बीजतः संवृत्त क्षेत्र: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
=== केवल एक घात वाले बहुपद हैं === | === केवल एक घात वाले बहुपद हैं === | ||
क्षेत्र F बीजगणितीय रूप से बंद होता है यदि और केवल यदि बहुपद वलय F[x] में एकमात्र अलघुकरणीय बहुपद डिग्री एक के होते हैं। | क्षेत्र F बीजगणितीय रूप से बंद होता <u>है</u> '''यदि और केवल यदि''' बहुपद वलय F[x] में एकमात्र अलघुकरणीय बहुपद डिग्री एक के होते हैं। | ||
किसी भी क्षेत्र के लिए यह दावा कि डिग्री एक के बहुपद अपरिवर्तनीय हैं, तुच्छ रूप से सच | किसी भी क्षेत्र के लिए यह दावा कि डिग्री एक के बहुपद अपरिवर्तनीय हैं, '''तुच्छ रूप से सच है'''। यदि F बीजगणितीय रूप से बंद है और p(x) F[x] का एक [[ अपरिवर्तनीय बहुपद | अपरिवर्तनीय बहुपद]] है, तो इसका कुछ मूल a है और इसलिए p(x) (x − a) का गुणज है। चूँकि p(x) अलघुकरणीय है, इसका अर्थ है कि p(x) = k(x − a), कुछ k ∈ F \ {0} के लिए। दूसरी ओर, यदि F बीजगणितीय रूप से बंद नहीं है, तो F[x] में कुछ गैर-स्थिर बहुपद p(x) है, जिसकी जड़ें F में नहीं हैं। मान लें कि q(x) p(x) का कुछ अपरिवर्तनीय कारक है। चूँकि p(x) का F में कोई मूल नहीं है, q(x) का भी F में कोई मूल नहीं है। इसलिए, q(x) की घात एक से अधिक होती है, क्योंकि प्रत्येक प्रथम घात बहुपद का F में एक मूल होता है। | ||
=== प्रत्येक बहुपद प्रथम घात बहुपद का [[ गुणन ]] | ===प्रत्येक बहुपद प्रथम घात बहुपद का [[ गुणन | गुणनफल]] होता है=== | ||
क्षेत्र F बीजगणितीय रूप से बंद होता है '''यदि और केवल यदि''' डिग्री n ≥ 1 का प्रत्येक बहुपद p(x), F में गुणांकों के साथ, गुणनखंडन। दूसरे शब्दों में, तत्व k, x . हैं<sub>1</sub>, एक्स<sub>2</sub>, ..., एक्स<sub>n</sub>क्षेत्र F का ऐसा है कि p(x) = k(x − x<sub>1</sub>)(x − x<sub>2</sub>) ⋯ (x − x<sub>n</sub>) | |||
यदि F के पास यह गुण है, तो स्पष्ट रूप से F[x] में प्रत्येक गैर-स्थिर बहुपद का F में कुछ मूल होता है; दूसरे शब्दों में, F बीजगणितीय रूप से बंद है। दूसरी ओर, यहां वर्णित | यदि F के पास यह गुण है, तो स्पष्ट रूप से F[x] में प्रत्येक गैर-स्थिर बहुपद का F में कुछ मूल होता है; दूसरे शब्दों में, F बीजगणितीय रूप से बंद है। दूसरी ओर, यहां वर्णित गुण F के लिए रखता है यदि F बीजगणितीय रूप से बंद है, तो पिछले गुण से इस तथ्य के साथ - साथ , किसी भी क्षेत्र के लिए, K[x] में किसी भी बहुपद को अपरिवर्तनीय बहुपद के उत्पाद के रूप में लिखा जा सकता है . | ||
=== अभाज्य घात वाले बहुपदों की जड़ें होती हैं === | === अभाज्य घात वाले बहुपदों की जड़ें होती हैं=== | ||
यदि अभाज्य घात वाले F से अधिक के प्रत्येक बहुपद का मूल F में होता है, तो प्रत्येक अचर बहुपद का मूल F में होता है।<ref>Shipman, J. [http://www.jon-arny.com/httpdocs/Gauss/Shipman%20Intellig%20Mod%20p%20FTA.pdf Improving the Fundamental Theorem of Algebra] ''The Mathematical Intelligencer'', Volume 29 (2007), Number 4. pp. 9–14</ref> यह इस प्रकार है कि एक क्षेत्र बीजगणितीय रूप से बंद होता है यदि और केवल तभी जब | यदि अभाज्य घात वाले F से अधिक के प्रत्येक बहुपद का मूल F में होता है, तो प्रत्येक अचर बहुपद का मूल F में होता है।<ref>Shipman, J. [http://www.jon-arny.com/httpdocs/Gauss/Shipman%20Intellig%20Mod%20p%20FTA.pdf Improving the Fundamental Theorem of Algebra] ''The Mathematical Intelligencer'', Volume 29 (2007), Number 4. pp. 9–14</ref> यह इस प्रकार है कि एक क्षेत्र बीजगणितीय रूप से बंद होता है यदि और केवल तभी जब अभाज्य घात के F पर प्रत्येक बहुपद की जड़ F में होती है। | ||
=== | ===क्षेत्र का कोई उचित [[ बीजीय विस्तार | बीजीय विस्तार]] नहीं है=== | ||
क्षेत्र F बीजगणितीय रूप से बंद है यदि और केवल यदि इसका कोई उचित बीजीय विस्तार नहीं है। | |||
यदि F का कोई उचित बीजगणितीय विस्तार नहीं है, तो मान लें कि p(x) F[x] में कुछ अपरिवर्तनीय बहुपद है। फिर | यदि F का कोई उचित बीजगणितीय विस्तार नहीं है, तो मान लें कि p(x) F[x] में कुछ अपरिवर्तनीय बहुपद है। फिर p(x) द्वारा उत्पन्न F[x] मॉड्यूलो द आइडियल (रिंग थ्योरी) का [[ भागफल वलय | भागफल वलय]] , F का एक बीजीय विस्तार है जिसका क्षेत्र विस्तार की घात p(x) की घात के बराबर है। चूंकि यह उचित विस्तार नहीं है, इसकी घात 1 है और इसलिए p(x) की घात 1 है। | ||
दूसरी ओर, यदि F का कुछ उचित बीजगणितीय विस्तार K है, तो K \ F में एक तत्व का [[ न्यूनतम बहुपद (क्षेत्र सिद्धांत) ]] अपरिवर्तनीय है और इसकी डिग्री 1 से अधिक है। | दूसरी ओर, यदि F का कुछ उचित बीजगणितीय विस्तार K है, तो K \ F में एक तत्व का [[ न्यूनतम बहुपद (क्षेत्र सिद्धांत) | न्यूनतम बहुपद (क्षेत्र सिद्धांत)]] अपरिवर्तनीय है और इसकी डिग्री 1 से अधिक है। | ||
=== क्षेत्र का कोई उचित [[ परिमित विस्तार ]] नहीं है === | ===क्षेत्र का कोई उचित [[ परिमित विस्तार | परिमित विस्तार]] नहीं है === | ||
क्षेत्र F को बीजगणितीय रूप से बंद किया जाता है यदि और केवल यदि इसका कोई उचित परिमित विस्तार नहीं है, क्योंकि यदि, #The फ़ील्ड के भीतर कोई उचित बीजीय विस्तार नहीं है, तो बीजीय विस्तार शब्द को परिमित विस्तार शब्द से बदल दिया जाता है, तो प्रमाण अभी भी मान्य है। (ध्यान दें कि परिमित एक्सटेंशन अनिवार्य रूप से बीजीय हैं।) | |||
=== F . का प्रत्येक एंडोमोर्फिज्म<sup>n</sup> में कुछ eigenvector=== . है | === F . का प्रत्येक एंडोमोर्फिज्म<sup>n</sup> में कुछ eigenvector=== . है | ||
फ़ील्ड F बीजगणितीय रूप से बंद है यदि और केवल यदि, प्रत्येक प्राकृतिक संख्या n के लिए, F . से प्रत्येक रैखिक मानचित्र<sup>n</sup> अपने आप में कुछ [[ eigenvector ]] है। | फ़ील्ड F बीजगणितीय रूप से बंद है यदि और केवल यदि, प्रत्येक प्राकृतिक संख्या n के लिए, F . से प्रत्येक रैखिक मानचित्र<sup>n</sup> अपने आप में कुछ [[ eigenvector | eigenvector]] है। | ||
F . का [[ एंडोमोर्फिज्म ]]<sup>n</sup> में एक eigenvector होता है यदि और केवल यदि इसके अभिलक्षणिक बहुपद का कुछ मूल हो। इसलिए, जब F को बीजगणितीय रूप से बंद किया जाता है, तो F . का प्रत्येक एंडोमोर्फिज्म<sup>n</sup> में कुछ eigenvector है। दूसरी ओर, यदि F . का प्रत्येक एंडोमोर्फिज्म<sup>n</sup> में एक eigenvector है, मान लीजिए p(x) F[x] का एक अवयव है। इसके प्रमुख गुणांक से भाग देने पर, हमें एक और बहुपद q(x) प्राप्त होता है, जिसके मूल केवल तभी होते हैं जब p(x) के मूल हों। लेकिन अगर q(x) = x<sup>n</sup> + a<sub>''n'' − 1</sub>x<sup>n − 1</sup>+ + a<sub>0</sub>, तो q(x) n×n साथी आव्यूह का अभिलक्षणिक बहुपद है | F . का [[ एंडोमोर्फिज्म | एंडोमोर्फिज्म]] <sup>n</sup> में एक eigenvector होता है यदि और केवल यदि इसके अभिलक्षणिक बहुपद का कुछ मूल हो। इसलिए, जब F को बीजगणितीय रूप से बंद किया जाता है, तो F . का प्रत्येक एंडोमोर्फिज्म<sup>n</sup> में कुछ eigenvector है। दूसरी ओर, यदि F . का प्रत्येक एंडोमोर्फिज्म<sup>n</sup> में एक eigenvector है, मान लीजिए p(x) F[x] का एक अवयव है। इसके प्रमुख गुणांक से भाग देने पर, हमें एक और बहुपद q(x) प्राप्त होता है, जिसके मूल केवल तभी होते हैं जब p(x) के मूल हों। लेकिन अगर q(x) = x<sup>n</sup> + a<sub>''n'' − 1</sub>x<sup>n − 1</sup>+ + a<sub>0</sub>, तो q(x) n×n साथी आव्यूह का अभिलक्षणिक बहुपद है | ||
:<math>\begin{pmatrix} | :<math>\begin{pmatrix} | ||
0 & 0 & \cdots & 0 & -a_0\\ | 0 & 0 & \cdots & 0 & -a_0\\ | ||
Line 46: | Line 46: | ||
=== परिमेय व्यंजकों का अपघटन === | ===परिमेय व्यंजकों का अपघटन === | ||
फ़ील्ड F बीजगणितीय रूप से बंद होता है यदि और केवल यदि एक चर x में प्रत्येक परिमेय फलन, F में गुणांकों के साथ, a/(x − b) रूप के परिमेय फलनों के साथ एक बहुपद फलन के योग के रूप में लिखा जा सकता है।<sup>n</sup>, जहाँ n एक प्राकृत संख्या है, और a और b, F के अवयव हैं। | फ़ील्ड F बीजगणितीय रूप से बंद होता है यदि और केवल यदि एक चर x में प्रत्येक परिमेय फलन, F में गुणांकों के साथ, a/(x − b) रूप के परिमेय फलनों के साथ एक बहुपद फलन के योग के रूप में लिखा जा सकता है।<sup>n</sup>, जहाँ n एक प्राकृत संख्या है, और a और b, F के अवयव हैं। | ||
Line 55: | Line 55: | ||
दो बहुपदों के भागफल के रूप में लिखा जा सकता है जिसमें हर पहली डिग्री बहुपद का एक उत्पाद है। चूंकि p(x) इरेड्यूसेबल है, इसलिए इसे इस उत्पाद को विभाजित करना चाहिए और इसलिए, यह एक प्रथम डिग्री बहुपद भी होना चाहिए। | दो बहुपदों के भागफल के रूप में लिखा जा सकता है जिसमें हर पहली डिग्री बहुपद का एक उत्पाद है। चूंकि p(x) इरेड्यूसेबल है, इसलिए इसे इस उत्पाद को विभाजित करना चाहिए और इसलिए, यह एक प्रथम डिग्री बहुपद भी होना चाहिए। | ||
===अपेक्षाकृत अभाज्य बहुपद और मूल === | ===अपेक्षाकृत अभाज्य बहुपद और मूल=== | ||
किसी भी क्षेत्र F के लिए, यदि दो बहुपद p(x),q(x) ∈ F[x] सहअभाज्य हैं तो उनका एक उभयनिष्ठ मूल नहीं होता, क्योंकि यदि a ∈ F एक उभयनिष्ठ मूल था, तो p(x) और q (x) दोनों x − a के गुणज होंगे और इसलिए वे अपेक्षाकृत अभाज्य नहीं होंगे। जिन क्षेत्रों के लिए विपरीत निहितार्थ होता है (अर्थात, ऐसे क्षेत्र जहां जब भी दो बहुपदों की कोई सामान्य जड़ नहीं होती है तो वे अपेक्षाकृत प्रमुख होते हैं) ठीक बीजगणितीय रूप से बंद क्षेत्र होते हैं। | किसी भी क्षेत्र F के लिए, यदि दो बहुपद p(x),q(x) ∈ F[x] सहअभाज्य हैं तो उनका एक उभयनिष्ठ मूल नहीं होता, क्योंकि यदि a ∈ F एक उभयनिष्ठ मूल था, तो p(x) और q (x) दोनों x − a के गुणज होंगे और इसलिए वे अपेक्षाकृत अभाज्य नहीं होंगे। जिन क्षेत्रों के लिए विपरीत निहितार्थ होता है (अर्थात, ऐसे क्षेत्र जहां जब भी दो बहुपदों की कोई सामान्य जड़ नहीं होती है तो वे अपेक्षाकृत प्रमुख होते हैं) ठीक बीजगणितीय रूप से बंद क्षेत्र होते हैं। | ||
Line 62: | Line 62: | ||
यदि F बीजगणितीय रूप से बंद नहीं है, तो मान लीजिए कि p(x) एक बहुपद है जिसकी घात कम से कम 1 बिना मूल की है। तब p(x) और p(x) अपेक्षाकृत अभाज्य नहीं हैं, लेकिन उनकी कोई उभयनिष्ठ जड़ें नहीं हैं (क्योंकि उनमें से किसी की भी जड़ें नहीं हैं)। | यदि F बीजगणितीय रूप से बंद नहीं है, तो मान लीजिए कि p(x) एक बहुपद है जिसकी घात कम से कम 1 बिना मूल की है। तब p(x) और p(x) अपेक्षाकृत अभाज्य नहीं हैं, लेकिन उनकी कोई उभयनिष्ठ जड़ें नहीं हैं (क्योंकि उनमें से किसी की भी जड़ें नहीं हैं)। | ||
== अन्य गुण == | ==अन्य गुण== | ||
यदि F एक बीजगणितीय रूप से बंद क्षेत्र है और n एक प्राकृतिक संख्या है, तो F में एकता की सभी nth जड़ें होती हैं, क्योंकि ये (परिभाषा के अनुसार) बहुपद x के n (जरूरी नहीं अलग) शून्य हैं<sup>n</sup> − 1. एकता की जड़ों द्वारा उत्पन्न एक विस्तार में निहित एक क्षेत्र विस्तार एक चक्रवातीय विस्तार है, और एकता की सभी जड़ों द्वारा उत्पन्न क्षेत्र के विस्तार को कभी-कभी इसका साइक्लोटॉमिक क्लोजर कहा जाता है। इस प्रकार बीजगणितीय रूप से बंद क्षेत्र चक्रीय रूप से बंद होते हैं। इसका उलट सत्य नहीं है। यह मानते हुए भी कि x . के रूप का प्रत्येक बहुपद<sup>n</sup> - रैखिक कारकों में विभाजन यह सुनिश्चित करने के लिए पर्याप्त नहीं है कि फ़ील्ड बीजगणितीय रूप से बंद है। | यदि F एक बीजगणितीय रूप से बंद क्षेत्र है और n एक प्राकृतिक संख्या है, तो F में एकता की सभी nth जड़ें होती हैं, क्योंकि ये (परिभाषा के अनुसार) बहुपद x के n (जरूरी नहीं अलग) शून्य हैं<sup>n</sup> − 1. एकता की जड़ों द्वारा उत्पन्न एक विस्तार में निहित एक क्षेत्र विस्तार एक चक्रवातीय विस्तार है, और एकता की सभी जड़ों द्वारा उत्पन्न क्षेत्र के विस्तार को कभी-कभी इसका साइक्लोटॉमिक क्लोजर कहा जाता है। इस प्रकार बीजगणितीय रूप से बंद क्षेत्र चक्रीय रूप से बंद होते हैं। इसका उलट सत्य नहीं है। यह मानते हुए भी कि x . के रूप का प्रत्येक बहुपद<sup>n</sup> - रैखिक कारकों में विभाजन यह सुनिश्चित करने के लिए पर्याप्त नहीं है कि फ़ील्ड बीजगणितीय रूप से बंद है। | ||
यदि एक प्रस्ताव जिसे [[ प्रथम-क्रम तर्क ]] की भाषा में व्यक्त किया जा सकता है, बीजगणितीय रूप से बंद क्षेत्र के लिए सही है, तो यह प्रत्येक बीजगणितीय रूप से बंद फ़ील्ड के लिए समान [[ विशेषता (बीजगणित) ]] के साथ सच है। इसके अलावा, यदि ऐसा प्रस्ताव बीजगणितीय रूप से बंद फ़ील्ड के लिए विशेषता 0 के साथ मान्य है, तो यह न केवल अन्य सभी बीजगणितीय रूप से बंद क्षेत्रों के लिए मान्य है, लेकिन कुछ प्राकृतिक संख्या एन है जैसे कि प्रस्ताव प्रत्येक बीजगणितीय रूप से बंद के लिए मान्य है विशेषता के साथ फ़ील्ड p जब p > N.<ref>See subsections ''Rings and fields'' and ''Properties of mathematical theories'' in §2 of J. Barwise's "An introduction to first-order logic".</ref> | यदि एक प्रस्ताव जिसे [[ प्रथम-क्रम तर्क | प्रथम-क्रम तर्क]] की भाषा में व्यक्त किया जा सकता है, बीजगणितीय रूप से बंद क्षेत्र के लिए सही है, तो यह प्रत्येक बीजगणितीय रूप से बंद फ़ील्ड के लिए समान [[ विशेषता (बीजगणित) | विशेषता (बीजगणित)]] के साथ सच है। इसके अलावा, यदि ऐसा प्रस्ताव बीजगणितीय रूप से बंद फ़ील्ड के लिए विशेषता 0 के साथ मान्य है, तो यह न केवल अन्य सभी बीजगणितीय रूप से बंद क्षेत्रों के लिए मान्य है, लेकिन कुछ प्राकृतिक संख्या एन है जैसे कि प्रस्ताव प्रत्येक बीजगणितीय रूप से बंद के लिए मान्य है विशेषता के साथ फ़ील्ड p जब p > N.<ref>See subsections ''Rings and fields'' and ''Properties of mathematical theories'' in §2 of J. Barwise's "An introduction to first-order logic".</ref> | ||
प्रत्येक क्षेत्र F का कुछ विस्तार होता है जो बीजगणितीय रूप से बंद होता है। इस तरह के विस्तार को 'बीजगणितीय रूप से बंद विस्तार' कहा जाता है। ऐसे सभी एक्सटेंशन में एक और केवल एक (अप करने के लिए, लेकिन [[ अनिवार्य रूप से अद्वितीय ]] नहीं) है जो F का बीजीय विस्तार है;<ref>See Lang's ''Algebra'', §VII.2 or van der Waerden's ''Algebra I'', §10.1.</ref> इसे F का बीजगणितीय समापन कहते हैं। | प्रत्येक क्षेत्र F का कुछ विस्तार होता है जो बीजगणितीय रूप से बंद होता है। इस तरह के विस्तार को 'बीजगणितीय रूप से बंद विस्तार' कहा जाता है। ऐसे सभी एक्सटेंशन में एक और केवल एक (अप करने के लिए, लेकिन [[ अनिवार्य रूप से अद्वितीय | अनिवार्य रूप से अद्वितीय]] नहीं) है जो F का बीजीय विस्तार है;<ref>See Lang's ''Algebra'', §VII.2 or van der Waerden's ''Algebra I'', §10.1.</ref> इसे F का बीजगणितीय समापन कहते हैं। | ||
बीजगणितीय रूप से बंद क्षेत्रों के सिद्धांत में मात्रात्मक उन्मूलन है। | बीजगणितीय रूप से बंद क्षेत्रों के सिद्धांत में मात्रात्मक उन्मूलन है। | ||
==टिप्पणियाँ== | == टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
Line 76: | Line 76: | ||
==संदर्भ== | ==संदर्भ== | ||
{{div col begin |colwidth=25em}} | {{div col begin |colwidth=25em}} | ||
* {{cite book | *{{cite book | ||
| last = Barwise | first = Jon | author-link = Jon Barwise | | last = Barwise | first = Jon | author-link = Jon Barwise | ||
| year = 1978 | | year = 1978 | ||
Line 99: | Line 99: | ||
|ISBN=978-0-387-95385-4 |MR=1878556 | |ISBN=978-0-387-95385-4 |MR=1878556 | ||
}} | }} | ||
* {{cite journal | *{{cite journal | ||
|last = Shipman |first = Joseph | |last = Shipman |first = Joseph | ||
|year = 2007 | |year = 2007 | ||
Line 107: | Line 107: | ||
|doi=10.1007/BF02986170 |issn = 0343-6993 | |doi=10.1007/BF02986170 |issn = 0343-6993 | ||
}} | }} | ||
* {{cite book | *{{cite book | ||
|last=van der Waerden |first=Bartel Leendert |author-link=Bartel Leendert van der Waerden | |last=van der Waerden |first=Bartel Leendert |author-link=Bartel Leendert van der Waerden | ||
|year = 2003 | |year = 2003 |
Revision as of 20:35, 17 November 2022
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (September 2021) (Learn how and when to remove this template message) |
गणित में, एक क्षेत्र (गणित) F बीजगणितीय रूप से बंद है यदि एक बहुपद की प्रत्येक डिग्री | गैर-स्थिर बहुपद in F[x] (गुणांक के साथ अविभाज्य बहुपद वलय F) में एक फ़ंक्शन का शून्य F है .
उदाहरण
उदाहरण के तौर पर, वास्तविक संख्याओं का क्षेत्र बीजगणितीय रूप से बंद नहीं है, क्योंकि बहुपद समीकरण x2 + 1 = 0 का वास्तविक संख्याओं में कोई हल नहीं है, भले ही इसके सभी गुणांक (1 और 0) वास्तविक हों। वही तर्क प्रमाणित करता है कि वास्तविक क्षेत्र का कोई भी उपक्षेत्र बीजगणितीय रूप से बंद नहीं है; विशेष रूप से, परिमेय संख्याओं का क्षेत्र बीजगणितीय रूप से बंद नहीं होता है। साथ ही, कोई भी परिमित क्षेत्र F बीजगणितीय रूप से बंद नहीं है, क्योंकि यदि a1, a2, ..., an F के अवयव हैं, तो बहुपद (x − a1)(x − a2) ⋯ (x − an) + 1 F में कोई शून्य नहीं है। इसके विपरीत, बीजगणित के मौलिक प्रमेय में कहा गया है कि जटिल संख्याओं का क्षेत्र बीजगणितीय रूप से बंद है। बीजगणितीय रूप से बंद क्षेत्र का एक अन्य उदाहरण (जटिल) बीजीय संख्याओं का क्षेत्र है।
समतुल्य गुण
एक क्षेत्र F को देखते हुए, अभिकथन "F बीजगणितीय रूप से बंद है ", अन्य अभिकथनों के बराबर है:
केवल एक घात वाले बहुपद हैं
क्षेत्र F बीजगणितीय रूप से बंद होता है यदि और केवल यदि बहुपद वलय F[x] में एकमात्र अलघुकरणीय बहुपद डिग्री एक के होते हैं।
किसी भी क्षेत्र के लिए यह दावा कि डिग्री एक के बहुपद अपरिवर्तनीय हैं, तुच्छ रूप से सच है। यदि F बीजगणितीय रूप से बंद है और p(x) F[x] का एक अपरिवर्तनीय बहुपद है, तो इसका कुछ मूल a है और इसलिए p(x) (x − a) का गुणज है। चूँकि p(x) अलघुकरणीय है, इसका अर्थ है कि p(x) = k(x − a), कुछ k ∈ F \ {0} के लिए। दूसरी ओर, यदि F बीजगणितीय रूप से बंद नहीं है, तो F[x] में कुछ गैर-स्थिर बहुपद p(x) है, जिसकी जड़ें F में नहीं हैं। मान लें कि q(x) p(x) का कुछ अपरिवर्तनीय कारक है। चूँकि p(x) का F में कोई मूल नहीं है, q(x) का भी F में कोई मूल नहीं है। इसलिए, q(x) की घात एक से अधिक होती है, क्योंकि प्रत्येक प्रथम घात बहुपद का F में एक मूल होता है।
प्रत्येक बहुपद प्रथम घात बहुपद का गुणनफल होता है
क्षेत्र F बीजगणितीय रूप से बंद होता है यदि और केवल यदि डिग्री n ≥ 1 का प्रत्येक बहुपद p(x), F में गुणांकों के साथ, गुणनखंडन। दूसरे शब्दों में, तत्व k, x . हैं1, एक्स2, ..., एक्सnक्षेत्र F का ऐसा है कि p(x) = k(x − x1)(x − x2) ⋯ (x − xn)
यदि F के पास यह गुण है, तो स्पष्ट रूप से F[x] में प्रत्येक गैर-स्थिर बहुपद का F में कुछ मूल होता है; दूसरे शब्दों में, F बीजगणितीय रूप से बंद है। दूसरी ओर, यहां वर्णित गुण F के लिए रखता है यदि F बीजगणितीय रूप से बंद है, तो पिछले गुण से इस तथ्य के साथ - साथ , किसी भी क्षेत्र के लिए, K[x] में किसी भी बहुपद को अपरिवर्तनीय बहुपद के उत्पाद के रूप में लिखा जा सकता है .
अभाज्य घात वाले बहुपदों की जड़ें होती हैं
यदि अभाज्य घात वाले F से अधिक के प्रत्येक बहुपद का मूल F में होता है, तो प्रत्येक अचर बहुपद का मूल F में होता है।[1] यह इस प्रकार है कि एक क्षेत्र बीजगणितीय रूप से बंद होता है यदि और केवल तभी जब अभाज्य घात के F पर प्रत्येक बहुपद की जड़ F में होती है।
क्षेत्र का कोई उचित बीजीय विस्तार नहीं है
क्षेत्र F बीजगणितीय रूप से बंद है यदि और केवल यदि इसका कोई उचित बीजीय विस्तार नहीं है।
यदि F का कोई उचित बीजगणितीय विस्तार नहीं है, तो मान लें कि p(x) F[x] में कुछ अपरिवर्तनीय बहुपद है। फिर p(x) द्वारा उत्पन्न F[x] मॉड्यूलो द आइडियल (रिंग थ्योरी) का भागफल वलय , F का एक बीजीय विस्तार है जिसका क्षेत्र विस्तार की घात p(x) की घात के बराबर है। चूंकि यह उचित विस्तार नहीं है, इसकी घात 1 है और इसलिए p(x) की घात 1 है।
दूसरी ओर, यदि F का कुछ उचित बीजगणितीय विस्तार K है, तो K \ F में एक तत्व का न्यूनतम बहुपद (क्षेत्र सिद्धांत) अपरिवर्तनीय है और इसकी डिग्री 1 से अधिक है।
क्षेत्र का कोई उचित परिमित विस्तार नहीं है
क्षेत्र F को बीजगणितीय रूप से बंद किया जाता है यदि और केवल यदि इसका कोई उचित परिमित विस्तार नहीं है, क्योंकि यदि, #The फ़ील्ड के भीतर कोई उचित बीजीय विस्तार नहीं है, तो बीजीय विस्तार शब्द को परिमित विस्तार शब्द से बदल दिया जाता है, तो प्रमाण अभी भी मान्य है। (ध्यान दें कि परिमित एक्सटेंशन अनिवार्य रूप से बीजीय हैं।)
=== F . का प्रत्येक एंडोमोर्फिज्मn में कुछ eigenvector=== . है फ़ील्ड F बीजगणितीय रूप से बंद है यदि और केवल यदि, प्रत्येक प्राकृतिक संख्या n के लिए, F . से प्रत्येक रैखिक मानचित्रn अपने आप में कुछ eigenvector है।
F . का एंडोमोर्फिज्म n में एक eigenvector होता है यदि और केवल यदि इसके अभिलक्षणिक बहुपद का कुछ मूल हो। इसलिए, जब F को बीजगणितीय रूप से बंद किया जाता है, तो F . का प्रत्येक एंडोमोर्फिज्मn में कुछ eigenvector है। दूसरी ओर, यदि F . का प्रत्येक एंडोमोर्फिज्मn में एक eigenvector है, मान लीजिए p(x) F[x] का एक अवयव है। इसके प्रमुख गुणांक से भाग देने पर, हमें एक और बहुपद q(x) प्राप्त होता है, जिसके मूल केवल तभी होते हैं जब p(x) के मूल हों। लेकिन अगर q(x) = xn + an − 1xn − 1+ + a0, तो q(x) n×n साथी आव्यूह का अभिलक्षणिक बहुपद है
परिमेय व्यंजकों का अपघटन
फ़ील्ड F बीजगणितीय रूप से बंद होता है यदि और केवल यदि एक चर x में प्रत्येक परिमेय फलन, F में गुणांकों के साथ, a/(x − b) रूप के परिमेय फलनों के साथ एक बहुपद फलन के योग के रूप में लिखा जा सकता है।n, जहाँ n एक प्राकृत संख्या है, और a और b, F के अवयव हैं।
यदि F को बीजगणितीय रूप से बंद कर दिया जाता है, क्योंकि F[x] में इरेड्यूसिबल बहुपद सभी डिग्री 1 के होते हैं, ऊपर बताई गई संपत्ति आंशिक अंश अपघटन # प्रमेय के कथन द्वारा धारण की जाती है।
दूसरी ओर, मान लीजिए कि ऊपर बताई गई संपत्ति F क्षेत्र के लिए है। मान लीजिए कि p(x) F[x] में एक अपरिवर्तनीय तत्व है। तब परिमेय फलन 1/p को a/(x – b) के रूप के परिमेय फलनों के साथ बहुपद फलन q के योग के रूप में लिखा जा सकता है।एन. इसलिए, तर्कसंगत अभिव्यक्ति
दो बहुपदों के भागफल के रूप में लिखा जा सकता है जिसमें हर पहली डिग्री बहुपद का एक उत्पाद है। चूंकि p(x) इरेड्यूसेबल है, इसलिए इसे इस उत्पाद को विभाजित करना चाहिए और इसलिए, यह एक प्रथम डिग्री बहुपद भी होना चाहिए।
अपेक्षाकृत अभाज्य बहुपद और मूल
किसी भी क्षेत्र F के लिए, यदि दो बहुपद p(x),q(x) ∈ F[x] सहअभाज्य हैं तो उनका एक उभयनिष्ठ मूल नहीं होता, क्योंकि यदि a ∈ F एक उभयनिष्ठ मूल था, तो p(x) और q (x) दोनों x − a के गुणज होंगे और इसलिए वे अपेक्षाकृत अभाज्य नहीं होंगे। जिन क्षेत्रों के लिए विपरीत निहितार्थ होता है (अर्थात, ऐसे क्षेत्र जहां जब भी दो बहुपदों की कोई सामान्य जड़ नहीं होती है तो वे अपेक्षाकृत प्रमुख होते हैं) ठीक बीजगणितीय रूप से बंद क्षेत्र होते हैं।
यदि फ़ील्ड F बीजगणितीय रूप से बंद है, तो p(x) और q(x) दो बहुपद हैं जो अपेक्षाकृत अभाज्य नहीं हैं और r(x) को उनका सबसे बड़ा सामान्य भाजक मानते हैं। फिर, चूँकि r(x) अचर नहीं है, इसका कुछ मूल a होगा, जो तब p(x) और q(x) का एक उभयनिष्ठ मूल होगा।
यदि F बीजगणितीय रूप से बंद नहीं है, तो मान लीजिए कि p(x) एक बहुपद है जिसकी घात कम से कम 1 बिना मूल की है। तब p(x) और p(x) अपेक्षाकृत अभाज्य नहीं हैं, लेकिन उनकी कोई उभयनिष्ठ जड़ें नहीं हैं (क्योंकि उनमें से किसी की भी जड़ें नहीं हैं)।
अन्य गुण
यदि F एक बीजगणितीय रूप से बंद क्षेत्र है और n एक प्राकृतिक संख्या है, तो F में एकता की सभी nth जड़ें होती हैं, क्योंकि ये (परिभाषा के अनुसार) बहुपद x के n (जरूरी नहीं अलग) शून्य हैंn − 1. एकता की जड़ों द्वारा उत्पन्न एक विस्तार में निहित एक क्षेत्र विस्तार एक चक्रवातीय विस्तार है, और एकता की सभी जड़ों द्वारा उत्पन्न क्षेत्र के विस्तार को कभी-कभी इसका साइक्लोटॉमिक क्लोजर कहा जाता है। इस प्रकार बीजगणितीय रूप से बंद क्षेत्र चक्रीय रूप से बंद होते हैं। इसका उलट सत्य नहीं है। यह मानते हुए भी कि x . के रूप का प्रत्येक बहुपदn - रैखिक कारकों में विभाजन यह सुनिश्चित करने के लिए पर्याप्त नहीं है कि फ़ील्ड बीजगणितीय रूप से बंद है।
यदि एक प्रस्ताव जिसे प्रथम-क्रम तर्क की भाषा में व्यक्त किया जा सकता है, बीजगणितीय रूप से बंद क्षेत्र के लिए सही है, तो यह प्रत्येक बीजगणितीय रूप से बंद फ़ील्ड के लिए समान विशेषता (बीजगणित) के साथ सच है। इसके अलावा, यदि ऐसा प्रस्ताव बीजगणितीय रूप से बंद फ़ील्ड के लिए विशेषता 0 के साथ मान्य है, तो यह न केवल अन्य सभी बीजगणितीय रूप से बंद क्षेत्रों के लिए मान्य है, लेकिन कुछ प्राकृतिक संख्या एन है जैसे कि प्रस्ताव प्रत्येक बीजगणितीय रूप से बंद के लिए मान्य है विशेषता के साथ फ़ील्ड p जब p > N.[2] प्रत्येक क्षेत्र F का कुछ विस्तार होता है जो बीजगणितीय रूप से बंद होता है। इस तरह के विस्तार को 'बीजगणितीय रूप से बंद विस्तार' कहा जाता है। ऐसे सभी एक्सटेंशन में एक और केवल एक (अप करने के लिए, लेकिन अनिवार्य रूप से अद्वितीय नहीं) है जो F का बीजीय विस्तार है;[3] इसे F का बीजगणितीय समापन कहते हैं।
बीजगणितीय रूप से बंद क्षेत्रों के सिद्धांत में मात्रात्मक उन्मूलन है।
टिप्पणियाँ
- ↑ Shipman, J. Improving the Fundamental Theorem of Algebra The Mathematical Intelligencer, Volume 29 (2007), Number 4. pp. 9–14
- ↑ See subsections Rings and fields and Properties of mathematical theories in §2 of J. Barwise's "An introduction to first-order logic".
- ↑ See Lang's Algebra, §VII.2 or van der Waerden's Algebra I, §10.1.
संदर्भ
- Barwise, Jon (1978). "An introduction to first-order logic". In Barwise, Jon (ed.). Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics. North Holland. ISBN 0-7204-2285-X.
- Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Vol. 211 (revised third ed.). New York, NY: Springer-Verlag. ISBN 978-0-387-95385-4. MR 1878556.
- Shipman, Joseph (2007). "Improving the fundamental theorem of algebra". Mathematical Intelligencer. 29 (4): 9–14. doi:10.1007/BF02986170. ISSN 0343-6993.
- van der Waerden, Bartel Leendert (2003). Algebra. Vol. I (7th ed.). Springer-Verlag. ISBN 0-387-40624-7.