उद्देश्य-पतन सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
ऑब्जेक्टिव कोलेप्स सिद्धांत, जिसे स्वतः [[तरंगों के फलन]] के माडल के रूप में भी जाना जाता है,<ref>{{Cite journal|last1=Bassi|first1=Angelo|last2=Ghirardi|first2=GianCarlo|date=2003|title=गतिशील कमी मॉडल|journal=Physics Reports|language=en|volume=379|issue=5–6|pages=257–426|doi=10.1016/S0370-1573(03)00103-0|arxiv=quant-ph/0302164|bibcode=2003PhR...379..257B|s2cid=119076099 }}</ref><ref>{{Cite journal|last1=Bassi|first1=Angelo|last2=Lochan|first2=Kinjalk|last3=Satin|first3=Seema|last4=Singh|first4=Tejinder P.|last5=Ulbricht|first5=Hendrik|date=2013|title=तरंग-फ़ंक्शन पतन के मॉडल, अंतर्निहित सिद्धांत और प्रयोगात्मक परीक्षण|journal=Reviews of Modern Physics|language=en|volume=85|issue=2|pages=471–527|doi=10.1103/RevModPhys.85.471|arxiv=1204.4325|bibcode=2013RvMP...85..471B|s2cid=119261020 |issn=0034-6861}}</ref> इस प्रकार गतिशील रिडक्शन मॉडल्स क्वांटम यांत्रिकी में माप की समस्या के समाधान प्रस्तुत करते हैं।<ref>{{Cite book|last=Bell|first=J. S.|url=https://www.cambridge.org/core/product/identifier/9780511815676/type/book|title=Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy|date=2004|publisher=Cambridge University Press|isbn=978-0-521-52338-7|edition=2|doi=10.1017/cbo9780511815676}}</ref> और अन्य सिद्धांतों के साथ वे [[क्वांटम यांत्रिकी की व्याख्या]] करते हैं इस प्रकार वे इसकी व्याख्या कर सकते हैं कि क्वांटम मापों से सदैव निश्चित परिणाम क्यों प्राप्त होते हैं, न कि उनमें से एक सुपरपोजिशन जैसा कि श्रोडिंगर समीकरण द्वारा इनकी श्रेष्ठता प्राप्त होती है और सामान्यतः क्वांटम सिद्धांत से क्लासिकल वर्ल्ड किस प्रकार उत्पन्न होती है। इसका मूल विचार यह है कि [[क्वांटम प्रणाली]] की स्थिति का वर्णन करने वाले तरंग फलन का एकात्मक विकास अनुमानित होता है। यह माइक्रोस्कोपिक प्रणालियों के लिए अच्छी तरह से काम करता है, लेकिन प्रणाली का द्रव्यमान/कम्प्लेक्सिटी बढ़ने पर धीरे-धीरे इसकी वैधता खो देती है। | ऑब्जेक्टिव कोलेप्स सिद्धांत, जिसे स्वतः [[तरंगों के फलन]] के माडल के रूप में भी जाना जाता है,<ref>{{Cite journal|last1=Bassi|first1=Angelo|last2=Ghirardi|first2=GianCarlo|date=2003|title=गतिशील कमी मॉडल|journal=Physics Reports|language=en|volume=379|issue=5–6|pages=257–426|doi=10.1016/S0370-1573(03)00103-0|arxiv=quant-ph/0302164|bibcode=2003PhR...379..257B|s2cid=119076099 }}</ref><ref>{{Cite journal|last1=Bassi|first1=Angelo|last2=Lochan|first2=Kinjalk|last3=Satin|first3=Seema|last4=Singh|first4=Tejinder P.|last5=Ulbricht|first5=Hendrik|date=2013|title=तरंग-फ़ंक्शन पतन के मॉडल, अंतर्निहित सिद्धांत और प्रयोगात्मक परीक्षण|journal=Reviews of Modern Physics|language=en|volume=85|issue=2|pages=471–527|doi=10.1103/RevModPhys.85.471|arxiv=1204.4325|bibcode=2013RvMP...85..471B|s2cid=119261020 |issn=0034-6861}}</ref> इस प्रकार गतिशील रिडक्शन मॉडल्स क्वांटम यांत्रिकी में माप की समस्या के समाधान प्रस्तुत करते हैं।<ref>{{Cite book|last=Bell|first=J. S.|url=https://www.cambridge.org/core/product/identifier/9780511815676/type/book|title=Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy|date=2004|publisher=Cambridge University Press|isbn=978-0-521-52338-7|edition=2|doi=10.1017/cbo9780511815676}}</ref> और अन्य सिद्धांतों के साथ वे [[क्वांटम यांत्रिकी की व्याख्या]] करते हैं इस प्रकार वे इसकी व्याख्या कर सकते हैं कि क्वांटम मापों से सदैव निश्चित परिणाम क्यों प्राप्त होते हैं, न कि उनमें से एक सुपरपोजिशन जैसा कि श्रोडिंगर समीकरण द्वारा इनकी श्रेष्ठता प्राप्त होती है और सामान्यतः क्वांटम सिद्धांत से क्लासिकल वर्ल्ड किस प्रकार उत्पन्न होती है। इसका मूल विचार यह है कि [[क्वांटम प्रणाली]] की स्थिति का वर्णन करने वाले तरंग फलन का एकात्मक विकास अनुमानित होता है। यह माइक्रोस्कोपिक प्रणालियों के लिए अच्छी तरह से काम करता है, लेकिन प्रणाली का द्रव्यमान/कम्प्लेक्सिटी बढ़ने पर धीरे-धीरे इसकी वैधता खो देती है। | ||
कोलेप्स सिद्धांतों में, श्रोडिंगर समीकरण को अतिरिक्त नॉन लीनियर और स्टोकेस्टिक शर्तों (स्पोंटेनियस कोलेप्स) के साथ पूरक किया जाता है जो समष्टि में तरंग फलन को स्थानीयकृत करता है। इस प्रकार परिणामी गतिशीलता ऐसी है कि सूक्ष्म पृथक प्रणालियों के लिए, नए शब्दों का प्रभाव नगण्य होता है; इसलिए, बहुत छोटे विचलनों के अतिरिक्त सामान्य क्वांटम गुण पुनः प्राप्त हो जाते हैं। समर्पित प्रयोगों में ऐसे विचलनों का संभावित रूप से पता लगाया जा सकता है और इनका परीक्षण करने के लिए विश्वभर में प्रयास बढ़ रहे हैं। | |||
एक अंतर्निर्मित प्रवर्धन तंत्र यह सुनिश्चित करता है कि कई कणों से युक्त मैक्रोस्कोपिक प्रणालियों के लिए, | एक अंतर्निर्मित प्रवर्धन तंत्र यह सुनिश्चित करता है कि कई कणों से युक्त मैक्रोस्कोपिक प्रणालियों के लिए, कोलेप्स क्वांटम गतिशीलता से अधिक मजबूत हो जाता है। फिर उनका तरंग कार्य हमेशा समष्टि में अच्छी तरह से स्थानीयकृत होता है, इतना अच्छी तरह से स्थानीयकृत होता है कि यह सभी व्यावहारिक उद्देश्यों के लिए, न्यूटन के नियमों के अनुसार समष्टि में घूम रहे एक बिंदु की तरह व्यवहार करता है। | ||
इस अर्थ में, | इस अर्थ में, कोलेप्स मॉडल क्वांटम सिद्धांत में माप से जुड़ी वैचारिक समस्याओं से बचते हुए, सूक्ष्म और स्थूल प्रणालियों का एकीकृत विवरण प्रदान करते हैं। | ||
ऐसे सिद्धांतों के सबसे प्रसिद्ध उदाहरण हैं: | ऐसे सिद्धांतों के सबसे प्रसिद्ध उदाहरण हैं: | ||
Line 14: | Line 14: | ||
* डिओसी-पेनरोज़ मॉडल|डिओसी-पेनरोज़ (डीपी) मॉडल | * डिओसी-पेनरोज़ मॉडल|डिओसी-पेनरोज़ (डीपी) मॉडल | ||
कोलेप्स सिद्धांत [[कई-दुनिया की व्याख्या]] के विरोध में खड़े हैं|कई-दुनिया की व्याख्या सिद्धांत, जिसमें वे मानते हैं [[तरंग क्रिया]] कोलेप्स की एक प्रक्रिया तरंग फलन की शाखा को कम कर देती है और अप्राप्य व्यवहार को हटा देती है। | |||
== | ==कोलेप्स सिद्धांतों का इतिहास== | ||
कोलेप्स मॉडल की उत्पत्ति 1970 के दशक में हुई। इटली में, लुसियानो फोंडा|एल का समूह। फोंडा, जियानकार्लो घिरार्डी|जी.सी. घिरार्डी और ए. रिमिनी अध्ययन कर रहे थे कि घातांकीय क्षय नियम कैसे प्राप्त किया जाए<ref>{{Cite journal|last1=Fonda|first1=L.|last2=Ghirardi|first2=G. C.|last3=Rimini|first3=A.|last4=Weber|first4=T.|date=1973|title=घातांकीय क्षय नियम की क्वांटम नींव पर|journal=Il Nuovo Cimento A|language=en|volume=15|issue=4|pages=689–704|doi=10.1007/BF02748082|bibcode=1973NCimA..15..689F|s2cid=121217897 |issn=0369-3546}}</ref> क्षय प्रक्रियाओं में, क्वांटम सिद्धांत के भीतर। उनके मॉडल में, एक आवश्यक विशेषता यह थी कि, क्षय के दौरान, कण समष्टि में सहज कोलेप्स से गुजरते हैं, एक विचार जिसे बाद में जीआरडब्ल्यू मॉडल की विशेषता के लिए अपनाया गया था। इस बीच, संयुक्त राज्य अमेरिका में पी. पियरल तरंग फलन के कोलेप्स को गतिशील तरीके से मॉडल करने के लिए, नॉन लीनियर और स्टोकेस्टिक समीकरण विकसित कर रहे थे;<ref>{{Cite journal|last=Pearle|first=Philip|date=1976|title=Reduction of the state vector by a nonlinear Schr\"odinger equation|journal=Physical Review D|volume=13|issue=4|pages=857–868|doi=10.1103/PhysRevD.13.857|bibcode=1976PhRvD..13..857P }}</ref><ref>{{Cite journal|last=Pearle|first=Philip|date=1979|title=यह समझाने की ओर कि घटनाएँ क्यों घटित होती हैं|journal=International Journal of Theoretical Physics|language=en|volume=18|issue=7|pages=489–518|doi=10.1007/BF00670504|bibcode=1979IJTP...18..489P|s2cid=119407617 |issn=0020-7748}}</ref><ref>{{Cite journal|last=Pearle|first=Philip|date=1984|title=गतिशील अवस्था-वेक्टर कमी के प्रायोगिक परीक्षण|journal=Physical Review D|volume=29|issue=2|pages=235–240|doi=10.1103/PhysRevD.29.235|bibcode=1984PhRvD..29..235P}}</ref> इस औपचारिकता का उपयोग बाद में सीएसएल मॉडल के लिए किया गया। हालाँकि, इन मॉडलों में गतिशीलता की "सार्वभौमिकता" के चरित्र का अभाव था, यानी एक मनमानी भौतिक प्रणाली (कम से कम गैर-सापेक्षतावादी स्तर पर) के लिए इसकी प्रयोज्यता, किसी भी मॉडल के लिए एक व्यवहार्य विकल्प बनने के लिए एक आवश्यक शर्त। | |||
सफलता 1986 में मिली, जब घिरार्डी, रिमिनी और वेबर ने सार्थक शीर्षक "सूक्ष्म और स्थूल प्रणालियों के लिए एकीकृत गतिशीलता" के साथ पेपर प्रकाशित किया।<ref name=":0">{{Cite journal|last1=Ghirardi|first1=G. C.|last2=Rimini|first2=A.|last3=Weber|first3=T.|date=1986|title=सूक्ष्म और स्थूल प्रणालियों के लिए एकीकृत गतिशीलता|journal=Physical Review D|volume=34|issue=2|pages=470–491|doi=10.1103/PhysRevD.34.470|pmid=9957165|bibcode=1986PhRvD..34..470G}}</ref> जहां उन्होंने वह प्रस्तुत किया जिसे अब लेखकों के प्रारंभिक अक्षरों के बाद जीआरडब्ल्यू मॉडल के रूप में जाना जाता है। मॉडल में वे सभी सामग्रियां शामिल हैं जो एक | सफलता 1986 में मिली, जब घिरार्डी, रिमिनी और वेबर ने सार्थक शीर्षक "सूक्ष्म और स्थूल प्रणालियों के लिए एकीकृत गतिशीलता" के साथ पेपर प्रकाशित किया।<ref name=":0">{{Cite journal|last1=Ghirardi|first1=G. C.|last2=Rimini|first2=A.|last3=Weber|first3=T.|date=1986|title=सूक्ष्म और स्थूल प्रणालियों के लिए एकीकृत गतिशीलता|journal=Physical Review D|volume=34|issue=2|pages=470–491|doi=10.1103/PhysRevD.34.470|pmid=9957165|bibcode=1986PhRvD..34..470G}}</ref> जहां उन्होंने वह प्रस्तुत किया जिसे अब लेखकों के प्रारंभिक अक्षरों के बाद जीआरडब्ल्यू मॉडल के रूप में जाना जाता है। मॉडल में वे सभी सामग्रियां शामिल हैं जो एक कोलेप्स मॉडल में होनी चाहिए: | ||
* श्रोडिंगर डायनेमिक्स को नॉनलाइनियर स्टोकेस्टिक शब्दों को जोड़कर संशोधित किया गया है, जिसका प्रभाव | * श्रोडिंगर डायनेमिक्स को नॉनलाइनियर स्टोकेस्टिक शब्दों को जोड़कर संशोधित किया गया है, जिसका प्रभाव समष्टि में तरंग फलन को यादृच्छिक रूप से स्थानीयकृत करना है। | ||
* सूक्ष्म प्रणालियों के लिए, नए शब्द अधिकतर नगण्य हैं। | * सूक्ष्म प्रणालियों के लिए, नए शब्द अधिकतर नगण्य हैं। | ||
* मैक्रोस्कोपिक ऑब्जेक्ट के लिए, नई गतिशीलता तरंग फलन को | * मैक्रोस्कोपिक ऑब्जेक्ट के लिए, नई गतिशीलता तरंग फलन को समष्टि में अच्छी तरह से स्थानीयकृत रखती है, इस प्रकार शास्त्रीयता सुनिश्चित करती है। | ||
* विशेष रूप से, माप के अंत में, हमेशा निश्चित परिणाम होते हैं, जो बोर्न नियम के अनुसार वितरित होते हैं। | * विशेष रूप से, माप के अंत में, हमेशा निश्चित परिणाम होते हैं, जो बोर्न नियम के अनुसार वितरित होते हैं। | ||
* क्वांटम भविष्यवाणियों से विचलन वर्तमान प्रयोगात्मक डेटा के साथ संगत हैं। | * क्वांटम भविष्यवाणियों से विचलन वर्तमान प्रयोगात्मक डेटा के साथ संगत हैं। | ||
1990 में एक तरफ जीआरडब्ल्यू समूह और दूसरी तरफ पी. पियरल के प्रयासों को सतत सहज स्थानीयकरण (सीएसएल) मॉडल तैयार करने में एक साथ लाया गया था।<ref>{{Cite journal|last=Pearle|first=Philip|date=1989|title=सहज स्थानीयकरण के साथ स्टोकेस्टिक गतिशील राज्य-वेक्टर कमी का संयोजन|journal=Physical Review A|volume=39|issue=5|pages=2277–2289|doi=10.1103/PhysRevA.39.2277|pmid=9901493|bibcode=1989PhRvA..39.2277P}}</ref><ref name=":1">{{Cite journal|last1=Ghirardi|first1=Gian Carlo|last2=Pearle|first2=Philip|last3=Rimini|first3=Alberto|date=1990|title=हिल्बर्ट अंतरिक्ष में मार्कोव प्रक्रियाएं और समान कणों की प्रणालियों का निरंतर सहज स्थानीयकरण|journal=Physical Review A|volume=42|issue=1|pages=78–89|doi=10.1103/PhysRevA.42.78|pmid=9903779|bibcode=1990PhRvA..42...78G}}</ref> जहां श्रोडिंगर गतिशीलता और यादृच्छिक | 1990 में एक तरफ जीआरडब्ल्यू समूह और दूसरी तरफ पी. पियरल के प्रयासों को सतत सहज स्थानीयकरण (सीएसएल) मॉडल तैयार करने में एक साथ लाया गया था।<ref>{{Cite journal|last=Pearle|first=Philip|date=1989|title=सहज स्थानीयकरण के साथ स्टोकेस्टिक गतिशील राज्य-वेक्टर कमी का संयोजन|journal=Physical Review A|volume=39|issue=5|pages=2277–2289|doi=10.1103/PhysRevA.39.2277|pmid=9901493|bibcode=1989PhRvA..39.2277P}}</ref><ref name=":1">{{Cite journal|last1=Ghirardi|first1=Gian Carlo|last2=Pearle|first2=Philip|last3=Rimini|first3=Alberto|date=1990|title=हिल्बर्ट अंतरिक्ष में मार्कोव प्रक्रियाएं और समान कणों की प्रणालियों का निरंतर सहज स्थानीयकरण|journal=Physical Review A|volume=42|issue=1|pages=78–89|doi=10.1103/PhysRevA.42.78|pmid=9903779|bibcode=1990PhRvA..42...78G}}</ref> जहां श्रोडिंगर गतिशीलता और यादृच्छिक कोलेप्स को एक स्टोकेस्टिक अंतर समीकरण के भीतर वर्णित किया गया है, जो समान कणों की प्रणालियों का भी वर्णन करने में सक्षम है, एक विशेषता जो जीआरडब्ल्यू मॉडल में गायब थी। | ||
1980 और 1990 के दशक के अंत में, डियोसी<ref>{{Cite journal|last=Diósi|first=L.|date=1987|title=क्वांटम यांत्रिकी के गुरुत्वाकर्षण उल्लंघन के लिए एक सार्वभौमिक मास्टर समीकरण|journal=Physics Letters A|language=en|volume=120|issue=8|pages=377–381|doi=10.1016/0375-9601(87)90681-5|bibcode=1987PhLA..120..377D}}</ref><ref name=":2">{{Cite journal|last=Diósi|first=L.|date=1989|title=मैक्रोस्कोपिक क्वांटम उतार-चढ़ाव की सार्वभौमिक कमी के लिए मॉडल|journal=Physical Review A|language=en|volume=40|issue=3|pages=1165–1174|doi=10.1103/PhysRevA.40.1165|pmid=9902248|bibcode=1989PhRvA..40.1165D|issn=0556-2791}}</ref> और पेनरोज़<ref name=":3">{{Cite journal|last=Penrose|first=Roger|date=1996|title=क्वांटम स्टेट रिडक्शन में गुरुत्वाकर्षण की भूमिका पर|journal=General Relativity and Gravitation|language=en|volume=28|issue=5|pages=581–600|doi=10.1007/BF02105068|bibcode=1996GReGr..28..581P|s2cid=44038399 |issn=0001-7701}}</ref><ref>{{Cite journal|last=Penrose|first=Roger|date=2014|title=On the Gravitization of Quantum Mechanics 1: Quantum State Reduction|journal=Foundations of Physics|language=en|volume=44|issue=5|pages=557–575|doi=10.1007/s10701-013-9770-0|bibcode=2014FoPh...44..557P|issn=0015-9018|doi-access=free}}</ref> स्वतंत्र रूप से यह विचार तैयार किया कि तरंग फलन का | 1980 और 1990 के दशक के अंत में, डियोसी<ref>{{Cite journal|last=Diósi|first=L.|date=1987|title=क्वांटम यांत्रिकी के गुरुत्वाकर्षण उल्लंघन के लिए एक सार्वभौमिक मास्टर समीकरण|journal=Physics Letters A|language=en|volume=120|issue=8|pages=377–381|doi=10.1016/0375-9601(87)90681-5|bibcode=1987PhLA..120..377D}}</ref><ref name=":2">{{Cite journal|last=Diósi|first=L.|date=1989|title=मैक्रोस्कोपिक क्वांटम उतार-चढ़ाव की सार्वभौमिक कमी के लिए मॉडल|journal=Physical Review A|language=en|volume=40|issue=3|pages=1165–1174|doi=10.1103/PhysRevA.40.1165|pmid=9902248|bibcode=1989PhRvA..40.1165D|issn=0556-2791}}</ref> और पेनरोज़<ref name=":3">{{Cite journal|last=Penrose|first=Roger|date=1996|title=क्वांटम स्टेट रिडक्शन में गुरुत्वाकर्षण की भूमिका पर|journal=General Relativity and Gravitation|language=en|volume=28|issue=5|pages=581–600|doi=10.1007/BF02105068|bibcode=1996GReGr..28..581P|s2cid=44038399 |issn=0001-7701}}</ref><ref>{{Cite journal|last=Penrose|first=Roger|date=2014|title=On the Gravitization of Quantum Mechanics 1: Quantum State Reduction|journal=Foundations of Physics|language=en|volume=44|issue=5|pages=557–575|doi=10.1007/s10701-013-9770-0|bibcode=2014FoPh...44..557P|issn=0015-9018|doi-access=free}}</ref> स्वतंत्र रूप से यह विचार तैयार किया कि तरंग फलन का कोलेप्स गुरुत्वाकर्षण से संबंधित है। गतिशील समीकरण संरचनात्मक रूप से सीएसएल समीकरण के समान है। | ||
कोलेप्स मॉडल के संदर्भ में, क्वांटम राज्य प्रसार के सिद्धांत का उल्लेख करना सार्थक है।<ref>{{Cite journal|last1=Gisin|first1=N|last2=Percival|first2=I C|date=1992|title=क्वांटम-स्टेट डिफ्यूजन मॉडल ओपन सिस्टम पर लागू होता है|journal=Journal of Physics A: Mathematical and General|volume=25|issue=21|pages=5677–5691|doi=10.1088/0305-4470/25/21/023|bibcode=1992JPhA...25.5677G|issn=0305-4470|url=https://archive-ouverte.unige.ch/unige:103121}}</ref> | |||
Line 39: | Line 39: | ||
साहित्य में तीन मॉडल सबसे अधिक चर्चा में हैं: | साहित्य में तीन मॉडल सबसे अधिक चर्चा में हैं: | ||
* घिरार्डी-रिमिनी-वेबर सिद्धांत | घिरार्डी-रिमिनी-वेबर (जीआरडब्ल्यू) मॉडल:<ref name=":0" />यह माना जाता है कि भौतिक प्रणाली का प्रत्येक घटक स्वतंत्र रूप से स्वतःस्फूर्त | * घिरार्डी-रिमिनी-वेबर सिद्धांत | घिरार्डी-रिमिनी-वेबर (जीआरडब्ल्यू) मॉडल:<ref name=":0" />यह माना जाता है कि भौतिक प्रणाली का प्रत्येक घटक स्वतंत्र रूप से स्वतःस्फूर्त कोलेप्स से गुजरता है। कोलेप्स समय में यादृच्छिक होते हैं, पॉइसन वितरण के अनुसार वितरित होते हैं; वे समष्टि में यादृच्छिक होते हैं और जहां तरंग फलन बड़ा होता है वहां उनके घटित होने की अधिक संभावना होती है। कोलेप्स के बीच, तरंग फलन श्रोडिंगर समीकरण के अनुसार विकसित होता है। मिश्रित प्रणालियों के लिए, प्रत्येक घटक पर कोलेप्स द्रव्यमान तरंग कार्यों के केंद्र के कोलेप्स का कारण बनता है। | ||
* सतत स्वतःस्फूर्त स्थानीयकरण मॉडल|निरंतर स्वतःस्फूर्त स्थानीयकरण (सीएसएल) मॉडल:<ref name=":1" />श्रोडिंगर समीकरण को सिस्टम के द्रव्यमान-घनत्व से जुड़े उपयुक्त रूप से चुने गए सार्वभौमिक शोर द्वारा संचालित एक | * सतत स्वतःस्फूर्त स्थानीयकरण मॉडल|निरंतर स्वतःस्फूर्त स्थानीयकरण (सीएसएल) मॉडल:<ref name=":1" />श्रोडिंगर समीकरण को सिस्टम के द्रव्यमान-घनत्व से जुड़े उपयुक्त रूप से चुने गए सार्वभौमिक शोर द्वारा संचालित एक नॉन लीनियर और स्टोकेस्टिक प्रसार प्रक्रिया के साथ पूरक किया जाता है, जो तरंग फलन के क्वांटम प्रसार का प्रतिकार करता है। जहां तक जीआरडब्ल्यू मॉडल का सवाल है, सिस्टम जितना बड़ा होगा, कोलेप्स उतना ही मजबूत होगा, इस प्रकार क्वांटम-से-शास्त्रीय संक्रमण को क्वांटम रैखिकता के प्रगतिशील टूटने के रूप में समझाया जाता है, जब सिस्टम का द्रव्यमान बढ़ता है। सीएसएल मॉडल समान कणों के संदर्भ में तैयार किया गया है। | ||
* डायोसी-पेनरोज़ मॉडल|डिओसी-पेनरोज़ (डीपी) मॉडल:<ref name=":2" /><ref name=":3" />डिओसी और पेनरोज़ ने यह विचार तैयार किया कि गुरुत्वाकर्षण तरंग फलन के | * डायोसी-पेनरोज़ मॉडल|डिओसी-पेनरोज़ (डीपी) मॉडल:<ref name=":2" /><ref name=":3" />डिओसी और पेनरोज़ ने यह विचार तैयार किया कि गुरुत्वाकर्षण तरंग फलन के कोलेप्स के लिए जिम्मेदार है। पेनरोज़ ने तर्क दिया कि, क्वांटम गुरुत्व परिदृश्य में जहां एक स्थानिक सुपरपोजिशन दो अलग-अलग स्पेसटाइम वक्रता का सुपरपोजिशन बनाता है, गुरुत्वाकर्षण ऐसे सुपरपोजिशन को बर्दाश्त नहीं करता है और स्वचालित रूप से उन्हें ढहा देता है। उन्होंने कोलेप्स के समय के लिए एक घटनात्मक सूत्र भी प्रदान किया। स्वतंत्र रूप से और पेनरोज़ से पहले, डिओसी ने एक गतिशील मॉडल प्रस्तुत किया जो पेनरोज़ द्वारा सुझाए गए समान समय पैमाने के साथ तरंग फलन को ध्वस्त कर देता है। | ||
यूनिवर्सल पोजिशन लोकलाइजेशन (क्यूएमयूपीएल) मॉडल के साथ क्वांटम मैकेनिक्स<ref name=":2"/>का भी उल्लेख किया जाना चाहिए; तुमुल्का द्वारा तैयार समान कणों के लिए जीआरडब्ल्यू मॉडल का विस्तार,<ref>{{Cite journal|last=Tumulka|first=Roderich|date=2006|title=सहज तरंग फ़ंक्शन पतन और क्वांटम क्षेत्र सिद्धांत पर|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|language=en|volume=462|issue=2070|pages=1897–1908|doi=10.1098/rspa.2005.1636|arxiv=quant-ph/0508230|bibcode=2006RSPSA.462.1897T|s2cid=16123332 |issn=1364-5021}}</ref> जो | यूनिवर्सल पोजिशन लोकलाइजेशन (क्यूएमयूपीएल) मॉडल के साथ क्वांटम मैकेनिक्स<ref name=":2"/>का भी उल्लेख किया जाना चाहिए; तुमुल्का द्वारा तैयार समान कणों के लिए जीआरडब्ल्यू मॉडल का विस्तार,<ref>{{Cite journal|last=Tumulka|first=Roderich|date=2006|title=सहज तरंग फ़ंक्शन पतन और क्वांटम क्षेत्र सिद्धांत पर|journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|language=en|volume=462|issue=2070|pages=1897–1908|doi=10.1098/rspa.2005.1636|arxiv=quant-ph/0508230|bibcode=2006RSPSA.462.1897T|s2cid=16123332 |issn=1364-5021}}</ref> जो कोलेप्स समीकरणों के संबंध में कई महत्वपूर्ण गणितीय परिणाम सिद्ध करता है।<ref name=":4">{{Cite journal|last=Bassi|first=Angelo|date=2005|title=Collapse models: analysis of the free particle dynamics|journal=Journal of Physics A: Mathematical and General|volume=38|issue=14|pages=3173–3192|doi=10.1088/0305-4470/38/14/008|issn=0305-4470|arxiv=quant-ph/0410222|s2cid=37142667 }}</ref> | ||
अब तक सूचीबद्ध सभी मॉडलों में, | अब तक सूचीबद्ध सभी मॉडलों में, कोलेप्स के लिए जिम्मेदार शोर मार्कोवियन (स्मृतिहीन) है: या तो असतत जीआरडब्ल्यू मॉडल में एक [[पॉइसन बिंदु प्रक्रिया]], या निरंतर मॉडल में एक सफेद शोर। मॉडलों को मनमाने ढंग से (रंगीन) शोर को शामिल करने के लिए सामान्यीकृत किया जा सकता है, संभवतः आवृत्ति कटऑफ के साथ: सीएसएल मॉडल को इसके रंगीन संस्करण तक बढ़ाया गया है<ref>{{Cite journal|last1=Adler|first1=Stephen L|last2=Bassi|first2=Angelo|date=2007|title=गैर-सफ़ेद शोर वाले मॉडलों को संक्षिप्त करें|journal=Journal of Physics A: Mathematical and Theoretical|volume=40|issue=50|pages=15083–15098|doi=10.1088/1751-8113/40/50/012|arxiv=0708.3624|bibcode=2007JPhA...4015083A|s2cid=118366772 |issn=1751-8113}}</ref><ref>{{Cite journal|last1=Adler|first1=Stephen L|last2=Bassi|first2=Angelo|date=2008|title=Collapse models with non-white noises: II. Particle-density coupled noises|journal=Journal of Physics A: Mathematical and Theoretical|volume=41|issue=39|pages=395308|doi=10.1088/1751-8113/41/39/395308|arxiv=0807.2846|bibcode=2008JPhA...41M5308A|s2cid=118551622 |issn=1751-8113}}</ref> (cCSL), साथ ही QMUPL मॉडल<ref>{{Cite journal|last1=Bassi|first1=Angelo|last2=Ferialdi|first2=Luca|date=2009|title=Non-Markovian dynamics for a free quantum particle subject to spontaneous collapse in space: General solution and main properties|journal=Physical Review A|language=en|volume=80|issue=1|pages=012116|doi=10.1103/PhysRevA.80.012116|arxiv=0901.1254|bibcode=2009PhRvA..80a2116B|s2cid=119297164 |issn=1050-2947}}</ref><ref>{{Cite journal|last1=Bassi|first1=Angelo|last2=Ferialdi|first2=Luca|date=2009|title=Non-Markovian Quantum Trajectories: An Exact Result|journal=Physical Review Letters|language=en|volume=103|issue=5|pages=050403|doi=10.1103/PhysRevLett.103.050403|pmid=19792469|arxiv=0907.1615|bibcode=2009PhRvL.103e0403B|s2cid=25021141 |issn=0031-9007}}</ref> (सीक्यूएमयूपीएल)। इन नए मॉडलों में कोलेप्स गुण मूल रूप से अपरिवर्तित रहते हैं, लेकिन विशिष्ट भौतिक भविष्यवाणियां महत्वपूर्ण रूप से बदल सकती हैं। | ||
कोलेप्स मॉडल में ऊर्जा संरक्षित नहीं होती है, क्योंकि कोलेप्स के लिए जिम्मेदार शोर भौतिक प्रणाली के प्रत्येक घटक पर [[एक प्रकार कि गति]] को प्रेरित करता है। तदनुसार, गतिज ऊर्जा धीमी लेकिन स्थिर दर से बढ़ती है। इस तरह की सुविधा को गतिशीलता में उचित विघटनकारी प्रभावों को शामिल करके, कोलेप्स गुणों को बदले बिना संशोधित किया जा सकता है। यह GRW, CSL और QMUPL मॉडल के लिए, उनके विघटनकारी समकक्षों (dGRW) को प्राप्त करके प्राप्त किया जाता है।<ref name=":5">{{Cite journal|last1=Smirne|first1=Andrea|last2=Vacchini|first2=Bassano|last3=Bassi|first3=Angelo|date=2014|title=घिरार्डी-रिमिनी-वेबर मॉडल का विघटनकारी विस्तार|journal=Physical Review A|language=en|volume=90|issue=6|pages=062135|doi=10.1103/PhysRevA.90.062135|arxiv=1408.6115|bibcode=2014PhRvA..90f2135S|s2cid=52232273 |issn=1050-2947}}</ref> डीसीएसएल,<ref name=":6">{{Cite journal|last1=Smirne|first1=Andrea|last2=Bassi|first2=Angelo|date=2015|title=विघटनकारी सतत सहज स्थानीयकरण (सीएसएल) मॉडल|journal=Scientific Reports|language=en|volume=5|issue=1|page=12518|doi=10.1038/srep12518|pmid=26243034|pmc=4525142|arxiv=1408.6446|bibcode=2015NatSR...512518S|issn=2045-2322}}</ref> dQMUPL<ref name=":7">{{Cite journal|last1=Bassi|first1=Angelo|last2=Ippoliti|first2=Emiliano|last3=Vacchini|first3=Bassano|date=2005|title=अंतरिक्ष-पतन मॉडल में ऊर्जा वृद्धि पर|journal=Journal of Physics A: Mathematical and General|volume=38|issue=37|pages=8017–8038|doi=10.1088/0305-4470/38/37/007|arxiv=quant-ph/0506083|bibcode=2005JPhA...38.8017B|s2cid=43241594 |issn=0305-4470}}</ref>). इन नए मॉडलों में, ऊर्जा एक सीमित मूल्य तक तापित होती है। | |||
अंत में, QMUPL मॉडल को रंगीन शोर के साथ-साथ विघटनकारी प्रभावों को शामिल करने के लिए और अधिक सामान्यीकृत किया गया<ref>{{Cite journal|last1=Ferialdi|first1=Luca|last2=Bassi|first2=Angelo|date=2012|title=गैर-श्वेत शोर के साथ विघटनकारी पतन मॉडल|journal=Physical Review A|language=en|volume=86|issue=2|pages=022108|doi=10.1103/PhysRevA.86.022108|arxiv=1112.5065|bibcode=2012PhRvA..86b2108F|s2cid=119216571 |issn=1050-2947}}</ref><ref>{{Cite journal|last1=Ferialdi|first1=Luca|last2=Bassi|first2=Angelo|date=2012|title=नॉन-मार्कोवियन डिसिपेटिव क्वांटम डायनेमिक्स के लिए सटीक समाधान|journal=Physical Review Letters|language=en|volume=108|issue=17|pages=170404|doi=10.1103/PhysRevLett.108.170404|pmid=22680843|arxiv=1204.4348|bibcode=2012PhRvL.108q0404F|s2cid=16746767 |issn=0031-9007}}</ref> (dcQMUPL मॉडल)। | अंत में, QMUPL मॉडल को रंगीन शोर के साथ-साथ विघटनकारी प्रभावों को शामिल करने के लिए और अधिक सामान्यीकृत किया गया<ref>{{Cite journal|last1=Ferialdi|first1=Luca|last2=Bassi|first2=Angelo|date=2012|title=गैर-श्वेत शोर के साथ विघटनकारी पतन मॉडल|journal=Physical Review A|language=en|volume=86|issue=2|pages=022108|doi=10.1103/PhysRevA.86.022108|arxiv=1112.5065|bibcode=2012PhRvA..86b2108F|s2cid=119216571 |issn=1050-2947}}</ref><ref>{{Cite journal|last1=Ferialdi|first1=Luca|last2=Bassi|first2=Angelo|date=2012|title=नॉन-मार्कोवियन डिसिपेटिव क्वांटम डायनेमिक्स के लिए सटीक समाधान|journal=Physical Review Letters|language=en|volume=108|issue=17|pages=170404|doi=10.1103/PhysRevLett.108.170404|pmid=22680843|arxiv=1204.4348|bibcode=2012PhRvL.108q0404F|s2cid=16746767 |issn=0031-9007}}</ref> (dcQMUPL मॉडल)। | ||
== | == कोलेप्स मॉडल के परीक्षण == | ||
संक्षिप्त मॉडल श्रोडिंगर समीकरण को संशोधित करते हैं; इसलिए, वे ऐसी भविष्यवाणियाँ करते हैं जो मानक क्वांटम यांत्रिक भविष्यवाणियों से भिन्न होती हैं। यद्यपि विचलनों का पता लगाना कठिन है, सहज | संक्षिप्त मॉडल श्रोडिंगर समीकरण को संशोधित करते हैं; इसलिए, वे ऐसी भविष्यवाणियाँ करते हैं जो मानक क्वांटम यांत्रिक भविष्यवाणियों से भिन्न होती हैं। यद्यपि विचलनों का पता लगाना कठिन है, सहज कोलेप्स प्रभावों की खोज करने वाले प्रयोगों की संख्या बढ़ रही है। इन्हें दो समूहों में वर्गीकृत किया जा सकता है: | ||
* इंटरफेरोमेट्रिक प्रयोग। वे डबल-स्लिट प्रयोग के परिष्कृत संस्करण हैं, जो पदार्थ (और प्रकाश) की तरंग प्रकृति को दर्शाते हैं। आधुनिक संस्करणों का उद्देश्य सिस्टम के द्रव्यमान, उड़ान के समय और/या डेलोकलाइज़ेशन दूरी को बढ़ाना है ताकि बड़े सुपरपोज़िशन बनाए जा सकें। इस प्रकार के सबसे प्रमुख प्रयोग परमाणुओं, अणुओं और [[फोनन]] के साथ हैं। | * इंटरफेरोमेट्रिक प्रयोग। वे डबल-स्लिट प्रयोग के परिष्कृत संस्करण हैं, जो पदार्थ (और प्रकाश) की तरंग प्रकृति को दर्शाते हैं। आधुनिक संस्करणों का उद्देश्य सिस्टम के द्रव्यमान, उड़ान के समय और/या डेलोकलाइज़ेशन दूरी को बढ़ाना है ताकि बड़े सुपरपोज़िशन बनाए जा सकें। इस प्रकार के सबसे प्रमुख प्रयोग परमाणुओं, अणुओं और [[फोनन]] के साथ हैं। | ||
* गैर-इंटरफेरोमेट्रिक प्रयोग। वे इस तथ्य पर आधारित हैं कि | * गैर-इंटरफेरोमेट्रिक प्रयोग। वे इस तथ्य पर आधारित हैं कि कोलेप्स शोर, तरंग फलन को ध्वस्त करने के अतिरिक्त , कणों की गति के शीर्ष पर एक प्रसार को भी प्रेरित करता है, जो हमेशा कार्य करता है, तब भी जब तरंग फलन पहले से ही स्थानीयकृत होता है। इस प्रकार के प्रयोगों में ठंडे परमाणु, ऑप्टो-मैकेनिकल सिस्टम, गुरुत्वाकर्षण तरंग डिटेक्टर, भूमिगत प्रयोग शामिल हैं।<ref>{{Cite journal |last1=Carlesso |first1=Matteo |last2=Donadi |first2=Sandro |last3=Ferialdi |first3=Luca |last4=Paternostro |first4=Mauro |last5=Ulbricht |first5=Hendrik |last6=Bassi |first6=Angelo |date=February 2022 |title=पतन मॉडल के गैर-इंटरफेरोमेट्रिक परीक्षणों की वर्तमान स्थिति और भविष्य की चुनौतियाँ|url=https://www.nature.com/articles/s41567-021-01489-5 |journal=Nature Physics |language=en |volume=18 |issue=3 |pages=243–250 |doi=10.1038/s41567-021-01489-5 |bibcode=2022NatPh..18..243C |s2cid=246949254 |issn=1745-2481}}</ref> | ||
Line 60: | Line 60: | ||
=== [[ऊर्जा संरक्षण]] के सिद्धांत का उल्लंघन === | === [[ऊर्जा संरक्षण]] के सिद्धांत का उल्लंघन === | ||
कोलेप्स सिद्धांतों के अनुसार, ऊर्जा संरक्षित नहीं होती है, पृथक कणों के लिए भी। अधिक सटीक रूप से, जीआरडब्ल्यू, सीएसएल और डीपी मॉडल में गतिज ऊर्जा एक स्थिर दर से बढ़ती है, जो छोटी लेकिन गैर-शून्य होती है। इसे अक्सर हाइजेनबर्ग के अनिश्चितता सिद्धांत के अपरिहार्य परिणाम के रूप में प्रस्तुत किया जाता है: स्थिति में गिरावट गति में बड़ी अनिश्चितता का कारण बनती है। यह व्याख्या बुनियादी तौर पर ग़लत है. दरअसल, कोलेप्स सिद्धांतों में स्थिति में कोलेप्स गति में एक स्थानीयकरण भी निर्धारित करता है: तरंग फलन स्थिति के साथ-साथ गति दोनों में लगभग न्यूनतम अनिश्चितता की स्थिति में संचालित होता है,<ref name=":4" />हाइजेनबर्ग के सिद्धांत के अनुकूल। | |||
कोलेप्स सिद्धांतों के अनुसार ऊर्जा बढ़ने का कारण यह है कि कोलेप्स का शोर कण को फैला देता है, जिससे इसकी गति बढ़ जाती है। यह शास्त्रीय ब्राउनियन गति जैसी ही स्थिति है। और जहां तक शास्त्रीय ब्राउनियन गति का सवाल है, इस वृद्धि को विघटनकारी प्रभाव जोड़कर रोका जा सकता है। QMUPL, GRW और CSL मॉडल के विघटनकारी संस्करण मौजूद हैं,<ref name=":5" /><ref name=":6" /><ref name=":7" />जहां मूल मॉडल के संबंध में कोलेप्स गुणों को अपरिवर्तित छोड़ दिया जाता है, जबकि ऊर्जा एक सीमित मूल्य तक थर्मल हो जाती है (इसलिए यह अपने प्रारंभिक मूल्य के आधार पर घट भी सकती है)। | |||
फिर भी, विघटनकारी मॉडल में भी ऊर्जा का कड़ाई से संरक्षण नहीं किया जाता है। इस स्थिति का समाधान शोर को अपनी ऊर्जा के साथ एक गतिशील चर मानने से भी आ सकता है, जिसे क्वांटम सिस्टम के साथ इस तरह से आदान-प्रदान किया जाता है कि कुल सिस्टम + शोर ऊर्जा संरक्षित रहती है। | फिर भी, विघटनकारी मॉडल में भी ऊर्जा का कड़ाई से संरक्षण नहीं किया जाता है। इस स्थिति का समाधान शोर को अपनी ऊर्जा के साथ एक गतिशील चर मानने से भी आ सकता है, जिसे क्वांटम सिस्टम के साथ इस तरह से आदान-प्रदान किया जाता है कि कुल सिस्टम + शोर ऊर्जा संरक्षित रहती है। | ||
=== सापेक्षतावादी | === सापेक्षतावादी कोलेप्स मॉडल === | ||
कोलेप्स सिद्धांतों में सबसे बड़ी चुनौतियों में से एक उन्हें सापेक्षतावादी आवश्यकताओं के अनुकूल बनाना है। जीआरडब्ल्यू, सीएसएल और डीपी मॉडल नहीं हैं। सबसे बड़ी कठिनाई यह है कि कोलेप्स के गैर-स्थानीय चरित्र को कैसे संयोजित किया जाए, जो स्थानीयता के सापेक्ष सिद्धांत के साथ बेल असमानताओं के प्रयोगात्मक रूप से सत्यापित उल्लंघन के साथ संगत बनाने के लिए आवश्यक है। मॉडल मौजूद हैं<ref>{{Cite journal|last1=Ghirardi|first1=G. C.|last2=Grassi|first2=R.|last3=Pearle|first3=P.|date=1990|title=Relativistic dynamical reduction models: General framework and examples|journal=Foundations of Physics|language=en|volume=20|issue=11|pages=1271–1316|doi=10.1007/BF01883487|bibcode=1990FoPh...20.1271G|s2cid=123661865 |issn=0015-9018}}</ref><ref>{{Cite journal|last=Tumulka|first=Roderich|date=2006|title=A Relativistic Version of the Ghirardi–Rimini–Weber Model|journal=Journal of Statistical Physics|language=en|volume=125|issue=4|pages=821–840|doi=10.1007/s10955-006-9227-3|arxiv=quant-ph/0406094|bibcode=2006JSP...125..821T|s2cid=13923422 |issn=0022-4715}}</ref> यह जीआरडब्ल्यू और सीएसएल मॉडल को सापेक्षतावादी अर्थ में सामान्यीकृत करने का प्रयास है, लेकिन सापेक्षतावादी सिद्धांतों के रूप में उनकी स्थिति अभी भी स्पष्ट नहीं है। एक उचित [[लोरेंत्ज़ सहप्रसरण]] का सूत्रीकरण|निरंतर वस्तुनिष्ठ कोलेप्स का लोरेंत्ज़-सहसंयोजक सिद्धांत अभी भी शोध का विषय है। | |||
=== पूँछ समस्या === | === पूँछ समस्या === | ||
सभी | सभी कोलेप्स सिद्धांतों में, तरंग फलन कभी भी समष्टि के एक (छोटे) क्षेत्र में पूरी तरह से समाहित नहीं होता है, क्योंकि गतिशीलता का श्रोडिंगर शब्द इसे हमेशा बाहर फैलाएगा। इसलिए, तरंग कार्यों में हमेशा अनंत तक फैली हुई पूंछ होती हैं, हालांकि बड़े सिस्टम में उनका "वजन" छोटा होता है। कोलेप्स सिद्धांतों के आलोचकों का तर्क है कि यह स्पष्ट नहीं है कि इन पूंछों की व्याख्या कैसे की जाए। साहित्य में दो विशिष्ट समस्याओं पर चर्चा की गई है। पहली "नंगी" पूँछ की समस्या है: यह स्पष्ट नहीं है कि इन पूँछों की व्याख्या कैसे की जाए क्योंकि वे सिस्टम को कभी भी समष्टि में पूरी तरह से स्थानीयकृत नहीं करते हैं। इस समस्या के एक विशेष मामले को "गिनती विसंगति" के रूप में जाना जाता है।<ref>{{Cite journal|last=Lewis|first=Peter J.|date=1997|title=क्वांटम यांत्रिकी, ऑर्थोगोनैलिटी, और गिनती|url=https://academic.oup.com/bjps/article/48/3/313/1404549|journal=The British Journal for the Philosophy of Science|language=en|volume=48|issue=3|pages=313–328|doi=10.1093/bjps/48.3.313|issn=0007-0882}}</ref><ref>{{Cite journal|last1=Clifton|first1=R.|last2=Monton|first2=B.|date=1999|title=बहस। वेवफंक्शन पतन सिद्धांतों में अपने पत्थर खोना|url=https://academic.oup.com/bjps/article/50/4/697/1532689|journal=The British Journal for the Philosophy of Science|language=en|volume=50|issue=4|pages=697–717|doi=10.1093/bjps/50.4.697|issn=0007-0882}}</ref> कोलेप्स सिद्धांतों के समर्थक अधिकतर इस आलोचना को सिद्धांत की ग़लतफ़हमी कहकर ख़ारिज कर देते हैं, <ref>{{Cite journal|last1=Ghirardi|first1=G. C.|last2=Bassi|first2=A.|date=1999|title=Do dynamical reduction models imply that arithmetic does not apply to ordinary macroscopic objects?|url=https://academic.oup.com/bjps/article/50/1/49/1529006|journal=The British Journal for the Philosophy of Science|language=en|volume=50|issue=1|pages=49–64|doi=10.1093/bjps/50.1.49|arxiv=quant-ph/9810041|issn=0007-0882}}</ref><ref>{{Cite journal|last1=Bassi|first1=A.|last2=Ghirardi|first2=G.-C.|date=1999|title=बहस। गतिशील कमी और गणना सिद्धांत के बारे में अधिक जानकारी|url=https://academic.oup.com/bjps/article/50/4/719/1532693|journal=The British Journal for the Philosophy of Science|language=en|volume=50|issue=4|pages=719–734|doi=10.1093/bjps/50.4.719|issn=0007-0882}}</ref> जैसा कि गतिशील कोलेप्स सिद्धांतों के संदर्भ में, तरंग फलन के पूर्ण वर्ग की व्याख्या वास्तविक पदार्थ घनत्व के रूप में की जाती है। इस मामले में, पूँछें केवल घिसे हुए पदार्थ की एक अथाह छोटी मात्रा का प्रतिनिधित्व करती हैं। यह दूसरी समस्या की ओर ले जाता है, हालाँकि, तथाकथित "संरचित पूंछ समस्या": यह स्पष्ट नहीं है कि इन पूंछों की व्याख्या कैसे की जाए क्योंकि भले ही उनकी "पदार्थ की मात्रा" छोटी है, वह पदार्थ पूरी तरह से वैध दुनिया की तरह संरचित है। इस प्रकार, बॉक्स खुलने के बाद और श्रोएडिंगर की बिल्ली "जीवित" अवस्था में ढह गई है, वहाँ अभी भी मृत बिल्ली की तरह संरचित "कम पदार्थ" इकाई वाली तरंग फलन की एक पूंछ मौजूद है। कोलेप्स सिद्धांतकारों ने संरचित पूंछ समस्या के संभावित समाधानों की एक श्रृंखला की पेशकश की है, लेकिन यह एक खुली समस्या बनी हुई है।<ref>{{Cite journal|last=McQueen|first=Kelvin J.|date=2015|title=गतिशील पतन सिद्धांतों के लिए चार पूंछ समस्याएं|url=https://doi.org/10.1016/j.shpsb.2014.12.001|journal=Studies in the History & Philosophy of Modern Physics|language=en|volume=49|pages=10–18|doi=10.1016/j.shpsb.2014.12.001|issn=1355-2198|arxiv=1501.05778|bibcode=2015SHPMP..49...10M |s2cid=55718585 }}</ref> | ||
Revision as of 23:35, 30 November 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
क्वांटम यांत्रिकी |
---|
ऑब्जेक्टिव कोलेप्स सिद्धांत, जिसे स्वतः तरंगों के फलन के माडल के रूप में भी जाना जाता है,[1][2] इस प्रकार गतिशील रिडक्शन मॉडल्स क्वांटम यांत्रिकी में माप की समस्या के समाधान प्रस्तुत करते हैं।[3] और अन्य सिद्धांतों के साथ वे क्वांटम यांत्रिकी की व्याख्या करते हैं इस प्रकार वे इसकी व्याख्या कर सकते हैं कि क्वांटम मापों से सदैव निश्चित परिणाम क्यों प्राप्त होते हैं, न कि उनमें से एक सुपरपोजिशन जैसा कि श्रोडिंगर समीकरण द्वारा इनकी श्रेष्ठता प्राप्त होती है और सामान्यतः क्वांटम सिद्धांत से क्लासिकल वर्ल्ड किस प्रकार उत्पन्न होती है। इसका मूल विचार यह है कि क्वांटम प्रणाली की स्थिति का वर्णन करने वाले तरंग फलन का एकात्मक विकास अनुमानित होता है। यह माइक्रोस्कोपिक प्रणालियों के लिए अच्छी तरह से काम करता है, लेकिन प्रणाली का द्रव्यमान/कम्प्लेक्सिटी बढ़ने पर धीरे-धीरे इसकी वैधता खो देती है।
कोलेप्स सिद्धांतों में, श्रोडिंगर समीकरण को अतिरिक्त नॉन लीनियर और स्टोकेस्टिक शर्तों (स्पोंटेनियस कोलेप्स) के साथ पूरक किया जाता है जो समष्टि में तरंग फलन को स्थानीयकृत करता है। इस प्रकार परिणामी गतिशीलता ऐसी है कि सूक्ष्म पृथक प्रणालियों के लिए, नए शब्दों का प्रभाव नगण्य होता है; इसलिए, बहुत छोटे विचलनों के अतिरिक्त सामान्य क्वांटम गुण पुनः प्राप्त हो जाते हैं। समर्पित प्रयोगों में ऐसे विचलनों का संभावित रूप से पता लगाया जा सकता है और इनका परीक्षण करने के लिए विश्वभर में प्रयास बढ़ रहे हैं।
एक अंतर्निर्मित प्रवर्धन तंत्र यह सुनिश्चित करता है कि कई कणों से युक्त मैक्रोस्कोपिक प्रणालियों के लिए, कोलेप्स क्वांटम गतिशीलता से अधिक मजबूत हो जाता है। फिर उनका तरंग कार्य हमेशा समष्टि में अच्छी तरह से स्थानीयकृत होता है, इतना अच्छी तरह से स्थानीयकृत होता है कि यह सभी व्यावहारिक उद्देश्यों के लिए, न्यूटन के नियमों के अनुसार समष्टि में घूम रहे एक बिंदु की तरह व्यवहार करता है।
इस अर्थ में, कोलेप्स मॉडल क्वांटम सिद्धांत में माप से जुड़ी वैचारिक समस्याओं से बचते हुए, सूक्ष्म और स्थूल प्रणालियों का एकीकृत विवरण प्रदान करते हैं।
ऐसे सिद्धांतों के सबसे प्रसिद्ध उदाहरण हैं:
- घिरार्डी-रिमिनी-वेबर सिद्धांत | घिरार्डी-रिमिनी-वेबर (जीआरडब्ल्यू) मॉडल
- सतत स्वतःस्फूर्त स्थानीयकरण मॉडल|निरंतर स्वतःस्फूर्त स्थानीयकरण (सीएसएल) मॉडल
- डिओसी-पेनरोज़ मॉडल|डिओसी-पेनरोज़ (डीपी) मॉडल
कोलेप्स सिद्धांत कई-दुनिया की व्याख्या के विरोध में खड़े हैं|कई-दुनिया की व्याख्या सिद्धांत, जिसमें वे मानते हैं तरंग क्रिया कोलेप्स की एक प्रक्रिया तरंग फलन की शाखा को कम कर देती है और अप्राप्य व्यवहार को हटा देती है।
कोलेप्स सिद्धांतों का इतिहास
कोलेप्स मॉडल की उत्पत्ति 1970 के दशक में हुई। इटली में, लुसियानो फोंडा|एल का समूह। फोंडा, जियानकार्लो घिरार्डी|जी.सी. घिरार्डी और ए. रिमिनी अध्ययन कर रहे थे कि घातांकीय क्षय नियम कैसे प्राप्त किया जाए[4] क्षय प्रक्रियाओं में, क्वांटम सिद्धांत के भीतर। उनके मॉडल में, एक आवश्यक विशेषता यह थी कि, क्षय के दौरान, कण समष्टि में सहज कोलेप्स से गुजरते हैं, एक विचार जिसे बाद में जीआरडब्ल्यू मॉडल की विशेषता के लिए अपनाया गया था। इस बीच, संयुक्त राज्य अमेरिका में पी. पियरल तरंग फलन के कोलेप्स को गतिशील तरीके से मॉडल करने के लिए, नॉन लीनियर और स्टोकेस्टिक समीकरण विकसित कर रहे थे;[5][6][7] इस औपचारिकता का उपयोग बाद में सीएसएल मॉडल के लिए किया गया। हालाँकि, इन मॉडलों में गतिशीलता की "सार्वभौमिकता" के चरित्र का अभाव था, यानी एक मनमानी भौतिक प्रणाली (कम से कम गैर-सापेक्षतावादी स्तर पर) के लिए इसकी प्रयोज्यता, किसी भी मॉडल के लिए एक व्यवहार्य विकल्प बनने के लिए एक आवश्यक शर्त।
सफलता 1986 में मिली, जब घिरार्डी, रिमिनी और वेबर ने सार्थक शीर्षक "सूक्ष्म और स्थूल प्रणालियों के लिए एकीकृत गतिशीलता" के साथ पेपर प्रकाशित किया।[8] जहां उन्होंने वह प्रस्तुत किया जिसे अब लेखकों के प्रारंभिक अक्षरों के बाद जीआरडब्ल्यू मॉडल के रूप में जाना जाता है। मॉडल में वे सभी सामग्रियां शामिल हैं जो एक कोलेप्स मॉडल में होनी चाहिए:
- श्रोडिंगर डायनेमिक्स को नॉनलाइनियर स्टोकेस्टिक शब्दों को जोड़कर संशोधित किया गया है, जिसका प्रभाव समष्टि में तरंग फलन को यादृच्छिक रूप से स्थानीयकृत करना है।
- सूक्ष्म प्रणालियों के लिए, नए शब्द अधिकतर नगण्य हैं।
- मैक्रोस्कोपिक ऑब्जेक्ट के लिए, नई गतिशीलता तरंग फलन को समष्टि में अच्छी तरह से स्थानीयकृत रखती है, इस प्रकार शास्त्रीयता सुनिश्चित करती है।
- विशेष रूप से, माप के अंत में, हमेशा निश्चित परिणाम होते हैं, जो बोर्न नियम के अनुसार वितरित होते हैं।
- क्वांटम भविष्यवाणियों से विचलन वर्तमान प्रयोगात्मक डेटा के साथ संगत हैं।
1990 में एक तरफ जीआरडब्ल्यू समूह और दूसरी तरफ पी. पियरल के प्रयासों को सतत सहज स्थानीयकरण (सीएसएल) मॉडल तैयार करने में एक साथ लाया गया था।[9][10] जहां श्रोडिंगर गतिशीलता और यादृच्छिक कोलेप्स को एक स्टोकेस्टिक अंतर समीकरण के भीतर वर्णित किया गया है, जो समान कणों की प्रणालियों का भी वर्णन करने में सक्षम है, एक विशेषता जो जीआरडब्ल्यू मॉडल में गायब थी।
1980 और 1990 के दशक के अंत में, डियोसी[11][12] और पेनरोज़[13][14] स्वतंत्र रूप से यह विचार तैयार किया कि तरंग फलन का कोलेप्स गुरुत्वाकर्षण से संबंधित है। गतिशील समीकरण संरचनात्मक रूप से सीएसएल समीकरण के समान है।
कोलेप्स मॉडल के संदर्भ में, क्वांटम राज्य प्रसार के सिद्धांत का उल्लेख करना सार्थक है।[15]
सबसे लोकप्रिय मॉडल
साहित्य में तीन मॉडल सबसे अधिक चर्चा में हैं:
- घिरार्डी-रिमिनी-वेबर सिद्धांत | घिरार्डी-रिमिनी-वेबर (जीआरडब्ल्यू) मॉडल:[8]यह माना जाता है कि भौतिक प्रणाली का प्रत्येक घटक स्वतंत्र रूप से स्वतःस्फूर्त कोलेप्स से गुजरता है। कोलेप्स समय में यादृच्छिक होते हैं, पॉइसन वितरण के अनुसार वितरित होते हैं; वे समष्टि में यादृच्छिक होते हैं और जहां तरंग फलन बड़ा होता है वहां उनके घटित होने की अधिक संभावना होती है। कोलेप्स के बीच, तरंग फलन श्रोडिंगर समीकरण के अनुसार विकसित होता है। मिश्रित प्रणालियों के लिए, प्रत्येक घटक पर कोलेप्स द्रव्यमान तरंग कार्यों के केंद्र के कोलेप्स का कारण बनता है।
- सतत स्वतःस्फूर्त स्थानीयकरण मॉडल|निरंतर स्वतःस्फूर्त स्थानीयकरण (सीएसएल) मॉडल:[10]श्रोडिंगर समीकरण को सिस्टम के द्रव्यमान-घनत्व से जुड़े उपयुक्त रूप से चुने गए सार्वभौमिक शोर द्वारा संचालित एक नॉन लीनियर और स्टोकेस्टिक प्रसार प्रक्रिया के साथ पूरक किया जाता है, जो तरंग फलन के क्वांटम प्रसार का प्रतिकार करता है। जहां तक जीआरडब्ल्यू मॉडल का सवाल है, सिस्टम जितना बड़ा होगा, कोलेप्स उतना ही मजबूत होगा, इस प्रकार क्वांटम-से-शास्त्रीय संक्रमण को क्वांटम रैखिकता के प्रगतिशील टूटने के रूप में समझाया जाता है, जब सिस्टम का द्रव्यमान बढ़ता है। सीएसएल मॉडल समान कणों के संदर्भ में तैयार किया गया है।
- डायोसी-पेनरोज़ मॉडल|डिओसी-पेनरोज़ (डीपी) मॉडल:[12][13]डिओसी और पेनरोज़ ने यह विचार तैयार किया कि गुरुत्वाकर्षण तरंग फलन के कोलेप्स के लिए जिम्मेदार है। पेनरोज़ ने तर्क दिया कि, क्वांटम गुरुत्व परिदृश्य में जहां एक स्थानिक सुपरपोजिशन दो अलग-अलग स्पेसटाइम वक्रता का सुपरपोजिशन बनाता है, गुरुत्वाकर्षण ऐसे सुपरपोजिशन को बर्दाश्त नहीं करता है और स्वचालित रूप से उन्हें ढहा देता है। उन्होंने कोलेप्स के समय के लिए एक घटनात्मक सूत्र भी प्रदान किया। स्वतंत्र रूप से और पेनरोज़ से पहले, डिओसी ने एक गतिशील मॉडल प्रस्तुत किया जो पेनरोज़ द्वारा सुझाए गए समान समय पैमाने के साथ तरंग फलन को ध्वस्त कर देता है।
यूनिवर्सल पोजिशन लोकलाइजेशन (क्यूएमयूपीएल) मॉडल के साथ क्वांटम मैकेनिक्स[12]का भी उल्लेख किया जाना चाहिए; तुमुल्का द्वारा तैयार समान कणों के लिए जीआरडब्ल्यू मॉडल का विस्तार,[16] जो कोलेप्स समीकरणों के संबंध में कई महत्वपूर्ण गणितीय परिणाम सिद्ध करता है।[17] अब तक सूचीबद्ध सभी मॉडलों में, कोलेप्स के लिए जिम्मेदार शोर मार्कोवियन (स्मृतिहीन) है: या तो असतत जीआरडब्ल्यू मॉडल में एक पॉइसन बिंदु प्रक्रिया, या निरंतर मॉडल में एक सफेद शोर। मॉडलों को मनमाने ढंग से (रंगीन) शोर को शामिल करने के लिए सामान्यीकृत किया जा सकता है, संभवतः आवृत्ति कटऑफ के साथ: सीएसएल मॉडल को इसके रंगीन संस्करण तक बढ़ाया गया है[18][19] (cCSL), साथ ही QMUPL मॉडल[20][21] (सीक्यूएमयूपीएल)। इन नए मॉडलों में कोलेप्स गुण मूल रूप से अपरिवर्तित रहते हैं, लेकिन विशिष्ट भौतिक भविष्यवाणियां महत्वपूर्ण रूप से बदल सकती हैं।
कोलेप्स मॉडल में ऊर्जा संरक्षित नहीं होती है, क्योंकि कोलेप्स के लिए जिम्मेदार शोर भौतिक प्रणाली के प्रत्येक घटक पर एक प्रकार कि गति को प्रेरित करता है। तदनुसार, गतिज ऊर्जा धीमी लेकिन स्थिर दर से बढ़ती है। इस तरह की सुविधा को गतिशीलता में उचित विघटनकारी प्रभावों को शामिल करके, कोलेप्स गुणों को बदले बिना संशोधित किया जा सकता है। यह GRW, CSL और QMUPL मॉडल के लिए, उनके विघटनकारी समकक्षों (dGRW) को प्राप्त करके प्राप्त किया जाता है।[22] डीसीएसएल,[23] dQMUPL[24]). इन नए मॉडलों में, ऊर्जा एक सीमित मूल्य तक तापित होती है।
अंत में, QMUPL मॉडल को रंगीन शोर के साथ-साथ विघटनकारी प्रभावों को शामिल करने के लिए और अधिक सामान्यीकृत किया गया[25][26] (dcQMUPL मॉडल)।
कोलेप्स मॉडल के परीक्षण
संक्षिप्त मॉडल श्रोडिंगर समीकरण को संशोधित करते हैं; इसलिए, वे ऐसी भविष्यवाणियाँ करते हैं जो मानक क्वांटम यांत्रिक भविष्यवाणियों से भिन्न होती हैं। यद्यपि विचलनों का पता लगाना कठिन है, सहज कोलेप्स प्रभावों की खोज करने वाले प्रयोगों की संख्या बढ़ रही है। इन्हें दो समूहों में वर्गीकृत किया जा सकता है:
- इंटरफेरोमेट्रिक प्रयोग। वे डबल-स्लिट प्रयोग के परिष्कृत संस्करण हैं, जो पदार्थ (और प्रकाश) की तरंग प्रकृति को दर्शाते हैं। आधुनिक संस्करणों का उद्देश्य सिस्टम के द्रव्यमान, उड़ान के समय और/या डेलोकलाइज़ेशन दूरी को बढ़ाना है ताकि बड़े सुपरपोज़िशन बनाए जा सकें। इस प्रकार के सबसे प्रमुख प्रयोग परमाणुओं, अणुओं और फोनन के साथ हैं।
- गैर-इंटरफेरोमेट्रिक प्रयोग। वे इस तथ्य पर आधारित हैं कि कोलेप्स शोर, तरंग फलन को ध्वस्त करने के अतिरिक्त , कणों की गति के शीर्ष पर एक प्रसार को भी प्रेरित करता है, जो हमेशा कार्य करता है, तब भी जब तरंग फलन पहले से ही स्थानीयकृत होता है। इस प्रकार के प्रयोगों में ठंडे परमाणु, ऑप्टो-मैकेनिकल सिस्टम, गुरुत्वाकर्षण तरंग डिटेक्टर, भूमिगत प्रयोग शामिल हैं।[27]
सिद्धांतों को ध्वस्त करने के लिए समस्याएँ और आलोचनाएँ
ऊर्जा संरक्षण के सिद्धांत का उल्लंघन
कोलेप्स सिद्धांतों के अनुसार, ऊर्जा संरक्षित नहीं होती है, पृथक कणों के लिए भी। अधिक सटीक रूप से, जीआरडब्ल्यू, सीएसएल और डीपी मॉडल में गतिज ऊर्जा एक स्थिर दर से बढ़ती है, जो छोटी लेकिन गैर-शून्य होती है। इसे अक्सर हाइजेनबर्ग के अनिश्चितता सिद्धांत के अपरिहार्य परिणाम के रूप में प्रस्तुत किया जाता है: स्थिति में गिरावट गति में बड़ी अनिश्चितता का कारण बनती है। यह व्याख्या बुनियादी तौर पर ग़लत है. दरअसल, कोलेप्स सिद्धांतों में स्थिति में कोलेप्स गति में एक स्थानीयकरण भी निर्धारित करता है: तरंग फलन स्थिति के साथ-साथ गति दोनों में लगभग न्यूनतम अनिश्चितता की स्थिति में संचालित होता है,[17]हाइजेनबर्ग के सिद्धांत के अनुकूल।
कोलेप्स सिद्धांतों के अनुसार ऊर्जा बढ़ने का कारण यह है कि कोलेप्स का शोर कण को फैला देता है, जिससे इसकी गति बढ़ जाती है। यह शास्त्रीय ब्राउनियन गति जैसी ही स्थिति है। और जहां तक शास्त्रीय ब्राउनियन गति का सवाल है, इस वृद्धि को विघटनकारी प्रभाव जोड़कर रोका जा सकता है। QMUPL, GRW और CSL मॉडल के विघटनकारी संस्करण मौजूद हैं,[22][23][24]जहां मूल मॉडल के संबंध में कोलेप्स गुणों को अपरिवर्तित छोड़ दिया जाता है, जबकि ऊर्जा एक सीमित मूल्य तक थर्मल हो जाती है (इसलिए यह अपने प्रारंभिक मूल्य के आधार पर घट भी सकती है)।
फिर भी, विघटनकारी मॉडल में भी ऊर्जा का कड़ाई से संरक्षण नहीं किया जाता है। इस स्थिति का समाधान शोर को अपनी ऊर्जा के साथ एक गतिशील चर मानने से भी आ सकता है, जिसे क्वांटम सिस्टम के साथ इस तरह से आदान-प्रदान किया जाता है कि कुल सिस्टम + शोर ऊर्जा संरक्षित रहती है।
सापेक्षतावादी कोलेप्स मॉडल
कोलेप्स सिद्धांतों में सबसे बड़ी चुनौतियों में से एक उन्हें सापेक्षतावादी आवश्यकताओं के अनुकूल बनाना है। जीआरडब्ल्यू, सीएसएल और डीपी मॉडल नहीं हैं। सबसे बड़ी कठिनाई यह है कि कोलेप्स के गैर-स्थानीय चरित्र को कैसे संयोजित किया जाए, जो स्थानीयता के सापेक्ष सिद्धांत के साथ बेल असमानताओं के प्रयोगात्मक रूप से सत्यापित उल्लंघन के साथ संगत बनाने के लिए आवश्यक है। मॉडल मौजूद हैं[28][29] यह जीआरडब्ल्यू और सीएसएल मॉडल को सापेक्षतावादी अर्थ में सामान्यीकृत करने का प्रयास है, लेकिन सापेक्षतावादी सिद्धांतों के रूप में उनकी स्थिति अभी भी स्पष्ट नहीं है। एक उचित लोरेंत्ज़ सहप्रसरण का सूत्रीकरण|निरंतर वस्तुनिष्ठ कोलेप्स का लोरेंत्ज़-सहसंयोजक सिद्धांत अभी भी शोध का विषय है।
पूँछ समस्या
सभी कोलेप्स सिद्धांतों में, तरंग फलन कभी भी समष्टि के एक (छोटे) क्षेत्र में पूरी तरह से समाहित नहीं होता है, क्योंकि गतिशीलता का श्रोडिंगर शब्द इसे हमेशा बाहर फैलाएगा। इसलिए, तरंग कार्यों में हमेशा अनंत तक फैली हुई पूंछ होती हैं, हालांकि बड़े सिस्टम में उनका "वजन" छोटा होता है। कोलेप्स सिद्धांतों के आलोचकों का तर्क है कि यह स्पष्ट नहीं है कि इन पूंछों की व्याख्या कैसे की जाए। साहित्य में दो विशिष्ट समस्याओं पर चर्चा की गई है। पहली "नंगी" पूँछ की समस्या है: यह स्पष्ट नहीं है कि इन पूँछों की व्याख्या कैसे की जाए क्योंकि वे सिस्टम को कभी भी समष्टि में पूरी तरह से स्थानीयकृत नहीं करते हैं। इस समस्या के एक विशेष मामले को "गिनती विसंगति" के रूप में जाना जाता है।[30][31] कोलेप्स सिद्धांतों के समर्थक अधिकतर इस आलोचना को सिद्धांत की ग़लतफ़हमी कहकर ख़ारिज कर देते हैं, [32][33] जैसा कि गतिशील कोलेप्स सिद्धांतों के संदर्भ में, तरंग फलन के पूर्ण वर्ग की व्याख्या वास्तविक पदार्थ घनत्व के रूप में की जाती है। इस मामले में, पूँछें केवल घिसे हुए पदार्थ की एक अथाह छोटी मात्रा का प्रतिनिधित्व करती हैं। यह दूसरी समस्या की ओर ले जाता है, हालाँकि, तथाकथित "संरचित पूंछ समस्या": यह स्पष्ट नहीं है कि इन पूंछों की व्याख्या कैसे की जाए क्योंकि भले ही उनकी "पदार्थ की मात्रा" छोटी है, वह पदार्थ पूरी तरह से वैध दुनिया की तरह संरचित है। इस प्रकार, बॉक्स खुलने के बाद और श्रोएडिंगर की बिल्ली "जीवित" अवस्था में ढह गई है, वहाँ अभी भी मृत बिल्ली की तरह संरचित "कम पदार्थ" इकाई वाली तरंग फलन की एक पूंछ मौजूद है। कोलेप्स सिद्धांतकारों ने संरचित पूंछ समस्या के संभावित समाधानों की एक श्रृंखला की पेशकश की है, लेकिन यह एक खुली समस्या बनी हुई है।[34]
यह भी देखें
- क्वांटम यांत्रिकी की व्याख्या
- अनेक जगत् व्याख्या
- सूचना का दर्शन
- भौतिकी का दर्शन
- क्वांटम जानकारी
- बहुत नाजुक स्थिति
- सुसंगतता (भौतिकी)
- क्वांटम विकृति
- ईपीआर विरोधाभास
- क्वांटम ज़ेनो प्रभाव
- मापन समस्या
- क्वांटम यांत्रिकी में मापन
- तरंग फ़ंक्शन पतन
- क्वांटम गुरुत्व
टिप्पणियाँ
- ↑ Bassi, Angelo; Ghirardi, GianCarlo (2003). "गतिशील कमी मॉडल". Physics Reports (in English). 379 (5–6): 257–426. arXiv:quant-ph/0302164. Bibcode:2003PhR...379..257B. doi:10.1016/S0370-1573(03)00103-0. S2CID 119076099.
- ↑ Bassi, Angelo; Lochan, Kinjalk; Satin, Seema; Singh, Tejinder P.; Ulbricht, Hendrik (2013). "तरंग-फ़ंक्शन पतन के मॉडल, अंतर्निहित सिद्धांत और प्रयोगात्मक परीक्षण". Reviews of Modern Physics (in English). 85 (2): 471–527. arXiv:1204.4325. Bibcode:2013RvMP...85..471B. doi:10.1103/RevModPhys.85.471. ISSN 0034-6861. S2CID 119261020.
- ↑ Bell, J. S. (2004). Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (2 ed.). Cambridge University Press. doi:10.1017/cbo9780511815676. ISBN 978-0-521-52338-7.
- ↑ Fonda, L.; Ghirardi, G. C.; Rimini, A.; Weber, T. (1973). "घातांकीय क्षय नियम की क्वांटम नींव पर". Il Nuovo Cimento A (in English). 15 (4): 689–704. Bibcode:1973NCimA..15..689F. doi:10.1007/BF02748082. ISSN 0369-3546. S2CID 121217897.
- ↑ Pearle, Philip (1976). "Reduction of the state vector by a nonlinear Schr\"odinger equation". Physical Review D. 13 (4): 857–868. Bibcode:1976PhRvD..13..857P. doi:10.1103/PhysRevD.13.857.
- ↑ Pearle, Philip (1979). "यह समझाने की ओर कि घटनाएँ क्यों घटित होती हैं". International Journal of Theoretical Physics (in English). 18 (7): 489–518. Bibcode:1979IJTP...18..489P. doi:10.1007/BF00670504. ISSN 0020-7748. S2CID 119407617.
- ↑ Pearle, Philip (1984). "गतिशील अवस्था-वेक्टर कमी के प्रायोगिक परीक्षण". Physical Review D. 29 (2): 235–240. Bibcode:1984PhRvD..29..235P. doi:10.1103/PhysRevD.29.235.
- ↑ 8.0 8.1 Ghirardi, G. C.; Rimini, A.; Weber, T. (1986). "सूक्ष्म और स्थूल प्रणालियों के लिए एकीकृत गतिशीलता". Physical Review D. 34 (2): 470–491. Bibcode:1986PhRvD..34..470G. doi:10.1103/PhysRevD.34.470. PMID 9957165.
- ↑ Pearle, Philip (1989). "सहज स्थानीयकरण के साथ स्टोकेस्टिक गतिशील राज्य-वेक्टर कमी का संयोजन". Physical Review A. 39 (5): 2277–2289. Bibcode:1989PhRvA..39.2277P. doi:10.1103/PhysRevA.39.2277. PMID 9901493.
- ↑ 10.0 10.1 Ghirardi, Gian Carlo; Pearle, Philip; Rimini, Alberto (1990). "हिल्बर्ट अंतरिक्ष में मार्कोव प्रक्रियाएं और समान कणों की प्रणालियों का निरंतर सहज स्थानीयकरण". Physical Review A. 42 (1): 78–89. Bibcode:1990PhRvA..42...78G. doi:10.1103/PhysRevA.42.78. PMID 9903779.
- ↑ Diósi, L. (1987). "क्वांटम यांत्रिकी के गुरुत्वाकर्षण उल्लंघन के लिए एक सार्वभौमिक मास्टर समीकरण". Physics Letters A (in English). 120 (8): 377–381. Bibcode:1987PhLA..120..377D. doi:10.1016/0375-9601(87)90681-5.
- ↑ 12.0 12.1 12.2 Diósi, L. (1989). "मैक्रोस्कोपिक क्वांटम उतार-चढ़ाव की सार्वभौमिक कमी के लिए मॉडल". Physical Review A (in English). 40 (3): 1165–1174. Bibcode:1989PhRvA..40.1165D. doi:10.1103/PhysRevA.40.1165. ISSN 0556-2791. PMID 9902248.
- ↑ 13.0 13.1 Penrose, Roger (1996). "क्वांटम स्टेट रिडक्शन में गुरुत्वाकर्षण की भूमिका पर". General Relativity and Gravitation (in English). 28 (5): 581–600. Bibcode:1996GReGr..28..581P. doi:10.1007/BF02105068. ISSN 0001-7701. S2CID 44038399.
- ↑ Penrose, Roger (2014). "On the Gravitization of Quantum Mechanics 1: Quantum State Reduction". Foundations of Physics (in English). 44 (5): 557–575. Bibcode:2014FoPh...44..557P. doi:10.1007/s10701-013-9770-0. ISSN 0015-9018.
- ↑ Gisin, N; Percival, I C (1992). "क्वांटम-स्टेट डिफ्यूजन मॉडल ओपन सिस्टम पर लागू होता है". Journal of Physics A: Mathematical and General. 25 (21): 5677–5691. Bibcode:1992JPhA...25.5677G. doi:10.1088/0305-4470/25/21/023. ISSN 0305-4470.
- ↑ Tumulka, Roderich (2006). "सहज तरंग फ़ंक्शन पतन और क्वांटम क्षेत्र सिद्धांत पर". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (in English). 462 (2070): 1897–1908. arXiv:quant-ph/0508230. Bibcode:2006RSPSA.462.1897T. doi:10.1098/rspa.2005.1636. ISSN 1364-5021. S2CID 16123332.
- ↑ 17.0 17.1 Bassi, Angelo (2005). "Collapse models: analysis of the free particle dynamics". Journal of Physics A: Mathematical and General. 38 (14): 3173–3192. arXiv:quant-ph/0410222. doi:10.1088/0305-4470/38/14/008. ISSN 0305-4470. S2CID 37142667.
- ↑ Adler, Stephen L; Bassi, Angelo (2007). "गैर-सफ़ेद शोर वाले मॉडलों को संक्षिप्त करें". Journal of Physics A: Mathematical and Theoretical. 40 (50): 15083–15098. arXiv:0708.3624. Bibcode:2007JPhA...4015083A. doi:10.1088/1751-8113/40/50/012. ISSN 1751-8113. S2CID 118366772.
- ↑ Adler, Stephen L; Bassi, Angelo (2008). "Collapse models with non-white noises: II. Particle-density coupled noises". Journal of Physics A: Mathematical and Theoretical. 41 (39): 395308. arXiv:0807.2846. Bibcode:2008JPhA...41M5308A. doi:10.1088/1751-8113/41/39/395308. ISSN 1751-8113. S2CID 118551622.
- ↑ Bassi, Angelo; Ferialdi, Luca (2009). "Non-Markovian dynamics for a free quantum particle subject to spontaneous collapse in space: General solution and main properties". Physical Review A (in English). 80 (1): 012116. arXiv:0901.1254. Bibcode:2009PhRvA..80a2116B. doi:10.1103/PhysRevA.80.012116. ISSN 1050-2947. S2CID 119297164.
- ↑ Bassi, Angelo; Ferialdi, Luca (2009). "Non-Markovian Quantum Trajectories: An Exact Result". Physical Review Letters (in English). 103 (5): 050403. arXiv:0907.1615. Bibcode:2009PhRvL.103e0403B. doi:10.1103/PhysRevLett.103.050403. ISSN 0031-9007. PMID 19792469. S2CID 25021141.
- ↑ 22.0 22.1 Smirne, Andrea; Vacchini, Bassano; Bassi, Angelo (2014). "घिरार्डी-रिमिनी-वेबर मॉडल का विघटनकारी विस्तार". Physical Review A (in English). 90 (6): 062135. arXiv:1408.6115. Bibcode:2014PhRvA..90f2135S. doi:10.1103/PhysRevA.90.062135. ISSN 1050-2947. S2CID 52232273.
- ↑ 23.0 23.1 Smirne, Andrea; Bassi, Angelo (2015). "विघटनकारी सतत सहज स्थानीयकरण (सीएसएल) मॉडल". Scientific Reports (in English). 5 (1): 12518. arXiv:1408.6446. Bibcode:2015NatSR...512518S. doi:10.1038/srep12518. ISSN 2045-2322. PMC 4525142. PMID 26243034.
- ↑ 24.0 24.1 Bassi, Angelo; Ippoliti, Emiliano; Vacchini, Bassano (2005). "अंतरिक्ष-पतन मॉडल में ऊर्जा वृद्धि पर". Journal of Physics A: Mathematical and General. 38 (37): 8017–8038. arXiv:quant-ph/0506083. Bibcode:2005JPhA...38.8017B. doi:10.1088/0305-4470/38/37/007. ISSN 0305-4470. S2CID 43241594.
- ↑ Ferialdi, Luca; Bassi, Angelo (2012). "गैर-श्वेत शोर के साथ विघटनकारी पतन मॉडल". Physical Review A (in English). 86 (2): 022108. arXiv:1112.5065. Bibcode:2012PhRvA..86b2108F. doi:10.1103/PhysRevA.86.022108. ISSN 1050-2947. S2CID 119216571.
- ↑ Ferialdi, Luca; Bassi, Angelo (2012). "नॉन-मार्कोवियन डिसिपेटिव क्वांटम डायनेमिक्स के लिए सटीक समाधान". Physical Review Letters (in English). 108 (17): 170404. arXiv:1204.4348. Bibcode:2012PhRvL.108q0404F. doi:10.1103/PhysRevLett.108.170404. ISSN 0031-9007. PMID 22680843. S2CID 16746767.
- ↑ Carlesso, Matteo; Donadi, Sandro; Ferialdi, Luca; Paternostro, Mauro; Ulbricht, Hendrik; Bassi, Angelo (February 2022). "पतन मॉडल के गैर-इंटरफेरोमेट्रिक परीक्षणों की वर्तमान स्थिति और भविष्य की चुनौतियाँ". Nature Physics (in English). 18 (3): 243–250. Bibcode:2022NatPh..18..243C. doi:10.1038/s41567-021-01489-5. ISSN 1745-2481. S2CID 246949254.
- ↑ Ghirardi, G. C.; Grassi, R.; Pearle, P. (1990). "Relativistic dynamical reduction models: General framework and examples". Foundations of Physics (in English). 20 (11): 1271–1316. Bibcode:1990FoPh...20.1271G. doi:10.1007/BF01883487. ISSN 0015-9018. S2CID 123661865.
- ↑ Tumulka, Roderich (2006). "A Relativistic Version of the Ghirardi–Rimini–Weber Model". Journal of Statistical Physics (in English). 125 (4): 821–840. arXiv:quant-ph/0406094. Bibcode:2006JSP...125..821T. doi:10.1007/s10955-006-9227-3. ISSN 0022-4715. S2CID 13923422.
- ↑ Lewis, Peter J. (1997). "क्वांटम यांत्रिकी, ऑर्थोगोनैलिटी, और गिनती". The British Journal for the Philosophy of Science (in English). 48 (3): 313–328. doi:10.1093/bjps/48.3.313. ISSN 0007-0882.
- ↑ Clifton, R.; Monton, B. (1999). "बहस। वेवफंक्शन पतन सिद्धांतों में अपने पत्थर खोना". The British Journal for the Philosophy of Science (in English). 50 (4): 697–717. doi:10.1093/bjps/50.4.697. ISSN 0007-0882.
- ↑ Ghirardi, G. C.; Bassi, A. (1999). "Do dynamical reduction models imply that arithmetic does not apply to ordinary macroscopic objects?". The British Journal for the Philosophy of Science (in English). 50 (1): 49–64. arXiv:quant-ph/9810041. doi:10.1093/bjps/50.1.49. ISSN 0007-0882.
- ↑ Bassi, A.; Ghirardi, G.-C. (1999). "बहस। गतिशील कमी और गणना सिद्धांत के बारे में अधिक जानकारी". The British Journal for the Philosophy of Science (in English). 50 (4): 719–734. doi:10.1093/bjps/50.4.719. ISSN 0007-0882.
- ↑ McQueen, Kelvin J. (2015). "गतिशील पतन सिद्धांतों के लिए चार पूंछ समस्याएं". Studies in the History & Philosophy of Modern Physics (in English). 49: 10–18. arXiv:1501.05778. Bibcode:2015SHPMP..49...10M. doi:10.1016/j.shpsb.2014.12.001. ISSN 1355-2198. S2CID 55718585.
बाहरी संबंध
- Giancarlo Ghirardi, Collapse Theories, Stanford Encyclopedia of Philosophy (First published Thu Mar 7, 2002; substantive revision Fri May 15, 2020)
- "Physics Experiments Spell Doom for Quantum 'Collapse' Theory". Quanta Magazine (in English). 2022-10-20. Retrieved 2022-10-21.