करना <math> H_{dR}^\bullet(M) \to H^\bullet(M,\pi) </math>. गैर-अपक्षयी स्थिति में, यह एक समरूपता बन जाता है, जिससे कि एक सिम्प्लेक्टिक मैनिफोल्ड की पॉइसन कोहॉमोलॉजी पूरी तरह से अपने [[उसके पास मेमने की तरह गर्भाशय है]] को पुनः प्राप्त कर लेती है। | ||
Line 154: | Line 155: | ||
पॉइसन कोहोमोलॉजी की सामान्य रूप से गणना करना कठिन है, किन्तु निम्न डिग्री समूहों में पॉइसन संरचना पर महत्वपूर्ण ज्यामितीय जानकारी होती है: | पॉइसन कोहोमोलॉजी की सामान्य रूप से गणना करना कठिन है, किन्तु निम्न डिग्री समूहों में पॉइसन संरचना पर महत्वपूर्ण ज्यामितीय जानकारी होती है: | ||
* <math> H^0(M,\pi) </math> कासिमिर फ़ंक्शंस का स्थान है, अथार्थ अन्य सभी के साथ पॉइसन-कम्यूटिंग के सुचारू कार्य (या, समकक्ष, सहानुभूतिपूर्ण | * <math> H^0(M,\pi) </math> कासिमिर फ़ंक्शंस का स्थान है, अथार्थ अन्य सभी के साथ पॉइसन-कम्यूटिंग के सुचारू कार्य (या, समकक्ष, सहानुभूतिपूर्ण लीफ पर स्थिर कार्य); | ||
*<math> H^1(M,\pi) </math> पोइसन सदिश क्षेत्र मॉड्यूलो हैमिल्टनियन सदिश क्षेत्र का स्थान है; | *<math> H^1(M,\pi) </math> पोइसन सदिश क्षेत्र मॉड्यूलो हैमिल्टनियन सदिश क्षेत्र का स्थान है; | ||
* <math> H^2(M,\pi) </math> पोइसन संरचना मोडुलो तुच्छ विकृतियों के अनंतिम विकृतियों का स्थान है; | * <math> H^2(M,\pi) </math> पोइसन संरचना मोडुलो तुच्छ विकृतियों के अनंतिम विकृतियों का स्थान है; | ||
Line 164: | Line 165: | ||
याद रखें कि किसी दिए गए वॉल्यूम फॉर्म <math>\lambda</math> के संबंध में एक सदिश क्षेत्र <math>X \in \mathfrak{X}(M)</math>का विचलन <math> {\rm div}_\lambda (X) = \frac{\mathcal{L}_{X} \lambda}{\lambda}</math> द्वारा परिभाषित फ़ंक्शन <math>{\rm div}_\lambda (X) \in \mathcal{C}^\infty(M)</math> है। वॉल्यूम फॉर्म <math>\lambda</math> के संबंध में पॉइसन मैनिफोल्ड का मॉड्यूलर सदिश क्षेत्र , हैमिल्टनियन सदिश क्षेत्र <math>X_\lambda: f \mapsto {\rm div}_\lambda (X_f)</math> के विचलन द्वारा परिभाषित सदिश क्षेत्र <math>X_\lambda</math> है | याद रखें कि किसी दिए गए वॉल्यूम फॉर्म <math>\lambda</math> के संबंध में एक सदिश क्षेत्र <math>X \in \mathfrak{X}(M)</math>का विचलन <math> {\rm div}_\lambda (X) = \frac{\mathcal{L}_{X} \lambda}{\lambda}</math> द्वारा परिभाषित फ़ंक्शन <math>{\rm div}_\lambda (X) \in \mathcal{C}^\infty(M)</math> है। वॉल्यूम फॉर्म <math>\lambda</math> के संबंध में पॉइसन मैनिफोल्ड का मॉड्यूलर सदिश क्षेत्र , हैमिल्टनियन सदिश क्षेत्र <math>X_\lambda: f \mapsto {\rm div}_\lambda (X_f)</math> के विचलन द्वारा परिभाषित सदिश क्षेत्र <math>X_\lambda</math> है | ||
मॉड्यूलर सदिश क्षेत्र एक पॉइसन <math>\mathcal{L}_{X_\lambda} \pi = 0</math>-कोसाइकिल है, अथार्त यह <math>X_{\lambda_1} - X_{\lambda_2}</math> को संतुष्ट करता है। इसके अतिरिक्त , दो आयतन रूप <math>\lambda_1</math> और <math>\lambda_2</math>, दिए गए हैं, | मॉड्यूलर सदिश क्षेत्र एक पॉइसन <math>\mathcal{L}_{X_\lambda} \pi = 0</math>-कोसाइकिल है, अथार्त यह <math>X_{\lambda_1} - X_{\lambda_2}</math> को संतुष्ट करता है। इसके अतिरिक्त , दो आयतन रूप <math>\lambda_1</math> और <math>\lambda_2</math>, दिए गए हैं, डिफरेंशियल एक हैमिल्टनियन सदिश क्षेत्र है। इसलिए , पॉइसन कोहोमोलॉजी वर्ग <math>[X_\lambda]_\pi \in H^1 (M,\pi) </math> वॉल्यूम फॉर्म <math>\lambda</math>की मूल पसंद पर निर्भर नहीं करता है, और इसे पॉइसन मैनिफोल्ड का मॉड्यूलर वर्ग कहा जाता है। | ||
एक पॉइसन मैनिफोल्ड को यूनिमॉड्यूलर कहा जाता है यदि उसका मॉड्यूलर वर्ग गायब हो जाता है। ध्यान दें कि ऐसा तब होता है जब और केवल यदि कोई वॉल्यूम फॉर्म <math>\lambda</math> उपस्थित होता है जैसे कि मॉड्यूलर सदिश क्षेत्र <math>X_\lambda</math> गायब हो जाता है, | एक पॉइसन मैनिफोल्ड को यूनिमॉड्यूलर कहा जाता है यदि उसका मॉड्यूलर वर्ग गायब हो जाता है। ध्यान दें कि ऐसा तब होता है जब और केवल यदि कोई वॉल्यूम फॉर्म <math>\lambda</math> उपस्थित होता है जैसे कि मॉड्यूलर सदिश क्षेत्र <math>X_\lambda</math> गायब हो जाता है, अथार्त प्रत्येक <math>f</math> के लिए<math> {\rm div}_\lambda (X_f) = 0</math>; दूसरे शब्दों में, <math>\lambda</math> किसी हैमिल्टनियन सदिश क्षेत्र के प्रवाह के अनुसार अपरिवर्तनीय है। उदाहरण के लिए: | ||
* सिम्प्लेक्टिक संरचनाएं सदैव एक-मॉड्यूलर होती हैं, क्योंकि [[लिउविल फॉर्म]] सभी हैमिल्टनियन सदिश क्षेत्रों के अनुसार अपरिवर्तनीय है; | * सिम्प्लेक्टिक संरचनाएं सदैव एक-मॉड्यूलर होती हैं, क्योंकि [[लिउविल फॉर्म]] सभी हैमिल्टनियन सदिश क्षेत्रों के अनुसार अपरिवर्तनीय है; | ||
Line 176: | Line 177: | ||
पॉइसन कोहोमोलॉजी की प्रस्तुत 1977 में स्वयं लिचनेरोविक्ज़ द्वारा की गई थी;<ref name=":02"/> एक दशक बाद, ब्रायलिंस्की ने ऑपरेटर <math>\partial_\pi = [d, \iota_\pi]</math> का उपयोग करते हुए, पॉइसन मैनिफोल्ड्स के लिए एक होमोलॉजी सिद्धांत प्रस्तुत किया।<ref>{{Cite journal |last=Brylinski |first=Jean-Luc |author-link=Jean-Luc Brylinski |date=1988-01-01 |title=पॉइसन मैनिफोल्ड्स के लिए एक विभेदक कॉम्प्लेक्स|url=https://projecteuclid.org/journals/journal-of-differential-geometry/volume-28/issue-1/A-differential-complex-for-Poisson-manifolds/10.4310/jdg/1214442161.full |journal=[[Journal of Differential Geometry]] |volume=28 |issue=1 |doi=10.4310/jdg/1214442161 |s2cid=122451743 |issn=0022-040X|doi-access=free }}</ref> | पॉइसन कोहोमोलॉजी की प्रस्तुत 1977 में स्वयं लिचनेरोविक्ज़ द्वारा की गई थी;<ref name=":02"/> एक दशक बाद, ब्रायलिंस्की ने ऑपरेटर <math>\partial_\pi = [d, \iota_\pi]</math> का उपयोग करते हुए, पॉइसन मैनिफोल्ड्स के लिए एक होमोलॉजी सिद्धांत प्रस्तुत किया।<ref>{{Cite journal |last=Brylinski |first=Jean-Luc |author-link=Jean-Luc Brylinski |date=1988-01-01 |title=पॉइसन मैनिफोल्ड्स के लिए एक विभेदक कॉम्प्लेक्स|url=https://projecteuclid.org/journals/journal-of-differential-geometry/volume-28/issue-1/A-differential-complex-for-Poisson-manifolds/10.4310/jdg/1214442161.full |journal=[[Journal of Differential Geometry]] |volume=28 |issue=1 |doi=10.4310/jdg/1214442161 |s2cid=122451743 |issn=0022-040X|doi-access=free }}</ref> | ||
पॉइसन होमोलॉजी और कोहोमोलॉजी से संबंधित अनेक परिणाम सिद्ध हो चुके हैं।<ref>{{Cite journal |last1=Fernández |first1=Marisa |last2=Ibáñez |first2=Raúl |last3=León |first3=Manuel de |date=1996 |title=पॉइसन कोहोमोलॉजी और पॉइसन मैनिफोल्ड्स की कैनोनिकल होमोलॉजी|url=https://eudml.org/doc/247851 |journal=Archivum Mathematicum |volume=032 |issue=1 |pages=29–56 |issn=0044-8753}}</ref> उदाहरण के लिए, ओरिएंटेबल यूनिमॉड्यूलर पॉइसन मैनिफोल्ड्स के लिए, पॉइसन होमोलॉजी पॉइसन कोहोमोलॉजी के लिए आइसोमोर्फिक सिद्ध होती है: यह जू द्वारा स्वतंत्र रूप से सिद्ध किया गया था<ref>{{Cite journal |last=Xu |first=Ping |date=1999-02-01 |title=पॉइसन ज्योमेट्री में गेरस्टेनहाबर बीजगणित और बीवी-बीजगणित|url=https://doi.org/10.1007/s002200050540 |journal=[[Communications in Mathematical Physics]] |language=en |volume=200 |issue=3 |pages=545–560 |arxiv=dg-ga/9703001 |doi=10.1007/s002200050540 |bibcode=1999CMaPh.200..545X |s2cid=16559555 |issn=1432-0916}}</ref> और इवांस-लू- | पॉइसन होमोलॉजी और कोहोमोलॉजी से संबंधित अनेक परिणाम सिद्ध हो चुके हैं।<ref>{{Cite journal |last1=Fernández |first1=Marisa |last2=Ibáñez |first2=Raúl |last3=León |first3=Manuel de |date=1996 |title=पॉइसन कोहोमोलॉजी और पॉइसन मैनिफोल्ड्स की कैनोनिकल होमोलॉजी|url=https://eudml.org/doc/247851 |journal=Archivum Mathematicum |volume=032 |issue=1 |pages=29–56 |issn=0044-8753}}</ref> उदाहरण के लिए, ओरिएंटेबल यूनिमॉड्यूलर पॉइसन मैनिफोल्ड्स के लिए, पॉइसन होमोलॉजी पॉइसन कोहोमोलॉजी के लिए आइसोमोर्फिक सिद्ध होती है: यह जू द्वारा स्वतंत्र रूप से सिद्ध किया गया था<ref>{{Cite journal |last=Xu |first=Ping |date=1999-02-01 |title=पॉइसन ज्योमेट्री में गेरस्टेनहाबर बीजगणित और बीवी-बीजगणित|url=https://doi.org/10.1007/s002200050540 |journal=[[Communications in Mathematical Physics]] |language=en |volume=200 |issue=3 |pages=545–560 |arxiv=dg-ga/9703001 |doi=10.1007/s002200050540 |bibcode=1999CMaPh.200..545X |s2cid=16559555 |issn=1432-0916}}</ref> और इवांस-लू-वेनस्टीन है।<ref name=":42" /> | ||
==पॉइसन मानचित्र== | ==पॉइसन मानचित्र== | ||
पॉइसन मैनिफोल्ड्स के बीच एक सहज मानचित्र <math> \varphi: M \to N </math> को पॉइसन मानचित्र कहा जाता है यदि यह पॉइसन संरचनाओं का सम्मान करता है, | पॉइसन मैनिफोल्ड्स के बीच एक सहज मानचित्र <math> \varphi: M \to N </math> को पॉइसन मानचित्र कहा जाता है यदि यह पॉइसन संरचनाओं का सम्मान करता है, अथार्त निम्नलिखित समकक्ष स्थितियों में से एक रखता है (उपरोक्त पॉइसन संरचनाओं की समतुल्य परिभाषाओं के साथ तुलना करें): | ||
* पॉइसन कोष्ठक <math> \{ \cdot,\cdot \}_{M} </math> और <math> \{ \cdot,\cdot \}_{N} </math> संतुष्ट <math> {\{ f,g \}_{N}}(\varphi(x)) = {\{ f \circ \varphi,g \circ \varphi \}_{M}}(x) </math> हर एक के लिए <math> x \in M </math> और सुचारू कार्य <math> f,g \in {C^{\infty}}(N) </math> * बायसदिश क्षेत्र <math> \pi_{M} </math> और <math> \pi_{N} </math> हैं <math> \varphi </math>-संबंधित, अथार्थ <math> \pi_N = \varphi_* \pi_M </math> है | * पॉइसन कोष्ठक <math> \{ \cdot,\cdot \}_{M} </math> और <math> \{ \cdot,\cdot \}_{N} </math> संतुष्ट <math> {\{ f,g \}_{N}}(\varphi(x)) = {\{ f \circ \varphi,g \circ \varphi \}_{M}}(x) </math> हर एक के लिए <math> x \in M </math> और सुचारू कार्य <math> f,g \in {C^{\infty}}(N) </math> * बायसदिश क्षेत्र <math> \pi_{M} </math> और <math> \pi_{N} </math> हैं <math> \varphi </math>-संबंधित, अथार्थ <math> \pi_N = \varphi_* \pi_M </math> है | ||
* हर सुचारु कार्य से जुड़े हैमिल्टनियन सदिश क्षेत्र <math> H \in \mathcal{C}^\infty(N) </math> हैं <math> \varphi </math>-संबंधित, अथार्थ <math>X_H = \varphi_* X_{H \circ \phi}</math> | * हर सुचारु कार्य से जुड़े हैमिल्टनियन सदिश क्षेत्र <math> H \in \mathcal{C}^\infty(N) </math> हैं <math> \varphi </math>-संबंधित, अथार्थ <math>X_H = \varphi_* X_{H \circ \phi}</math> | ||
* | * डिफरेंशियल <math> d\varphi: (TM,{\rm Graph}(\pi_M)) \to (TN,{\rm Graph}(\pi_N)) </math> एक डिराक रूपवाद है। | ||
एक एंटी-पॉइसन मानचित्र एक तरफ ऋण चिह्न के साथ समान स्थितियों को संतुष्ट करता है। | एक एंटी-पॉइसन मानचित्र एक तरफ ऋण चिह्न के साथ समान स्थितियों को संतुष्ट करता है। | ||
Line 200: | Line 201: | ||
=== प्रतीकात्मक अनुभूतियाँ === | === प्रतीकात्मक अनुभूतियाँ === | ||
पॉइसन मैनिफोल्ड <math> M </math> पर एक सिंपलेक्टिक अहसास में एक पॉइसन मैप <math> \phi: (P,\omega) \to (M,\pi) </math> के साथ एक सिंपलेक्टिक मैनिफोल्ड <math> (P,\omega) </math> सम्मिलित होता है जो एक विशेषण विसर्जन है। समान्य रूप से कहें तो, एक सहानुभूति बोध की भूमिका एक | पॉइसन मैनिफोल्ड <math> M </math> पर एक सिंपलेक्टिक अहसास में एक पॉइसन मैप <math> \phi: (P,\omega) \to (M,\pi) </math> के साथ एक सिंपलेक्टिक मैनिफोल्ड <math> (P,\omega) </math> सम्मिलित होता है जो एक विशेषण विसर्जन है। समान्य रूप से कहें तो, एक सहानुभूति बोध की भूमिका एक सम्मिश्र (पतित) पॉइसन को एक बड़े, किन्तु आसान (गैर-पतित) में बदलकर "डिसिंगुलराइज़" करना है। | ||
ध्यान दें कि कुछ लेखक इस अंतिम नियम के बिना सहानुभूति बोध को परिभाषित करते हैं (जिससे, उदाहरण के लिए, एक सहानुभूति मैनिफोल्ड में एक सहानुभूति | ध्यान दें कि कुछ लेखक इस अंतिम नियम के बिना सहानुभूति बोध को परिभाषित करते हैं (जिससे, उदाहरण के लिए, एक सहानुभूति मैनिफोल्ड में एक सहानुभूति लीफ का समावेश एक उदाहरण हो) और पूर्ण को एक सहानुभूति बोध कहते हैं जहां <math> \phi </math> एक विशेषण निमज्जन है. (पूर्ण) सहानुभूति बोध के उदाहरणों में निम्नलिखित सम्मिलित हैं: | ||
*तुच्छ पॉइसन संरचना <math> (M,0 ) </math> के लिए, कोई <math> P </math> के रूप में कोटैंजेंट बंडल <math> T^*M </math> लेता है, इसकी विहित सहानुभूति संरचना के साथ, <math> \phi </math> के रूप प्रक्षेपण <math> T^*M \to M </math> के रूप में है । | *तुच्छ पॉइसन संरचना <math> (M,0 ) </math> के लिए, कोई <math> P </math> के रूप में कोटैंजेंट बंडल <math> T^*M </math> लेता है, इसकी विहित सहानुभूति संरचना के साथ, <math> \phi </math> के रूप प्रक्षेपण <math> T^*M \to M </math> के रूप में है । | ||
*एक गैर-पतित पोइसन संरचना <math> (M,\omega) </math> के लिए व्यक्ति <math> P </math> के रूप में मैनिफोल्ड <math> M </math> को ही लेता है और <math> \phi </math> के रूप में पहचान <math> M \to M </math> लेता है। | *एक गैर-पतित पोइसन संरचना <math> (M,\omega) </math> के लिए व्यक्ति <math> P </math> के रूप में मैनिफोल्ड <math> M </math> को ही लेता है और <math> \phi </math> के रूप में पहचान <math> M \to M </math> लेता है। | ||
*<math> \mathfrak{g}^* </math> पर ली-पॉइसन संरचना के लिए, कोई ली समूह <math> G </math> के कोटैंजेंट बंडल <math> T^*G </math> को <math> P </math> के रूप में लेता है जो <math> \mathfrak{g} </math> को एकीकृत करता है और (बाएं) की पहचान पर | *<math> \mathfrak{g}^* </math> पर ली-पॉइसन संरचना के लिए, कोई ली समूह <math> G </math> के कोटैंजेंट बंडल <math> T^*G </math> को <math> P </math> के रूप में लेता है जो <math> \mathfrak{g} </math> को एकीकृत करता है और (बाएं) की पहचान पर डिफरेंशियल के दोहरे मानचित्र <math> \phi: T^*G \to \mathfrak{g}^* </math> को <math> \phi </math> के रूप में लेता है या दाएं) अनुवाद <math> G \to G </math> | ||
एक सिम्पलेक्सिक अनुभव <math> \phi </math> पूर्ण कहा जाता है यदि, किसी पूर्ण सदिश क्षेत्र हैमिल्टनियन सदिश क्षेत्र के लिए <math>X_H</math>, सदिश क्षेत्र <math>X_{H \circ \phi}</math> पूर्ण भी है. जबकि प्रत्येक पॉइसन मैनिफोल्ड के लिए सहानुभूतिपूर्ण अनुभव सदैव उपस्थित रहते हैं (और अनेक अलग-अलग प्रमाण उपलब्ध हैं),<ref name=":12" /><ref name=":7">{{Cite journal |last=Karasev |first=M. V. |date=1987-06-30 |title=नॉनलाइनियर पॉइसन ब्रैकेट्स के लिए लाई ग्रुप थ्योरी की वस्तुओं के एनालॉग्स|url=http://dx.doi.org/10.1070/IM1987v028n03ABEH000895 |journal=[[Mathematics of the USSR-Izvestiya]] |volume=28 |issue=3 |pages=497–527 |doi=10.1070/im1987v028n03abeh000895 |bibcode=1987IzMat..28..497K |issn=0025-5726}}</ref><ref>{{Cite journal |last1=Crainic |first1=Marius |author-link=Marius Crainic |last2=Marcut |first2=Ioan |date=2011 |title=सहानुभूतिपूर्ण अनुभूतियों के अस्तित्व पर|url=https://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0009/0004/a002/abstract.php |journal=Journal of Symplectic Geometry |language=EN |volume=9 |issue=4 |pages=435–444 |doi=10.4310/JSG.2011.v9.n4.a2 |issn=1540-2347 |doi-access=free}}</ref> पूर्ण नहीं होते हैं, और उनका अस्तित्व पॉइसन मैनिफोल्ड्स के लिए इंटीग्रेबिलिटी समस्या में एक मौलिक भूमिका निभाता है (नीचे देखें)।<ref name=":2" /> | एक सिम्पलेक्सिक अनुभव <math> \phi </math> पूर्ण कहा जाता है यदि, किसी पूर्ण सदिश क्षेत्र हैमिल्टनियन सदिश क्षेत्र के लिए <math>X_H</math>, सदिश क्षेत्र <math>X_{H \circ \phi}</math> पूर्ण भी है. जबकि प्रत्येक पॉइसन मैनिफोल्ड के लिए सहानुभूतिपूर्ण अनुभव सदैव उपस्थित रहते हैं (और अनेक अलग-अलग प्रमाण उपलब्ध हैं),<ref name=":12" /><ref name=":7">{{Cite journal |last=Karasev |first=M. V. |date=1987-06-30 |title=नॉनलाइनियर पॉइसन ब्रैकेट्स के लिए लाई ग्रुप थ्योरी की वस्तुओं के एनालॉग्स|url=http://dx.doi.org/10.1070/IM1987v028n03ABEH000895 |journal=[[Mathematics of the USSR-Izvestiya]] |volume=28 |issue=3 |pages=497–527 |doi=10.1070/im1987v028n03abeh000895 |bibcode=1987IzMat..28..497K |issn=0025-5726}}</ref><ref>{{Cite journal |last1=Crainic |first1=Marius |author-link=Marius Crainic |last2=Marcut |first2=Ioan |date=2011 |title=सहानुभूतिपूर्ण अनुभूतियों के अस्तित्व पर|url=https://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0009/0004/a002/abstract.php |journal=Journal of Symplectic Geometry |language=EN |volume=9 |issue=4 |pages=435–444 |doi=10.4310/JSG.2011.v9.n4.a2 |issn=1540-2347 |doi-access=free}}</ref> पूर्ण नहीं होते हैं, और उनका अस्तित्व पॉइसन मैनिफोल्ड्स के लिए इंटीग्रेबिलिटी समस्या में एक मौलिक भूमिका निभाता है (नीचे देखें)।<ref name=":2" /> | ||
Line 237: | Line 238: | ||
*<math> M </math> पर एक गैर-पतित पोइसन संरचना सदैव पूर्णांक होती है, सिम्प्लेक्टिक ग्रुपॉइड युग्म ग्रुपॉइड <math> M \times M \rightrightarrows M </math> के साथ सिम्प्लेक्टिक फॉर्म <math> s^* \omega - t^* \omega </math> (<math> \pi^\sharp = (\omega^{\flat})^{-1} </math> के लिए) होता है। | *<math> M </math> पर एक गैर-पतित पोइसन संरचना सदैव पूर्णांक होती है, सिम्प्लेक्टिक ग्रुपॉइड युग्म ग्रुपॉइड <math> M \times M \rightrightarrows M </math> के साथ सिम्प्लेक्टिक फॉर्म <math> s^* \omega - t^* \omega </math> (<math> \pi^\sharp = (\omega^{\flat})^{-1} </math> के लिए) होता है। | ||
*<math> \mathfrak{g}^* </math> पर एक लाई-पॉइसन संरचना सदैव पूर्णांकित होती है, सिम्प्लेक्टिक ग्रुपॉइड (कोएडजॉइंट) एक्शन ग्रुपॉइड <math> G \times \mathfrak{g}^* \rightrightarrows \mathfrak{g}^* </math> होता है, <math> G </math> के लिए <math> T^*G \cong G \times \mathfrak{g}^* </math> के कैनोनिकल सिम्पलेक्टिक फॉर्म के साथ, <math> \mathfrak{g} </math> का सरल रूप से जुड़ा हुआ एकीकरण होता है। . | *<math> \mathfrak{g}^* </math> पर एक लाई-पॉइसन संरचना सदैव पूर्णांकित होती है, सिम्प्लेक्टिक ग्रुपॉइड (कोएडजॉइंट) एक्शन ग्रुपॉइड <math> G \times \mathfrak{g}^* \rightrightarrows \mathfrak{g}^* </math> होता है, <math> G </math> के लिए <math> T^*G \cong G \times \mathfrak{g}^* </math> के कैनोनिकल सिम्पलेक्टिक फॉर्म के साथ, <math> \mathfrak{g} </math> का सरल रूप से जुड़ा हुआ एकीकरण होता है। . | ||
* एक लाई-पोइसन संरचना पर <math> A^* </math> पूर्णांकीय है यदि और केवल यदि लाई बीजगणित <math> A \to M </math> एक लाई ग्रुपॉइड के लिए | * एक लाई-पोइसन संरचना पर <math> A^* </math> पूर्णांकीय है यदि और केवल यदि लाई बीजगणित <math> A \to M </math> एक लाई ग्रुपॉइड के लिए इंटीग्रल है जहाँ <math> \mathcal{G} \rightrightarrows M </math>, सिम्प्लेक्टिक ग्रुपॉइड कोटैंजेंट ग्रुपॉइड है जो कि <math> T^*\mathcal{G} \rightrightarrows A^* </math> विहित सहानुभूतिपूर्ण रूप के साथ है। | ||
== सबमैनिफोल्ड्स == | == सबमैनिफोल्ड्स == | ||
Line 247: | Line 248: | ||
*परिभाषा कार्यात्मक रूप से व्यवहार नहीं करती है: यदि <math> \Phi: (M,\pi_M) \to (N,\pi_N) </math> एक पॉइसन मानचित्र है जो <math> N </math> के पॉइसन सबमैनिफोल्ड <math> Q </math> के अनुप्रस्थ है, तो <math> M </math> का सबमैनिफोल्ड <math> \Phi^{-1} (Q) </math> आवश्यक रूप से पॉइसन नहीं है। | *परिभाषा कार्यात्मक रूप से व्यवहार नहीं करती है: यदि <math> \Phi: (M,\pi_M) \to (N,\pi_N) </math> एक पॉइसन मानचित्र है जो <math> N </math> के पॉइसन सबमैनिफोल्ड <math> Q </math> के अनुप्रस्थ है, तो <math> M </math> का सबमैनिफोल्ड <math> \Phi^{-1} (Q) </math> आवश्यक रूप से पॉइसन नहीं है। | ||
इन समस्याओं को दूर करने के लिए, व्यक्ति अधिकांशत: पॉइसन ट्रांसवर्सल (मूल रूप से कोसिम्प्लेक्टिक सबमैनिफोल्ड कहा जाता है) की धारणा का उपयोग करता है<ref name=":12" /> इसे एक सबमैनिफोल्ड <math> X \subseteq M </math> के रूप में परिभाषित किया जा सकता है जो प्रत्येक सिंपलेक्टिक लीफ <math> S </math> के लिए अनुप्रस्थ है और इस तरह कि प्रतिच्छेदन <math> X \cap S </math> <math> (S,\omega_S) </math> का एक सिंपलेक्टिक सबमैनिफोल्ड है। यह इस प्रकार है कि किसी भी पॉइसन ट्रांसवर्सल <math> X \subseteq (M,\pi) </math> को <math> \pi </math> से एक विहित पॉइसन संरचना <math> \pi_X </math> प्राप्त होती है। एक गैर-अपक्षयी पॉइसन मैनिफोल्ड <math> (M, \pi) </math> (जिसका एकमात्र सिंपलेक्टिक | इन समस्याओं को दूर करने के लिए, व्यक्ति अधिकांशत: पॉइसन ट्रांसवर्सल (मूल रूप से कोसिम्प्लेक्टिक सबमैनिफोल्ड कहा जाता है) की धारणा का उपयोग करता है<ref name=":12" /> इसे एक सबमैनिफोल्ड <math> X \subseteq M </math> के रूप में परिभाषित किया जा सकता है जो प्रत्येक सिंपलेक्टिक लीफ <math> S </math> के लिए अनुप्रस्थ है और इस तरह कि प्रतिच्छेदन <math> X \cap S </math> <math> (S,\omega_S) </math> का एक सिंपलेक्टिक सबमैनिफोल्ड है। यह इस प्रकार है कि किसी भी पॉइसन ट्रांसवर्सल <math> X \subseteq (M,\pi) </math> को <math> \pi </math> से एक विहित पॉइसन संरचना <math> \pi_X </math> प्राप्त होती है। एक गैर-अपक्षयी पॉइसन मैनिफोल्ड <math> (M, \pi) </math> (जिसका एकमात्र सिंपलेक्टिक लीफ <math> M </math> ही है) के स्थिति में, पॉइसन ट्रांसवर्सल्स सिंपलेक्टिक सबमैनिफोल्ड के समान ही हैं। | ||
सबमैनिफोल्ड्स के अधिक सामान्य वर्ग पॉइसन ज्यामिति में एक महत्वपूर्ण भूमिका निभाते हैं, जिनमें ली-डिराक सबमैनिफोल्ड्स, पॉइसन-डिराक सबमैनिफोल्ड्स, कोइसोट्रोपिक सबमैनिफोल्ड्स और प्री-पॉइसन सबमैनिफोल्ड्स सम्मिलित हैं।<ref>{{Cite journal|last=Zambon|first=Marco|date=2011|editor-last=Ebeling|editor-first=Wolfgang|editor2-last=Hulek|editor2-first=Klaus|editor3-last=Smoczyk|editor3-first=Knut|title=Submanifolds in Poisson geometry: a survey|url=https://link.springer.com/chapter/10.1007%2F978-3-642-20300-8_20|journal=Complex and Differential Geometry|series=Springer Proceedings in Mathematics|volume=8|language=en|location=Berlin, Heidelberg|publisher=Springer|pages=403–420|doi=10.1007/978-3-642-20300-8_20|isbn=978-3-642-20300-8}}</ref> | सबमैनिफोल्ड्स के अधिक सामान्य वर्ग पॉइसन ज्यामिति में एक महत्वपूर्ण भूमिका निभाते हैं, जिनमें ली-डिराक सबमैनिफोल्ड्स, पॉइसन-डिराक सबमैनिफोल्ड्स, कोइसोट्रोपिक सबमैनिफोल्ड्स और प्री-पॉइसन सबमैनिफोल्ड्स सम्मिलित हैं।<ref>{{Cite journal|last=Zambon|first=Marco|date=2011|editor-last=Ebeling|editor-first=Wolfgang|editor2-last=Hulek|editor2-first=Klaus|editor3-last=Smoczyk|editor3-first=Knut|title=Submanifolds in Poisson geometry: a survey|url=https://link.springer.com/chapter/10.1007%2F978-3-642-20300-8_20|journal=Complex and Differential Geometry|series=Springer Proceedings in Mathematics|volume=8|language=en|location=Berlin, Heidelberg|publisher=Springer|pages=403–420|doi=10.1007/978-3-642-20300-8_20|isbn=978-3-642-20300-8}}</ref> | ||
Line 274: | Line 275: | ||
{{Manifolds}} | {{Manifolds}} | ||
श्रेणी: | श्रेणी:डिफरेंशियल ज्यामिति | ||
श्रेणी:सिंपलेक्टिक ज्यामिति | श्रेणी:सिंपलेक्टिक ज्यामिति | ||
श्रेणी:स्मूथ मैनिफोल्ड | श्रेणी:स्मूथ मैनिफोल्ड |
Revision as of 16:31, 30 November 2023
डिफरेंशियल ज्योमेट्री में, गणित का एक क्षेत्र, पॉइसन मैनिफोल्ड, पॉइसन संरचना से युक्त एक स्मूथ मैनिफोल्ड है। पॉइसन मैनिफोल्ड की धारणा सिंपलेक्टिक मैनिफोल्ड को सामान्य बनाती है, जो बदले में हैमिल्टनियन यांत्रिकी से चरण स्थान को सामान्यीकृत करती है।
एक स्मूथ मैनिफोल्ड पर एक पॉइसन संरचना (या पॉइसन ब्रैकेट)। एक फ़ंक्शन है
मैनिफोल्ड्स पर पॉइसन संरचनाएं 1977 में आंद्रे लिचनेरोविक्ज़ द्वारा प्रस्तुत की गईं[1] और विश्लेषणात्मक यांत्रिकी पर उनके कार्यों में उनकी प्रारंभिक उपस्थिति के कारण, फ्रांसीसी गणितज्ञ शिमोन डेनिस पॉइसन के नाम पर रखा गया है।[2]
परिचय
मौलिक यांत्रिकी के चरण स्थानों से लेकर सिंपलेक्टिक और पॉइसन मैनिफोल्ड्स तक
मौलिक यांत्रिकी में, एक भौतिक प्रणाली के चरण स्थान में स्थिति के सभी संभावित मान और प्रणाली द्वारा अनुमत गति वेरिएबल सम्मिलित होते हैं। यह स्वाभाविक रूप से पॉइसन ब्रैकेट/सिंपलेक्टिक फॉर्म (नीचे देखें) से संपन्न है, जो किसी को हैमिल्टन समीकरण तैयार करने और समय में चरण स्थान के माध्यम से प्रणाली की गतिशीलता का वर्णन करने की अनुमति देता है।
उदाहरण के लिए, -आयामी यूक्लिडियन स्पेस (अथार्थ कॉन्फ़िगरेशन स्पेस के रूप में में स्वतंत्र रूप से घूमने वाले एक कण में चरण स्पेस होता है। निर्देशांक क्रमशः स्थिति और सामान्यीकृत संवेग का वर्णन करते हैं। वेधशालाओं का स्थान, अथार्थ पर सुचारू कार्य, स्वाभाविक रूप से पॉइसन ब्रैकेट नामक एक बाइनरी ऑपरेशन से संपन्न है, जिसे के रूप में परिभाषित किया गया है। ऐसा ब्रैकेट लाई ब्रैकेट के मानक गुणों को संतुष्ट करता है, जो कि साथ ही फ़ंक्शंस के उत्पाद, अर्थात् लीबनिज़ पहचान के साथ एक और अनुकूलता प्रदान करता है। समान रूप से, पर पॉइसन ब्रैकेट को सिंपलेक्टिक फॉर्म का उपयोग करके पुन: तैयार किया जा सकता है। वास्तव में , यदि कोई फ़ंक्शन से जुड़े हैमिल्टनियन सदिश क्षेत्र पर विचार करता है, तो पॉइसन ब्रैकेट को के रूप में फिर से लिखा जा सकता है।
अधिक एब्स्ट्रैक्ट डिफरेंशियल ज्यामितीय शब्दों में, कॉन्फ़िगरेशन स्थान एक -आयामी स्मूथ मैनिफोल्ड है, और चरण स्थान इसका कोटैंजेंट बंडल (आयाम का मैनिफोल्ड) है। उत्तरार्द्ध स्वाभाविक रूप से एक विहित सहानुभूतिपूर्ण रूप से सुसज्जित है, जो विहित निर्देशांक में ऊपर वर्णित के साथ मेल खाता है। सामान्य रूप से , डार्बौक्स प्रमेय के अनुसार, कोई भी इच्छित सिंपलेक्टिक मैनिफोल्ड विशेष निर्देशांक स्वीकार करता है, जहां फॉर्म और ब्रैकेट क्रमशः, सिंपलेक्टिक फॉर्म और के पॉइसन ब्रैकेट के समान होते हैं। इसलिए सिम्प्लेक्टिक ज्यामिति मौलिक हैमिल्टनियन यांत्रिकी का वर्णन करने के लिए प्राकृतिक गणितीय सेटिंग है।
पॉइसन मैनिफोल्ड्स सिम्प्लेक्टिक मैनिफोल्ड्स के आगे सामान्यीकरण हैं, जो पर पॉइसन ब्रैकेट द्वारा संतुष्ट गुणों को स्वयंसिद्ध करने से उत्पन्न होते हैं। अधिक स्पष्ट रूप से, एक पॉइसन मैनिफोल्ड में एक एब्स्ट्रैक्ट ब्रैकेट के साथ एक स्मूथ मैनिफोल्ड (जरूरी नहीं कि समान आयाम का हो) होता है, जिसे अभी भी पॉइसन ब्रैकेट कहा जाता है, जो जरूरी नहीं कि एक सहानुभूतिपूर्ण रूप से उत्पन्न होता है, किन्तु समान बीजगणित को संतुष्ट गुण करता है ।
पॉइसन ज्यामिति, सिम्प्लेक्टिक ज्यामिति से निकटता से संबंधित है: उदाहरण के लिए, प्रत्येक पॉइसन ब्रैकेट मैनिफोल्ड के सिम्पलेक्टिक सबमैनिफोल्ड में एक लीफ को निर्धारित करता है। चूँकि , पॉइसन ज्यामिति के अध्ययन के लिए ऐसी तकनीकों की आवश्यकता होती है जो सामान्य रूप से से सिम्प्लेक्टिक ज्यामिति में नियोजित नहीं होती हैं, जैसे कि लाई ग्रुपोइड्स और लाई अलजेब्रॉइड्स का सिद्धांत है ।
इसके अतिरिक्त , संरचनाओं के प्राकृतिक उदाहरण भी हैं जो नैतिक रूप से सहानुभूतिपूर्ण होने चाहिए, किन्तु विलक्षणता प्रदर्शित करते हैं, अथार्थ उनके सहानुभूतिपूर्ण स्वरूप को विकृत होने की अनुमति दी जानी चाहिए। उदाहरण के लिए, एक समूह द्वारा सिम्पलेक्टिक मैनिफोल्ड का सहज भागफल स्थान (टोपोलॉजी) लक्षणरूपता द्वारा समूह कार्रवाई एक पॉइसन मैनिफोल्ड है, जो सामान्य रूप से सिम्पलेक्टिक नहीं है। यह स्थिति एक भौतिक प्रणाली के स्थिति को मॉडल करती है जो समरूपता (भौतिकी) के अनुसार अपरिवर्तनीय है: समरूपता द्वारा मूल चरण स्थान को प्राप्त करने वाला कम चरण स्थान, सामान्य रूप से अब सहानुभूतिपूर्ण नहीं है, किन्तु पॉइसन है।
इतिहास
चूँकि पॉइसन मैनिफोल्ड की आधुनिक परिभाषा केवल 70-80 के दशक में सामने आई, किन्तु इसकी उत्पत्ति उन्नीसवीं सदी में हुई। एलन वीनस्टीन ने पॉइसन ज्यामिति के प्रारंभिक इतिहास को इस प्रकार संश्लेषित किया: पॉइसन ने मौलिक गतिशीलता के लिए एक उपकरण के रूप में अपने कोष्ठक का आविष्कार किया। जैकोबी ने इन कोष्ठकों के महत्व को समझा और उनके बीजगणितीय गुणों को स्पष्ट किया और ली ने उनकी ज्यामिति का अध्ययन प्रारंभ किया।[3]
वास्तव में, सिमोन डेनिस पॉइसन ने गति के नए इंटीग्रल प्राप्त करने के लिए 1809 में जिसे हम पॉइसन ब्रैकेट कहते हैं, प्रस्तुत किया, अथार्थ वे मात्राएँ जो गति के समय संरक्षित रहती हैं। अधिक स्पष्ट रूप से, उन्होंने सिद्ध किया कि, यदि दो फलन f और g गतियों के इंटीग्रल हैं, तो एक तीसरा फलन है, जिसे द्वारा निरूपित किया जाता है, जो गति का भी इंटीग्रल है। यांत्रिकी के हैमिल्टनियन सूत्रीकरण में, जहां किसी भौतिक प्रणाली की गतिशीलता को किसी दिए गए फ़ंक्शन (समान्य रूप से प्रणाली की ऊर्जा) द्वारा वर्णित किया जाता है, गति का एक इंटीग्रल केवल एक फ़ंक्शन f होता है, जो पॉइसन-h के साथ संचार करता है, अर्थात ऐसा कि प्रमेय के नाम से जाना जाएगा, उसे इस प्रकार तैयार किया जा सकता है[4]
बीसवीं सदी में आधुनिक डिफरेंशियल ज्यामिति का विकास हुआ, किन्तु केवल 1977 में आंद्रे लिचनेरोविक्ज़ ने स्मूथ मैनिफ़ोल्ड पर ज्यामितीय वस्तुओं के रूप में पॉइसन संरचनाओं को प्रस्तुत किया।[1] पॉइसन मैनिफोल्ड्स का एलन वेनस्टीन के मूलभूत 1983 के पेपर में आगे अध्ययन किया गया, जहां अनेक मूलभूत संरचना प्रमेयों को पहली बार सिद्ध किया गया था।[6]
इन कार्यों ने बाद के दशकों में पॉइसन ज्यामिति के विकास पर बहुत बड़ा प्रभाव डाला गया, जो आज अपना खुद का एक क्षेत्र है, और साथ ही उदाहरण के लिए गहराई से उलझा हुआ है। गैर-कम्यूटेटिव ज्यामिति, एकीकृत प्रणाली टोपोलॉजिकल क्षेत्र सिद्धांत सिद्धांत और प्रतिनिधित्व सिद्धांत है ।
औपचारिक परिभाषा
पॉइसन संरचनाओं को परिभाषित करने के लिए दो मुख्य दृष्टिकोण हैं: उनके मध्य स्विच करना प्रथागत और सुविधाजनक है।
कोष्ठक के रूप में
मान लीजिए कि एक सहज मैनिफोल्ड है और पर सुचारू वास्तविक-मूल्य वाले कार्यों के वास्तविक बीजगणित को दर्शाता है, जहां गुणन को बिंदुवार परिभाषित किया गया है। पर एक पॉइसन ब्रैकेट (या पॉइसन संरचना) एक -बिलिनियर मानचित्र है
पॉइसन बीजगणित की संरचना को परिभाषित करना , अथार्थ निम्नलिखित तीन नियमो को पूरा करना:
- तिरछी समरूपता: .
- जैकोबी पहचान: .
- सामान्य लाइबनिज नियम या लीबनिज का नियम: .
पहली दो स्थितियाँ सुनिश्चित करती हैं कि पर एक लाई-बीजगणित संरचना को परिभाषित करता है, जबकि तीसरी गारंटी देती है कि, प्रत्येक के लिए, रैखिक मानचित्र बीजगणित की व्युत्पत्ति है , अथार्त , यह एक सदिश क्षेत्र को परिभाषित करता है जिसे से संबंधित हैमिल्टनियन सदिश क्षेत्र कहा जाता है।
स्थानीय निर्देशांक चुनना , कोई भी पॉइसन ब्रैकेट द्वारा दिया गया है
बायसदिश के रूप में
स्मूथ मैनिफोल्ड पर एक पॉइसन बायसदिश एक बायसदिश क्षेत्र है जो गैर-रेखीय आंशिक डिफरेंशियल समीकरण को संतुष्ट करता है, जहां
बहुसदिश क्षेत्र पर स्काउटन-निजेनहुइस ब्रैकेट को दर्शाता है। स्थानीय निर्देशांक चुनना , कोई भी पॉइसन बायसदिश द्वारा दिया जाता है
परिभाषाओं की समतुल्यता
होने देना लीबनिज़ के नियम को संतुष्ट करने वाला एक द्विरेखीय तिरछा-सममित ब्रैकेट (जिसे लगभग लाई ब्रैकेट भी कहा जाता है) बनें; फिर फ़ंक्शन का वर्णन किया जा सकता है
फिर निम्नलिखित अभिन्नता स्थितियाँ समतुल्य हैं:
- जैकोबी पहचान को संतुष्ट करता है (इसलिए यह एक पॉइसन ब्रैकेट है);
- संतुष्ट (इसलिए यह एक पॉइसन बायसदिश है);
- मानचित्र एक लाई बीजगणित समरूपता है, अथार्त हैमिल्टनियन सदिश क्षेत्र को संतुष्ट करते हैं।
- लेखाचित्र एक डिराक संरचना को परिभाषित करता है, अथार्थ एक लैग्रेंजियन उपबंडल जो मानक कूरेंट ब्रैकेट के अंतर्गत बंद है।
उपरोक्त चार आवश्यकताओं में से किसी के बिना एक पॉइसन संरचना को लगभग पॉइसन संरचना भी कहा जाता है।[5]
होलोमॉर्फिक पॉइसन संरचनाएं
वास्तविक स्मूथ मैनिफ़ोल्ड के लिए पॉइसन संरचना की परिभाषा को सम्मिश्र स्थिति में भी अनुकूलित किया जा सकता है।
एक होलोमोर्फिक पॉइसन मैनिफोल्ड एक सम्मिश्र मैनिफोल्ड है जिसका होलोमोर्फिक कार्यों का शीफ पॉइसन बीजगणित का एक शीफ है। समान रूप से, याद रखें कि एक सम्मिश्र मैनिफोल्ड पर एक होलोमोर्फिक द्विसदिश क्षेत्र एक खंड है जैसे कि फिर पर एक होलोमोर्फिक पॉइसन संरचना एक होलोमोर्फिक द्विसदिश क्षेत्र है जो समीकरण } को संतुष्ट करता है। होलोमॉर्फिक पॉइसन मैनिफोल्ड्स को पॉइसन-निजेनहुइस संरचनाओं के संदर्भ में भी चित्रित किया जा सकता है[7]
वास्तविक पॉइसन संरचनाओं के लिए अनेक परिणाम, उदा. उनकी अभिन्नता के संबंध में, होलोमोर्फिक तक भी विस्तार करें।[8][9]
होलोमोर्फिक पॉइसन संरचनाएं सामान्यीकृत सम्मिश्र संरचना के संदर्भ में स्वाभाविक रूप से प्रकट होती हैं: स्थानीय रूप से, कोई भी सामान्यीकृत सम्मिश्र मैनिफोल्ड एक सिम्प्लेक्टिक मैनिफोल्ड और एक होलोमोर्फिक पॉइसन मैनिफोल्ड का उत्पाद होता है।[10]
सिंपलेक्टिक पत्तियां
एक पॉइसन मैनिफोल्ड को स्वाभाविक रूप से संभवतः विभिन्न आयामों के नियमित रूप से विसर्जित सिंपलेक्टिक मैनिफोल्ड में विभाजित किया जाता है, जिसे इसकी सिंपलेक्टिक लीफ कहा जाता है। ये हैमिल्टनियन सदिश क्षेत्रों द्वारा फैलाए गए फोलिएशन या फोलिएशन और इंटीग्रैबिलिटी के अधिकतम अभिन्न उपमान के रूप में उत्पन्न होते हैं।
पॉइसन संरचना का पद
याद रखें कि किसी भी द्विसदिश क्षेत्र को तिरछी समरूपता के रूप में माना जा सकता है। छवि में प्रत्येक पर मूल्यांकन किए गए सभी हैमिल्टनियन सदिश क्षेत्र के मान सम्मिलित हैं।
बिंदु पर की पद प्रेरित रैखिक मानचित्रण की पद है। एक बिंदु को पर पॉइसन संरचना के लिए नियमित कहा जाता है यदि और केवल यदि के विवृत निकट पर की पद स्थिर है; अन्यथा, इसे एकवचन बिंदु कहा जाता है। नियमित बिंदु एक विवृत घने उपस्थान का निर्माण करते हैं जब मानचित्र स्थिर पद का होता है, पॉइसन संरचना को नियमित कहा जाता है। नियमित पॉइसन संरचनाओं के उदाहरणों में तुच्छ और गैर-विक्षिप्त संरचनाएं सम्मिलित हैं (नीचे देखें)।
नियमित मामला
नियमित पॉइसन मैनिफोल्ड के लिए, छवि एक वितरण (डिफरेंशियल ज्यामिति) है; इसलिए, फ्रोबेनियस प्रमेय (डिफरेंशियल टोपोलॉजी) द्वारा यह जांचना आसान है कि यह अनैच्छिक है, जिसमे लीफ में विभाजन स्वीकार करता है। इसके अतिरिक्त , पॉइसन बाइसदिश प्रत्येक लीफ को अच्छी तरह से प्रतिबंधित करता है, जो इसलिए सहानुभूतिपूर्ण मैनिफोल्ड बन जाता है।
गैर-नियमित मामला
वितरण के बाद से एक गैर-नियमित पॉइसन मैनिफोल्ड के लिए स्थिति अधिक सम्मिश्र है जिसमे एकवचन वितरण (डिफरेंशियल ज्यामिति) है, अथार्थ सदिश उप-स्थान अलग-अलग आयाम हैं.
के लिए एक इंटीग्रल सबमैनिफोल्ड एक पथ-कनेक्टेड सबमैनिफोल्ड है जो सभी के लिए को संतुष्ट करता है। के इंटीग्रल सबमैनिफोल्ड स्वचालित रूप से नियमित रूप से विसर्जित मैनिफोल्ड होते हैं, और के अधिकतम इंटीग्रल सबमैनिफोल्ड को की लीफ कहा जाता है।
इसके अतिरिक्त , प्रत्येक लीफ सभी और के लिए स्थिति द्वारा निर्धारित एक प्राकृतिक सहानुभूतिपूर्ण रूप रखती है, इसलिए , कोई की सहानुभूतिपूर्ण लीफ की बात करता है। इसके अतिरिक्त , नियमित बिंदुओं का स्थान और उसका पूरक दोनों ही सिम्प्लेक्टिक लीफ से संतृप्त होते हैं, इसलिए सिम्प्लेक्टिक पत्तियाँ या तो नियमित या एकवचन हो सकती हैं।
वीनस्टीन विभाजन प्रमेय
गैर-नियमित स्थिति में भी सहानुभूतिपूर्ण लीफ के अस्तित्व को दिखाने के लिए, कोई वीनस्टीन विभाजन प्रमेय (या डार्बौक्स-वेनस्टीन प्रमेय) का उपयोग कर सकता है।[6] इसमें कहा गया है कि कोई भी पॉइसन मैनिफोल्ड स्थानीय रूप से एक बिंदु के आसपास एक सिंपलेक्टिक मैनिफोल्ड और एक अनुप्रस्थ पॉइसन सबमैनिफोल्ड के उत्पाद के रूप में विभाजित होता है जो पर लुप्त हो जाता है। अधिक स्पष्ट रूप से, यदि तो स्थानीय निर्देशांक हैं जैसे कि पॉइसन बायवेक्टर
उदाहरण
तुच्छ पॉइसन संरचनाएं
प्रत्येक मैनिफ़ोल्ड में तुच्छ पॉइसन संरचना होती है, जिसे द्विसदिश {द्वारा समकक्ष रूप से वर्णित किया गया है। इसलिए का प्रत्येक बिंदु एक शून्य-आयामी सिंपलेक्टिक लीफ है।
नॉनडीजेनरेट पॉइसन संरचनाएं
एक द्विसदिश क्षेत्र को नॉनडीजेनरेट कहा जाता है यदि एक सदिश बंडल आइसोमोर्फिज्म है। नॉनडीजेनरेट पॉइसन द्विसदिश क्षेत्र वास्तव में सिम्पलेक्टिक मैनिफोल्ड्स के समान ही हैं।
वास्तव में, नॉनडीजेनरेट बायसदिश क्षेत्रों के मध्य एक विशेषण पत्राचार है और नॉनडीजेनरेट फॉर्म या नॉनडीजेनरेट 2-फॉर्म , द्वारा दिए गए
रैखिक पॉइसन संरचनाएं
एक पॉइसन संरचना एक सदिश स्थान पर रैखिक तब कहा जाता है जब दो रैखिक फलनों का कोष्ठक अभी भी रैखिक हो।
रैखिक पॉइसन संरचनाओं के साथ सदिश रिक्त स्थान का वर्ग वास्तव में (दोहरे) ले बीजगणित के साथ मेल खाता है। वास्तव में, किसी भी परिमित-आयामी लाई बीजगणित के दोहरे में एक रैखिक पॉइसन ब्रैकेट होता है, जिसे साहित्य में लाई-पॉइसन, किरिलोव-पॉइसन या केकेएस (कोस्टेंट-किरिलोव-सोरियाउ) संरचना के नाम से जाना जाता है:
इसके विपरीत, पर कोई भी रैखिक पॉइसन संरचना इस रूप में होनी चाहिए, अथार्थ कि पर प्रेरित एक प्राकृतिक लाई बीजगणित संरचना उपस्थित है जिसका लाई-पॉइसन ब्रैकेट को पुनः प्राप्त करता है
पर ली-पॉइसन संरचना की सहानुभूति पत्तियाँ पर की सहसंयुक्त क्रिया की कक्षाएँ हैं।
फ़ाइबरवाइज रैखिक पॉइसन संरचनाएं
पिछले उदाहरण को निम्नानुसार सामान्यीकृत किया जा सकता है। एक सदिश बंडल के कुल स्थान पर एक पॉइसन संरचना को फ़ाइबरवाइज रैखिक कहा जाता है जब दो सुचारू कार्यों का ब्रैकेट , जिनके तंतुओं पर प्रतिबंध रैखिक होते हैं, फाइबर तक सीमित होने पर भी रैखिक होते हैं। समान रूप से, पॉइसन बाइसदिश क्षेत्र को किसी भी के लिए को संतुष्ट करने के लिए कहा जाता है, जहां अदिश गुणन है
रैखिक पॉइसन संरचनाओं के साथ सदिश बंडलों का वर्ग वास्तव में (दोहरे) लेई बीजगणित के साथ मेल खाता है। वास्तव में, द्वैत किसी भी लाई बीजगणित का एक फ़ाइबरवाइज रैखिक पॉइसन ब्रैकेट रखता है,[11] द्वारा विशिष्ट रूप से परिभाषित किया गया है
इसके विपरीत, पर कोई भी फ़ाइबरवाइज रैखिक पॉइसन संरचना इस रूप की होनी चाहिए, अथार्त कि पर प्रेरित एक प्राकृतिक लाई बीजगणित संरचना उपस्थित है जिसका लाई-पॉइसन बैकेट को पुनर्प्राप्त करता है।[12]
की सहानुभूति पत्तियाँ बीजगणित कक्षाओं के कोटैंजेंट बंडल हैं; समतुल्य रूप से, यदि एक ली ग्रुपॉइड के साथ पूर्णांकित है, तो वे कोटैंजेंट ग्रुपॉइड की कक्षाओं के जुड़े हुए घटक हैं।
के लिए एक रैखिक पॉइसन संरचनाओं को पुनर्प्राप्त करता है, जबकि के लिए फ़ाइबरवाइज रैखिक पॉइसन संरचना कोटैंजेंट बंडल की विहित सहानुभूति संरचना द्वारा दी गई गैर-डीजेनरेट संरचना है।
अन्य उदाहरण और निर्माण
- सदिश समष्टि पर कोई भी स्थिर द्विसदिश क्षेत्र स्वचालित रूप से एक पॉइसन संरचना है; वास्तव में, जेकोबीएटर में सभी तीन पद शून्य हैं, जो एक स्थिर कार्य वाला ब्रैकेट है।
- सतह पर कोई भी बाइसदिश क्षेत्र (टोपोलॉजी) | 2-आयामी मैनिफोल्ड स्वचालित रूप से एक पॉइसन संरचना है; वास्तव में, एक 3-सदिश क्षेत्र है, जो आयाम 2 में सदैव शून्य होता है।
- कोई भी पॉइसन बाइसदिश क्षेत्र दिया गया 3-मैनिफोल्ड या 3-आयामी मैनिफोल्ड पर , बायसदिश क्षेत्र , किसी के लिए , स्वचालित रूप से पॉइसन है।
- कार्टेशियन उत्पाद दो पॉइसन मैनिफोल्ड्स का और यह फिर से एक पॉइसन मैनिफोल्ड है।
- मान लीजिए कि पर आयाम का (नियमित) पर्णसमूह (नियमित) है और एक बंद पर्ण दो-रूप में है, जिसके लिए शक्ति Cite error: Invalid
<ref>
tag; refs with no name must have content कहीं लुप्त नहीं हो रही है। यह विशिष्ट रूप से पर एक नियमित पॉइसन संरचना को निर्धारित करता है, जिसके लिए की सहानुभूतिपूर्ण लीफ को प्रेरित सहानुभूतिपूर्ण रूप से सुसज्जित की लीफ की आवश्यकता होती है। - मान लीजिए कि एक लाई समूह है जो पॉइसन डिफियोमोर्फिज्म द्वारा पॉइसन मैनिफोल्ड पर कार्य करता है। यदि कार्रवाई स्वतंत्र और उचित है, तो भागफल मैनिफोल्ड को से एक पॉइसन संरचना विरासत में मिलती है (अर्थात्, यह एकमात्र ऐसा है कि विसर्जन एक पॉइसन मानचित्र है)।
पॉइसन कोहोमोलॉजी
पॉइसन कोहोमोलॉजी समूह पॉइसन मैनिफोल्ड के कोचेन कॉम्प्लेक्स के कोहोमोलॉजी समूह हैं
रूपवाद का उपयोग करना , कोई राम परिसर का से एक रूपवाद प्राप्त करता है पॉइसन कॉम्प्लेक्स के लिए , एक समूह समरूपता को प्रेरित करना . गैर-अपक्षयी स्थिति में, यह एक समरूपता बन जाता है, जिससे कि एक सिम्प्लेक्टिक मैनिफोल्ड की पॉइसन कोहॉमोलॉजी पूरी तरह से अपने उसके पास मेमने की तरह गर्भाशय है को पुनः प्राप्त कर लेती है।
पॉइसन कोहोमोलॉजी की सामान्य रूप से गणना करना कठिन है, किन्तु निम्न डिग्री समूहों में पॉइसन संरचना पर महत्वपूर्ण ज्यामितीय जानकारी होती है:
- कासिमिर फ़ंक्शंस का स्थान है, अथार्थ अन्य सभी के साथ पॉइसन-कम्यूटिंग के सुचारू कार्य (या, समकक्ष, सहानुभूतिपूर्ण लीफ पर स्थिर कार्य);
- पोइसन सदिश क्षेत्र मॉड्यूलो हैमिल्टनियन सदिश क्षेत्र का स्थान है;
- पोइसन संरचना मोडुलो तुच्छ विकृतियों के अनंतिम विकृतियों का स्थान है;
- अनंत सूक्ष्म विकृतियों को वास्तविक विकृतियों तक विस्तारित करने के लिए अवरोधों का स्थान है।
मॉड्यूलर वर्ग
पॉइसन मैनिफोल्ड का मॉड्यूलर वर्ग पहले पॉइसन कोहोमोलॉजी समूह में एक वर्ग है, जो हैमिल्टनियन प्रवाह के अनुसार वॉल्यूम फॉर्म अपरिवर्तनीय के अस्तित्व में बाधा है।[13] इसे कोस्ज़ुल[14]और वीनस्टीन द्वारा प्रस्तुत किया गया था।[15]
याद रखें कि किसी दिए गए वॉल्यूम फॉर्म के संबंध में एक सदिश क्षेत्र का विचलन द्वारा परिभाषित फ़ंक्शन है। वॉल्यूम फॉर्म के संबंध में पॉइसन मैनिफोल्ड का मॉड्यूलर सदिश क्षेत्र , हैमिल्टनियन सदिश क्षेत्र के विचलन द्वारा परिभाषित सदिश क्षेत्र है
मॉड्यूलर सदिश क्षेत्र एक पॉइसन -कोसाइकिल है, अथार्त यह को संतुष्ट करता है। इसके अतिरिक्त , दो आयतन रूप और , दिए गए हैं, डिफरेंशियल एक हैमिल्टनियन सदिश क्षेत्र है। इसलिए , पॉइसन कोहोमोलॉजी वर्ग वॉल्यूम फॉर्म की मूल पसंद पर निर्भर नहीं करता है, और इसे पॉइसन मैनिफोल्ड का मॉड्यूलर वर्ग कहा जाता है।
एक पॉइसन मैनिफोल्ड को यूनिमॉड्यूलर कहा जाता है यदि उसका मॉड्यूलर वर्ग गायब हो जाता है। ध्यान दें कि ऐसा तब होता है जब और केवल यदि कोई वॉल्यूम फॉर्म उपस्थित होता है जैसे कि मॉड्यूलर सदिश क्षेत्र गायब हो जाता है, अथार्त प्रत्येक के लिए; दूसरे शब्दों में, किसी हैमिल्टनियन सदिश क्षेत्र के प्रवाह के अनुसार अपरिवर्तनीय है। उदाहरण के लिए:
- सिम्प्लेक्टिक संरचनाएं सदैव एक-मॉड्यूलर होती हैं, क्योंकि लिउविल फॉर्म सभी हैमिल्टनियन सदिश क्षेत्रों के अनुसार अपरिवर्तनीय है;
- रैखिक पॉइसन संरचनाओं के लिए मॉड्यूलर वर्ग का अत्यंत छोटा मॉड्यूलर वर्ण है, क्योंकि पर मानक लेबेस्ग माप से जुड़ा मॉड्यूलर सदिश क्षेत्र पर स्थिर सदिश क्षेत्र है तब पॉइसन मैनिफोल्ड के रूप में एकमापक है यदि और केवल यदि यह लाई बीजगणित के रूप में एकमापक है;[16]
- नियमित पॉइसन संरचनाओं के लिए मॉड्यूलर वर्ग अंतर्निहित सिंपलेक्टिक फोलिएशन के रीब वर्ग से संबंधित है (पहले लीफवाइज कोहोमोलॉजी समूह का एक अवयव , जो फोलिएशन के स्पर्शरेखा सदिश क्षेत्रों द्वारा वॉल्यूम सामान्य फॉर्म अपरिवर्तनीय के अस्तित्व में बाधा डालता है)।[17]
पॉइसन होमोलॉजी
पॉइसन कोहोमोलॉजी की प्रस्तुत 1977 में स्वयं लिचनेरोविक्ज़ द्वारा की गई थी;[1] एक दशक बाद, ब्रायलिंस्की ने ऑपरेटर का उपयोग करते हुए, पॉइसन मैनिफोल्ड्स के लिए एक होमोलॉजी सिद्धांत प्रस्तुत किया।[18]
पॉइसन होमोलॉजी और कोहोमोलॉजी से संबंधित अनेक परिणाम सिद्ध हो चुके हैं।[19] उदाहरण के लिए, ओरिएंटेबल यूनिमॉड्यूलर पॉइसन मैनिफोल्ड्स के लिए, पॉइसन होमोलॉजी पॉइसन कोहोमोलॉजी के लिए आइसोमोर्फिक सिद्ध होती है: यह जू द्वारा स्वतंत्र रूप से सिद्ध किया गया था[20] और इवांस-लू-वेनस्टीन है।[16]
पॉइसन मानचित्र
पॉइसन मैनिफोल्ड्स के बीच एक सहज मानचित्र को पॉइसन मानचित्र कहा जाता है यदि यह पॉइसन संरचनाओं का सम्मान करता है, अथार्त निम्नलिखित समकक्ष स्थितियों में से एक रखता है (उपरोक्त पॉइसन संरचनाओं की समतुल्य परिभाषाओं के साथ तुलना करें):
- पॉइसन कोष्ठक और संतुष्ट हर एक के लिए और सुचारू कार्य * बायसदिश क्षेत्र और हैं -संबंधित, अथार्थ है
- हर सुचारु कार्य से जुड़े हैमिल्टनियन सदिश क्षेत्र हैं -संबंधित, अथार्थ
- डिफरेंशियल एक डिराक रूपवाद है।
एक एंटी-पॉइसन मानचित्र एक तरफ ऋण चिह्न के साथ समान स्थितियों को संतुष्ट करता है।
पॉइसन मैनिफ़ोल्ड एक श्रेणी की वस्तुएं हैं, जिसमें पॉइसन मानचित्र रूपवाद के रूप में हैं। यदि एक पॉइसन मानचित्र भी एक भिन्नरूपता है, तो हम को एक पॉइसन-विभिन्नरूपता कहते हैं।
उदाहरण
- उत्पाद पॉइसन मैनिफोल्ड को देखते हुए , विहित अनुमान , के लिए , पॉइसन मानचित्र हैं।
- एक सिम्प्लेक्टिक पत्ती, या एक विवृत उपस्थान का समावेशन मानचित्रण, एक पॉइसन मानचित्र है।
- दो लाई बीजगणित दिए गए हैं और , किसी भी लाई बीजगणित समरूपता का द्वैत एक पॉइसन मानचित्र प्रेरित करता है उनकी रैखिक पॉइसन संरचनाओं के मध्य ।
- दो लाई बीजगणित दिए गए हैं और , किसी भी लाई बीजगणित रूपवाद का द्वैत पहचान के ऊपर एक पॉइसन मानचित्र उत्पन्न होता है उनकी फ़ाइबरवाइज रैखिक पॉइसन संरचना के मध्य ।
किसी को ध्यान देना चाहिए कि पॉइसन मानचित्र की धारणा मूल रूप से सिम्प्लेक्टोमोर्फिज्म से भिन्न है। उदाहरण के लिए, उनकी मानक सहानुभूति संरचनाओं के साथ, कोई पॉइसन मानचित्र उपस्थित नहीं हैं , जबकि सहानुभूतिपूर्ण मानचित्र प्रचुर मात्रा में हैं।
प्रतीकात्मक अनुभूतियाँ
पॉइसन मैनिफोल्ड पर एक सिंपलेक्टिक अहसास में एक पॉइसन मैप के साथ एक सिंपलेक्टिक मैनिफोल्ड सम्मिलित होता है जो एक विशेषण विसर्जन है। समान्य रूप से कहें तो, एक सहानुभूति बोध की भूमिका एक सम्मिश्र (पतित) पॉइसन को एक बड़े, किन्तु आसान (गैर-पतित) में बदलकर "डिसिंगुलराइज़" करना है।
ध्यान दें कि कुछ लेखक इस अंतिम नियम के बिना सहानुभूति बोध को परिभाषित करते हैं (जिससे, उदाहरण के लिए, एक सहानुभूति मैनिफोल्ड में एक सहानुभूति लीफ का समावेश एक उदाहरण हो) और पूर्ण को एक सहानुभूति बोध कहते हैं जहां एक विशेषण निमज्जन है. (पूर्ण) सहानुभूति बोध के उदाहरणों में निम्नलिखित सम्मिलित हैं:
- तुच्छ पॉइसन संरचना के लिए, कोई के रूप में कोटैंजेंट बंडल लेता है, इसकी विहित सहानुभूति संरचना के साथ, के रूप प्रक्षेपण के रूप में है ।
- एक गैर-पतित पोइसन संरचना के लिए व्यक्ति के रूप में मैनिफोल्ड को ही लेता है और के रूप में पहचान लेता है।
- पर ली-पॉइसन संरचना के लिए, कोई ली समूह के कोटैंजेंट बंडल को के रूप में लेता है जो को एकीकृत करता है और (बाएं) की पहचान पर डिफरेंशियल के दोहरे मानचित्र को के रूप में लेता है या दाएं) अनुवाद
एक सिम्पलेक्सिक अनुभव पूर्ण कहा जाता है यदि, किसी पूर्ण सदिश क्षेत्र हैमिल्टनियन सदिश क्षेत्र के लिए , सदिश क्षेत्र पूर्ण भी है. जबकि प्रत्येक पॉइसन मैनिफोल्ड के लिए सहानुभूतिपूर्ण अनुभव सदैव उपस्थित रहते हैं (और अनेक अलग-अलग प्रमाण उपलब्ध हैं),[6][21][22] पूर्ण नहीं होते हैं, और उनका अस्तित्व पॉइसन मैनिफोल्ड्स के लिए इंटीग्रेबिलिटी समस्या में एक मौलिक भूमिका निभाता है (नीचे देखें)।[23]
पॉइसन मैनिफोल्ड्स का एकीकरण
कोई भी पॉइसन मैनिफोल्ड अपने कोटैंजेंट बंडल पर ली बीजगणित की एक संरचना उत्पन्न करता है, जिसे कोटैंजेंट बीजगणित भी कहा जाता है। एंकर मानचित्र द्वारा दिया गया है जबकि पर लाई ब्रैकेट को इस प्रकार परिभाषित किया गया है
- सिंपलेक्टिक फोलिएशन, लाई अलजेब्रॉइड के एंकर द्वारा प्रेरित सामान्य (एकवचन) फोलिएशन है;
- सहानुभूति पत्तियाँ लाई बीजगणित की कक्षाएँ हैं;
- एक पॉइसन संरचना पर ठीक ठीक तब नियमित होता है जब संबद्ध लाई बीजगणित होता है जो कि है;
- पॉइसन कोहोमोलॉजी समूह ली अलजेब्रॉइड कोहोमोलॉजी समूहों के साथ मेल खाते हैं जिसमे तुच्छ प्रतिनिधित्व में गुणांक के साथ है ;
- पॉइसन मैनिफोल्ड का मॉड्यूलर वर्ग संबंधित लाई बीजगणित के मॉड्यूलर वर्ग के साथ मेल खाता है .[16]
इस बात पर ध्यान देना अत्यंत महत्वपूर्ण है कि लाई बीजगणित सदैव एक लाई ग्रुपॉइड के साथ एकीकृत नहीं होता है।
सिंपलेक्टिक ग्रुपोइड्स
सिंपलेक्टिक ग्रुपॉइड एक लाई ग्रुपॉइड है, साथ में सिंपलेक्टिक फॉर्म भी है, जो गुणक भी है, अथार्थ यह ग्रुपॉइड गुणन के साथ निम्नलिखित बीजगणितीय संगतता को संतुष्ट करता है: समान रूप से, के ग्राफ़ को का लैग्रेंजियन सबमैनिफोल्ड माना जाता है। अनेक परिणामों के मध्य , का आयाम स्वचालित रूप से के आयाम से दोगुना है। सिंपलेक्टिक ग्रुपॉइड की धारणा 80 के दशक के अंत में अनेक लेखकों द्वारा स्वतंत्र रूप से प्रस्तुत की गई थी।[24][25][21][11]
एक मौलिक प्रमेय बताता है कि किसी भी सहानुभूति समूह का आधार स्थान एक अद्वितीय पॉइसन संरचना को स्वीकार करता है, जैसे कि स्रोत मानचित्र और लक्ष्य मानचित्र क्रमशः, एक पॉइसन मानचित्र और एक एंटी-पॉइसन मानचित्र हैं। इसके अतिरिक्त, ली बीजगणित पॉइसन मैनिफोल्ड से जुड़े कोटैंजेंट बीजगणित के समरूपी है।[26] इसके विपरीत, यदि पॉइसन मैनिफोल्ड का कोटैंजेंट बंडल कुछ लाई ग्रुपॉइड के साथ एकीकृत है, तो स्वचालित रूप से एक सिम्प्लेक्टिक ग्रुपॉइड है। [27]
इसीलिए, पॉइसन मैनिफोल्ड के लिए इंटीग्रैबिलिटी समस्या में एक (सिम्पलेक्टिक) लाई ग्रुपॉइड खोजना सम्मिलित है जो इसके कोटैंजेंट बीजगणित को एकीकृत करता है; जब ऐसा होता है, तो पॉइसन संरचना को इंटीग्रेबल कहा जाता है।
जबकि कोई भी पॉइसन मैनिफोल्ड एक स्थानीय एकीकरण को स्वीकार करता है (अर्थात एक सहानुभूति समूह जहां गुणन को केवल स्थानीय रूप से परिभाषित किया जाता है),[26] इसकी इंटीग्रेबिलिटी में सामान्य टोपोलॉजिकल रुकावटें हैं, जो लाई अलजेब्रॉइड्स के इंटीग्रेबिलिटी सिद्धांत से आ रही हैं।[28] इस तरह की रुकावटों का उपयोग करके, कोई यह दिखा सकता है कि एक पॉइसन मैनिफोल्ड तभी एकीकृत है जब यह पूर्ण सहानुभूतिपूर्ण अनुभव को स्वीकार करता है।[23]
किसी दिए गए पॉइसन मैनिफोल्ड को एकीकृत करने वाले सिंपलेक्टिक ग्रुपॉइड के लिए उम्मीदवार को पॉइसन होमोटॉपी ग्रुपॉइड कहा जाता है और यह केवल कोटैंजेंट बीजगणित का वेनस्टीन ग्रुपॉइड है, जिसमें पथों के एक विशेष वर्ग के बानाच स्पेस के भागफल सम्मिलित होते हैं। एक उपयुक्त समतुल्य संबंध द्वारा। समान रूप से, को एक अनंत-आयामी सहानुभूति भागफल के रूप में वर्णित किया जा सकता है।[29]
एकीकरण के उदाहरण
- तुच्छ पॉइसन संरचना सदैव अभिन्न होती है, सिम्प्लेक्टिक ग्रुपॉइड विहित सिम्पलेक्टिक रूप के साथ एबेलियन (एडिटिव) समूहों का बंडल होता है।
- पर एक गैर-पतित पोइसन संरचना सदैव पूर्णांक होती है, सिम्प्लेक्टिक ग्रुपॉइड युग्म ग्रुपॉइड के साथ सिम्प्लेक्टिक फॉर्म ( के लिए) होता है।
- पर एक लाई-पॉइसन संरचना सदैव पूर्णांकित होती है, सिम्प्लेक्टिक ग्रुपॉइड (कोएडजॉइंट) एक्शन ग्रुपॉइड होता है, के लिए के कैनोनिकल सिम्पलेक्टिक फॉर्म के साथ, का सरल रूप से जुड़ा हुआ एकीकरण होता है। .
- एक लाई-पोइसन संरचना पर पूर्णांकीय है यदि और केवल यदि लाई बीजगणित एक लाई ग्रुपॉइड के लिए इंटीग्रल है जहाँ , सिम्प्लेक्टिक ग्रुपॉइड कोटैंजेंट ग्रुपॉइड है जो कि विहित सहानुभूतिपूर्ण रूप के साथ है।
सबमैनिफोल्ड्स
का एक पॉइसन सबमैनिफोल्ड एक विसर्जित सबमैनिफोल्ड है, जैसे कि विसर्जन मानचित्र एक पॉइसन मानचित्र है। समान रूप से, कोई पूछता है कि प्रत्येक हैमिल्टनियन सदिश क्षेत्र , के लिए, की स्पर्शरेखा है
यह परिभाषा बहुत स्वाभाविक है और अनेक अच्छे गुणों को संतुष्ट करती है, जैसे दो पॉइसन सबमैनिफोल्ड की ट्रांसवर्सेलिटी (गणित) फिर से एक पॉइसन सबमैनिफोल्ड है। चूँकि , इसमें कुछ समस्याएँ भी हैं:
- पॉइसन सबमैनिफोल्ड दुर्लभ हैं: उदाहरण के लिए, सिंपलेक्टिक मैनिफोल्ड के एकमात्र पॉइसन सबमैनिफोल्ड विवृत सेट हैं;
- परिभाषा कार्यात्मक रूप से व्यवहार नहीं करती है: यदि एक पॉइसन मानचित्र है जो के पॉइसन सबमैनिफोल्ड के अनुप्रस्थ है, तो का सबमैनिफोल्ड आवश्यक रूप से पॉइसन नहीं है।
इन समस्याओं को दूर करने के लिए, व्यक्ति अधिकांशत: पॉइसन ट्रांसवर्सल (मूल रूप से कोसिम्प्लेक्टिक सबमैनिफोल्ड कहा जाता है) की धारणा का उपयोग करता है[6] इसे एक सबमैनिफोल्ड के रूप में परिभाषित किया जा सकता है जो प्रत्येक सिंपलेक्टिक लीफ के लिए अनुप्रस्थ है और इस तरह कि प्रतिच्छेदन का एक सिंपलेक्टिक सबमैनिफोल्ड है। यह इस प्रकार है कि किसी भी पॉइसन ट्रांसवर्सल को से एक विहित पॉइसन संरचना प्राप्त होती है। एक गैर-अपक्षयी पॉइसन मैनिफोल्ड (जिसका एकमात्र सिंपलेक्टिक लीफ ही है) के स्थिति में, पॉइसन ट्रांसवर्सल्स सिंपलेक्टिक सबमैनिफोल्ड के समान ही हैं।
सबमैनिफोल्ड्स के अधिक सामान्य वर्ग पॉइसन ज्यामिति में एक महत्वपूर्ण भूमिका निभाते हैं, जिनमें ली-डिराक सबमैनिफोल्ड्स, पॉइसन-डिराक सबमैनिफोल्ड्स, कोइसोट्रोपिक सबमैनिफोल्ड्स और प्री-पॉइसन सबमैनिफोल्ड्स सम्मिलित हैं।[30]
यह भी देखें
- नंबू-पॉइसन मैनिफोल्ड
- पॉइसन-लाई समूह
- पॉइसन सुपरमैनिफोल्ड
- कोंटसेविच परिमाणीकरण सूत्र
संदर्भ
- ↑ 1.0 1.1 1.2 Lichnerowicz, A. (1977). "Les variétés de Poisson et leurs algèbres de Lie associées". J. Diff. Geom. 12 (2): 253–300. doi:10.4310/jdg/1214433987. MR 0501133.
- ↑ 2.0 2.1 Kosmann-Schwarzbach, Yvette (2022-11-29). "Seven Concepts Attributed to Siméon-Denis Poisson". SIGMA. Symmetry, Integrability and Geometry: Methods and Applications (in English). 18: 092. doi:10.3842/SIGMA.2022.092.
- ↑ Weinstein, Alan (1998-08-01). "पॉइसन ज्यामिति". Differential Geometry and Its Applications. Symplectic Geometry (in English). 9 (1): 213–238. doi:10.1016/S0926-2245(98)00022-9. ISSN 0926-2245.
- ↑ Poisson, Siméon Denis (1809). "Sur la variation des constantes arbitraires dans les questions de mécanique" [On the variation of arbitrary constants in the questions of mechanics]. Journal de l'École polytechnique (in français). 15e cahier (8): 266–344 – via HathiTrust.
- ↑ 5.0 5.1 Silva, Ana Cannas da; Weinstein, Alan (1999). गैर-अनुवांशिक बीजगणित के लिए ज्यामितीय मॉडल (PDF). Providence, R.I.: American Mathematical Society. ISBN 0-8218-0952-0. OCLC 42433917.
- ↑ 6.0 6.1 6.2 6.3 Weinstein, Alan (1983-01-01). "पॉइसन की स्थानीय संरचना कई गुना है". Journal of Differential Geometry. 18 (3). doi:10.4310/jdg/1214437787. ISSN 0022-040X.
- ↑ Laurent-Gengoux, C.; Stienon, M.; Xu, P. (2010-07-08). "होलोमॉर्फिक पॉइसन मैनिफोल्ड्स और होलोमोर्फिक लाई अलजेब्रोइड्स". International Mathematics Research Notices (in English). 2008. arXiv:0707.4253. doi:10.1093/imrn/rnn088. ISSN 1073-7928.
- ↑ Laurent-Gengoux, Camille; Stiénon, Mathieu; Xu, Ping (2009-12-01). "होलोमोर्फिक लाई बीजगणित का एकीकरण". Mathematische Annalen (in English). 345 (4): 895–923. arXiv:0803.2031. doi:10.1007/s00208-009-0388-7. ISSN 1432-1807. S2CID 41629.
- ↑ Broka, Damien; Xu, Ping (2022). "होलोमोर्फिक पॉइसन मैनिफोल्ड्स की प्रतीकात्मक अनुभूतियाँ". Mathematical Research Letters (in English). 29 (4): 903–944. arXiv:1512.08847. doi:10.4310/MRL.2022.v29.n4.a1. ISSN 1945-001X.
- ↑ Bailey, Michael (2013-08-01). "सामान्यीकृत जटिल संरचनाओं का स्थानीय वर्गीकरण". Journal of Differential Geometry. 95 (1). arXiv:1201.4887. doi:10.4310/jdg/1375124607. ISSN 0022-040X.
- ↑ 11.0 11.1 Coste, A.; Dazord, P.; Weinstein, A. (1987). "Groupoïdes symplectiques" [Symplectic groupoids]. Publications du Département de mathématiques (Lyon) (in français) (2A): 1–62. ISSN 2547-6300.
- ↑ Courant, Theodore James (1990). "डिराक मैनिफोल्ड्स". Transactions of the American Mathematical Society (in English). 319 (2): 631–661. doi:10.1090/S0002-9947-1990-0998124-1. ISSN 0002-9947.
- ↑ Kosmann-Schwarzbach, Yvette (2008-01-16). "Poisson Manifolds, Lie Algebroids, Modular Classes: a Survey". SIGMA. Symmetry, Integrability and Geometry: Methods and Applications (in English). 4: 005. arXiv:0710.3098. Bibcode:2008SIGMA...4..005K. doi:10.3842/SIGMA.2008.005.
- ↑ Koszul, Jean-Louis (1985). "क्रॉचेट डे स्चाउटेन-निजेनहुइस एट कोहोमोलोगी" [Schouten-Nijenhuis bracket and cohomology]. Astérisque (in français). S131: 257–271.
- ↑ Weinstein, Alan (1997-11-01). "पॉइसन मैनिफोल्ड का मॉड्यूलर ऑटोमोर्फिज्म समूह". Journal of Geometry and Physics (in English). 23 (3): 379–394. Bibcode:1997JGP....23..379W. doi:10.1016/S0393-0440(97)80011-3. ISSN 0393-0440.
- ↑ 16.0 16.1 16.2 Evens, Sam; Lu, Jiang-Hua; Weinstein, Alan (1999). "अनुप्रस्थ माप, मॉड्यूलर वर्ग और लाई अलजेब्रॉइड्स के लिए एक कोहोलॉजी युग्मन". The Quarterly Journal of Mathematics. 50 (200): 417–436. arXiv:dg-ga/9610008. doi:10.1093/qjmath/50.200.417.
- ↑ Abouqateb, Abdelhak; Boucetta, Mohamed (2003-07-01). "नियमित पॉइसन मैनिफोल्ड का मॉड्यूलर वर्ग और इसके सिम्प्लेक्टिक फोलिएशन का रीब वर्ग". Comptes Rendus Mathematique (in English). 337 (1): 61–66. arXiv:math/0211405v1. doi:10.1016/S1631-073X(03)00254-1. ISSN 1631-073X.
- ↑ Brylinski, Jean-Luc (1988-01-01). "पॉइसन मैनिफोल्ड्स के लिए एक विभेदक कॉम्प्लेक्स". Journal of Differential Geometry. 28 (1). doi:10.4310/jdg/1214442161. ISSN 0022-040X. S2CID 122451743.
- ↑ Fernández, Marisa; Ibáñez, Raúl; León, Manuel de (1996). "पॉइसन कोहोमोलॉजी और पॉइसन मैनिफोल्ड्स की कैनोनिकल होमोलॉजी". Archivum Mathematicum. 032 (1): 29–56. ISSN 0044-8753.
- ↑ Xu, Ping (1999-02-01). "पॉइसन ज्योमेट्री में गेरस्टेनहाबर बीजगणित और बीवी-बीजगणित". Communications in Mathematical Physics (in English). 200 (3): 545–560. arXiv:dg-ga/9703001. Bibcode:1999CMaPh.200..545X. doi:10.1007/s002200050540. ISSN 1432-0916. S2CID 16559555.
- ↑ 21.0 21.1 Karasev, M. V. (1987-06-30). "नॉनलाइनियर पॉइसन ब्रैकेट्स के लिए लाई ग्रुप थ्योरी की वस्तुओं के एनालॉग्स". Mathematics of the USSR-Izvestiya. 28 (3): 497–527. Bibcode:1987IzMat..28..497K. doi:10.1070/im1987v028n03abeh000895. ISSN 0025-5726.
- ↑ Crainic, Marius; Marcut, Ioan (2011). "सहानुभूतिपूर्ण अनुभूतियों के अस्तित्व पर". Journal of Symplectic Geometry (in English). 9 (4): 435–444. doi:10.4310/JSG.2011.v9.n4.a2. ISSN 1540-2347.
- ↑ 23.0 23.1 Crainic, Marius; Fernandes, Rui (2004-01-01). "पॉइसन ब्रैकेट्स की इंटीग्रेबिलिटी". Journal of Differential Geometry. 66 (1). doi:10.4310/jdg/1090415030. ISSN 0022-040X.
- ↑ Weinstein, Alan (1987-01-01). "सिंपलेक्टिक ग्रुपोइड्स और पॉइसन मैनिफोल्ड्स". Bulletin of the American Mathematical Society (in English). 16 (1): 101–105. doi:10.1090/S0273-0979-1987-15473-5. ISSN 0273-0979.
- ↑ Zakrzewski, S. (1990). "क्वांटम और शास्त्रीय छद्म समूह। द्वितीय. विभेदक और सहानुभूतिपूर्ण छद्म समूह". Communications in Mathematical Physics. 134 (2): 371–395. doi:10.1007/BF02097707. ISSN 0010-3616. S2CID 122926678 – via Project Euclid.
- ↑ 26.0 26.1 Albert, Claude; Dazord, Pierre (1991). Dazord, Pierre; Weinstein, Alan (eds.). "Groupoïdes de Lie et Groupoïdes Symplectiques" [Lie Groupoids and Symplectic Groupoids]. Symplectic Geometry, Groupoids, and Integrable Systems. Mathematical Sciences Research Institute Publications (in français). New York, NY: Springer US. 20: 1–11. doi:10.1007/978-1-4613-9719-9_1. ISBN 978-1-4613-9719-9.
- ↑ Liu, Z. -J.; Xu, P. (1996-01-01). "सटीक झूठ bialgebroids और पॉइसन ग्रुपोइड्स". Geometric & Functional Analysis (in English). 6 (1): 138–145. doi:10.1007/BF02246770. ISSN 1420-8970. S2CID 121836719 – via European Digital Mathematics Library.
- ↑ Crainic, Marius; Fernandes, Rui (2003-03-01). "लाई ब्रैकेट्स की इंटीग्रेबिलिटी". Annals of Mathematics. 157 (2): 575–620. doi:10.4007/annals.2003.157.575. ISSN 0003-486X.
- ↑ Cattaneo, Alberto S.; Felder, Giovanni (2001). "पॉइसन सिग्मा मॉडल और सिंपलेक्टिक ग्रुपोइड्स". Quantization of Singular Symplectic Quotients. Progress in Mathematics (in English). Basel: Birkhäuser: 61–93. doi:10.1007/978-3-0348-8364-1_4. ISBN 978-3-0348-8364-1. S2CID 10248666.
- ↑ Zambon, Marco (2011). Ebeling, Wolfgang; Hulek, Klaus; Smoczyk, Knut (eds.). "Submanifolds in Poisson geometry: a survey". Complex and Differential Geometry. Springer Proceedings in Mathematics (in English). Berlin, Heidelberg: Springer. 8: 403–420. doi:10.1007/978-3-642-20300-8_20. ISBN 978-3-642-20300-8.
किताबें और सर्वेक्षण
- Bhaskara, K. H.; Viswanath, K. (1988). पॉइसन बीजगणित और पॉइसन मैनिफोल्ड्स. Longman. ISBN 0-582-01989-3.
- Cannas da Silva, Ana; Weinstein, Alan (1999). गैर-अनुवांशिक बीजगणित के लिए ज्यामितीय मॉडल. AMS Berkeley Mathematics Lecture Notes, 10.
- Dufour, J.-P.; Zung, N.T. (2005). पॉइसन संरचनाएं और उनके सामान्य रूप. Vol. 242. Birkhäuser Progress in Mathematics.
- Crainic, Marius; Loja Fernandes, Rui; Mărcuț, Ioan (2021). पॉइसन ज्यामिति पर व्याख्यान. Graduate Studies in Mathematics. American Mathematical Society. ISBN 978-1-4704-6667-1. पिछला संस्करण [1] पर उपलब्ध है।
- Guillemin, Victor; Sternberg, Shlomo (1984). भौतिकी में सिम्पलेक्टिक तकनीकें. New York: Cambridge University Press. ISBN 0-521-24866-3.
- Libermann, Paulette; Marle, C.-M. (1987). सिम्प्लेक्टिक ज्यामिति और विश्लेषणात्मक यांत्रिकी. Dordrecht: Reidel. ISBN 90-277-2438-5.
- Vaisman, Izu (1994). पॉइसन मैनिफोल्ड्स की ज्यामिति पर व्याख्यान. Birkhäuser. पिंग जू द्वारा समीक्षा भी देखें एम्स का बुलेटिन.
- Weinstein, Alan (1998). "पॉइसन ज्यामिति". Differential Geometry and Its Applications. 9 (1–2): 213–238. doi:10.1016/S0926-2245(98)00022-9.
श्रेणी:डिफरेंशियल ज्यामिति श्रेणी:सिंपलेक्टिक ज्यामिति श्रेणी:स्मूथ मैनिफोल्ड श्रेणी:मैनिफोल्ड्स पर संरचनाएँ