बीजगणित का मौलिक प्रमेय: Difference between revisions
mNo edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Every polynomial has a real or complex root}} | {{Short description|Every polynomial has a real or complex root}} | ||
{{Distinguish| | {{Distinguish|अंकगणित का मौलिक प्रमेय}} | ||
'''''बीजगणित का मौलिक प्रमेय''''', जिसे डी'अलेम्बर्ट प्रमेय के रूप में भी जाना जाता है, डी'अलेम्बर्ट-गॉस प्रमेय, के अनुसार सम्मिश्र संख्या गुणांक वाले प्रत्येक गैर अचर [[बहुपद]] एकल-चर बहुपद में एक फलन का कम से कम एक सम्मिश्र मूल होता है। इसमें वास्तविक गुणांक वाले बहुपद सम्मिलित हैं, क्योंकि प्रत्येक वास्तविक संख्या एक [[जटिल संख्या|समिश्र संख्या]] है जिसका [[काल्पनिक भाग]] शून्य के बराबर होता है। | '''''बीजगणित का मौलिक प्रमेय''''', जिसे डी'अलेम्बर्ट प्रमेय के रूप में भी जाना जाता है, डी'अलेम्बर्ट-गॉस प्रमेय, के अनुसार सम्मिश्र संख्या गुणांक वाले प्रत्येक गैर अचर [[बहुपद]] एकल-चर बहुपद में एक फलन का कम से कम एक सम्मिश्र मूल होता है। इसमें वास्तविक गुणांक वाले बहुपद सम्मिलित हैं, क्योंकि प्रत्येक वास्तविक संख्या एक [[जटिल संख्या|समिश्र संख्या]] है जिसका [[काल्पनिक भाग]] शून्य के बराबर होता है। | ||
समान रूप से (परिभाषा के अनुसार), प्रमेय कहती है कि समिश्र संख्याओं का [[क्षेत्र (गणित)]] बीजगणितीय रूप से बंद क्षेत्र है। | समान रूप से(परिभाषा के अनुसार), प्रमेय कहती है कि समिश्र संख्याओं का [[क्षेत्र (गणित)|क्षेत्र(गणित)]] बीजगणितीय रूप से बंद क्षेत्र है। | ||
प्रमेय को निम्नानुसार भी कहा गया है: प्रत्येक अशून्य, एकल-चर, समिश्र | प्रमेय को निम्नानुसार भी कहा गया है: प्रत्येक अशून्य, एकल-चर, समिश्र गुणांक वाले बहुपद n बहुपद की घात, बहुपद(गणित) बहुपद की मूल की बहुलता, ठीक n समिश्र मूलों के साथ गिना जाता है। क्रमिक [[बहुपद विभाजन]] के उपयोग के माध्यम से दो कथनों की समानता सिद्ध की जा सकती है। | ||
इसके नाम के | इसके नाम के अतिरिक्त, प्रमेय का कोई विशुद्ध रूप से बीजगणितीय प्रमाण नहीं है, क्योंकि किसी भी प्रमाण को वास्तविक संख्याओं की विश्लेषणात्मक पूर्णता के किसी रूप का उपयोग करना चाहिए, जो बीजगणितीय प्रमाण है।<ref>Even the proof that the equation <math>x^2-2=0</math> has a solution involves the [[construction of the real numbers|definition of the real numbers]] through some form of completeness (specifically the [[intermediate value theorem]]).</ref> इसके अतिरिक्त, यह [[आधुनिक बीजगणित]] के लिए मौलिक नहीं है; इसका नाम उस समय दिया गया था जब बीजगणित समीकरणों के सिद्धांत का पर्याय बन गया था। | ||
== इतिहास == | == इतिहास == | ||
पीटर रोथ ने अपनी पुस्तक अरिथमेटिका फिलोसोफिका में (जोहान लैंट्ज़ेनबर्गर द्वारा नूर्नबर्ग में 1608 में प्रकाशित), में लिखा है कि घात n के एक बहुपद समीकरण (वास्तविक गुणांकों के साथ) के n समाधान हो सकते हैं। [[अल्बर्ट गिरार्ड]] ने अपनी पुस्तक एल' | पीटर रोथ ने अपनी पुस्तक अरिथमेटिका फिलोसोफिका में(जोहान लैंट्ज़ेनबर्गर द्वारा नूर्नबर्ग में 1608 में प्रकाशित), में लिखा है कि घात n के एक बहुपद समीकरण(वास्तविक गुणांकों के साथ) के n समाधान हो सकते हैं। [[अल्बर्ट गिरार्ड]] ने अपनी पुस्तक एल'इन्वेंशन नौवेल्ले इन एल'एल्जेब्रे(1629 में प्रकाशित) में दावा किया कि घात n के एक बहुपद समीकरण के n समाधान हैं, लेकिन उन्होंने यह नहीं कहा कि उन्हें वास्तविक संख्याएँ होनी चाहिए। इसके अतिरिक्त, उन्होंने कहा कि उनका दावा तब तक बना रहता है जब तक कि समीकरण अधूरा न हो, जिससे उनका मतलब था कि कोई भी गुणांक 0 के बराबर नहीं है। | ||
हालांकि, जब वह विस्तार से बताते हैं कि उनका क्या मतलब है, तो यह स्पष्ट है कि वह वास्तव में मानते हैं कि उनका दावा हमेशा सच होता है। ; उदाहरण के लिए, वह दिखाता है कि समीकरण ''x''<sup>2</sup> = 4X - | हालांकि, जब वह विस्तार से बताते हैं कि उनका क्या मतलब है, तो यह स्पष्ट है कि वह वास्तव में मानते हैं कि उनका दावा हमेशा सच होता है। ; उदाहरण के लिए, वह दिखाता है कि समीकरण ''x''<sup>2</sup> = 4X - 3हला कि अपूर्ण है, इसके चार हल हैं(बहुगुणों की गिनती): 1(दो बार), तथा -1+√2i तथा '''-'''1-√2i जैसा कि नीचे फिर से उल्लेख किया जाएगा, यह बीजगणित के मौलिक प्रमेय का अनुसरण करता है कि वास्तविक गुणांक वाले प्रत्येक गैर-अचर बहुपद को वास्तविक गुणांक वाले बहुपदों के उत्पाद के रूप में लिखा जा सकता है, जिनकी घात या तो 1 या 2 है। हालांकि, 1702 में [[गॉटफ्रीड लीबनिज]] ने कहा कि ''x''<sup>4</sup> + ''a''<sup>4</sup> प्रकार के किसी बहुपद( जिसमे ''a'' वास्तविक और 0 से भिन्न) को इस प्रकार नहीं लिखा जा सकता है। बाद में, निकोलस प्रथम बर्नौली ने बहुपद के संबंध में यही अभिकथन किया ''x''<sup>4</sup> − 4''x''<sup>3</sup> + 2''x''<sup>2</sup> + 4''x'' + 4, लेकिन उन्हें 1742 में [[लियोनहार्ड यूलर]] का एक पत्र मिला जिसमें यह दिखाया गया कि यह निम्न बहुपद के बराबर है | ||
:<math>\left (x^2-(2+\alpha)x+1+\sqrt{7}+\alpha \right ) \left (x^2-(2-\alpha)x+1+\sqrt{7}-\alpha \right ),</math> | :<math>\left (x^2-(2+\alpha)x+1+\sqrt{7}+\alpha \right ) \left (x^2-(2-\alpha)x+1+\sqrt{7}-\alpha \right ),</math> | ||
साथ <math>\alpha = \sqrt{4+2\sqrt{7}}.</math> | साथ <math>\alpha = \sqrt{4+2\sqrt{7}}.</math> | ||
साथ ही, यूलर ने बताया कि | साथ ही, यूलर ने बताया कि | ||
:<math>x^4+a^4= \left (x^2+a\sqrt{2}\cdot x+a^2 \right ) \left (x^2-a\sqrt{2}\cdot x+a^2 \right ).</math> | :<math>x^4+a^4= \left (x^2+a\sqrt{2}\cdot x+a^2 \right ) \left (x^2-a\sqrt{2}\cdot x+a^2 \right ).</math> | ||
प्रमेय को सिद्ध करने का पहला प्रयास 1746 में जीन ले रोंड डी'अलेम्बर्ट|डी'अलेम्बर्ट द्वारा किया गया था, लेकिन उसका प्रमाण अधूरा था। अन्य समस्याओं के अतिरिक्त, यह एक प्रमेय (अब पुइसेक्स के प्रमेय के रूप में जाना जाता है) को निहित रूप से ग्रहण करता है, जो एक शताब्दी से अधिक समय तक और बीजगणित के मौलिक प्रमेय का उपयोग करके सिद्ध नहीं होगा। लियोनहार्ड यूलर (1749), फ्रांकोइस डेविएट डी फोन्सेंक्स (1759), [[जोसेफ लुइस लाग्रेंज]] (1772), और [[पियरे-साइमन लाप्लास]] (1795) द्वारा अन्य प्रयास किए गए। इन अंतिम चार प्रयासों में निहित रूप से गिरार्ड के दावे को ग्रहण किया गया; अधिक सटीक होने के लिए, समाधानों के अस्तित्व को मान लिया गया था और जो कुछ प्रमाणित | प्रमेय को सिद्ध करने का पहला प्रयास 1746 में जीन ले रोंड डी'अलेम्बर्ट|डी'अलेम्बर्ट द्वारा किया गया था, लेकिन उसका प्रमाण अधूरा था। अन्य समस्याओं के अतिरिक्त, यह एक प्रमेय(अब पुइसेक्स के प्रमेय के रूप में जाना जाता है) को निहित रूप से ग्रहण करता है, जो एक शताब्दी से अधिक समय तक और बीजगणित के मौलिक प्रमेय का उपयोग करके सिद्ध नहीं होगा। लियोनहार्ड यूलर(1749), फ्रांकोइस डेविएट डी फोन्सेंक्स(1759), [[जोसेफ लुइस लाग्रेंज]](1772), और [[पियरे-साइमन लाप्लास]](1795) द्वारा अन्य प्रयास किए गए। इन अंतिम चार प्रयासों में निहित रूप से गिरार्ड के दावे को ग्रहण किया गया; अधिक सटीक होने के लिए, समाधानों के अस्तित्व को मान लिया गया था और जो कुछ प्रमाणित होना बाकी था, वह यह था कि उनका रूप कुछ वास्तविक संख्याओं a और b के लिए a+bi था। आधुनिक शब्दों में, यूलर, डी फोन्सेंक्स, लाग्रेंज, और लाप्लास बहुपद p(z) के विभाजन वाले क्षेत्र के अस्तित्व को मान रहे थे। | ||
18वीं शताब्दी के अंत में, दो नए प्रमाण प्रकाशित हुए जो मूलों के अस्तित्व को नहीं मानते थे, लेकिन इनमें से कोई भी पूर्ण नहीं था। उनमें से एक, जो [[जेम्स वुड (गणितज्ञ)]] द्वारा दिया गया था,मुख्य रूप से बीजगणितीय होने के कारण, 1798 में प्रकाशित हुआ था और इसे पूरी तरह से नजरअंदाज कर दिया गया था। वुड के प्रमाण में बीजगणितीय अंतर था। दूसरे को 1799 में [[कार्ल फ्रेडरिक गॉस]] द्वारा प्रकाशित किया गया था और यह मुख्य रूप से ज्यामितीय था, लेकिन इसमें एक सामयिक अंतर था, जिसे केवल 1920 में [[अलेक्जेंडर ओस्ट्रोव्स्की]] द्वारा भरा गया था, जैसा कि स्मेल (1981) में चर्चा की गई थी। पहला कठोर प्रमाण 1806 में [[जीन-रॉबर्ट अरगंड]], शौकिया गणितज्ञों की एक सूची द्वारा प्रकाशित किया गया था (और 1813 में पुनरीक्षित); यहीं पर पहली बार, बीजगणित के मौलिक प्रमेय को केवल वास्तविक गुणांकों के बजाय समिश्र | 18वीं शताब्दी के अंत में, दो नए प्रमाण प्रकाशित हुए जो मूलों के अस्तित्व को नहीं मानते थे, लेकिन इनमें से कोई भी पूर्ण नहीं था। उनमें से एक, जो [[जेम्स वुड (गणितज्ञ)|जेम्स वुड(गणितज्ञ)]] द्वारा दिया गया था,मुख्य रूप से बीजगणितीय होने के कारण, 1798 में प्रकाशित हुआ था और इसे पूरी तरह से नजरअंदाज कर दिया गया था। वुड के प्रमाण में बीजगणितीय अंतर था। दूसरे को 1799 में [[कार्ल फ्रेडरिक गॉस]] द्वारा प्रकाशित किया गया था और यह मुख्य रूप से ज्यामितीय था, लेकिन इसमें एक सामयिक अंतर था, जिसे केवल 1920 में [[अलेक्जेंडर ओस्ट्रोव्स्की]] द्वारा भरा गया था, जैसा कि स्मेल(1981) में चर्चा की गई थी। पहला कठोर प्रमाण 1806 में [[जीन-रॉबर्ट अरगंड]], शौकिया गणितज्ञों की एक सूची द्वारा प्रकाशित किया गया था(और 1813 में पुनरीक्षित); यहीं पर पहली बार, बीजगणित के मौलिक प्रमेय को केवल वास्तविक गुणांकों के बजाय समिश्र गुणांक वाले बहुपदों के लिए बताया गया था। गॉस ने 1816 में दो अन्य प्रमाण पेश किए और 1849 में अपने मूल प्रमाण का एक और अधूरा संस्करण पेश किया। | ||
प्रमेय के प्रमाण वाली पहली पाठ्यपुस्तक कौशी का कोर्ट्स डी'एनालिसिस|कोर्ट्स डी'एनालिसिस डी ल'इकोले रोयाले पॉलीटेक्निक (1821) थी। इसमें अरगंड का प्रमाण सम्मिलित | प्रमेय के प्रमाण वाली पहली पाठ्यपुस्तक कौशी का कोर्ट्स डी'एनालिसिस|कोर्ट्स डी'एनालिसिस डी ल'इकोले रोयाले पॉलीटेक्निक(1821) थी। इसमें अरगंड का प्रमाण सम्मिलित था, हालांकि [[जॉन रॉबर्ट अरगंड]] को इसका श्रेय नहीं दिया जाता है। | ||
अब तक उल्लिखित कोई भी प्रमाण रचनावाद (गणित) नहीं है। 19वीं शताब्दी के मध्य में पहली बार [[विअरस्ट्रास]] ने बीजगणित के मौलिक प्रमेय के [[रचनात्मक प्रमाण]] को खोजने की समस्या को उठाया। उन्होंने अपना समाधान प्रस्तुत किया, जो 1891 में होमोटोपी निरंतरता सिद्धांत के साथ डुरंड-कर्नर पद्धति के संयोजन के लिए आधुनिक शब्दों में है। इस तरह का एक और प्रमाण 1940 में [[हेलमथ केसर]] द्वारा प्राप्त किया गया था और 1981 में उनके बेटे [[मार्टिन केनेसर]] द्वारा सरलीकृत किया गया था। | अब तक उल्लिखित कोई भी प्रमाण रचनावाद(गणित) नहीं है। 19वीं शताब्दी के मध्य में पहली बार [[विअरस्ट्रास]] ने बीजगणित के मौलिक प्रमेय के [[रचनात्मक प्रमाण]] को खोजने की समस्या को उठाया। उन्होंने अपना समाधान प्रस्तुत किया, जो 1891 में होमोटोपी निरंतरता सिद्धांत के साथ डुरंड-कर्नर पद्धति के संयोजन के लिए आधुनिक शब्दों में है। इस तरह का एक और प्रमाण 1940 में [[हेलमथ केसर]] द्वारा प्राप्त किया गया था और 1981 में उनके बेटे [[मार्टिन केनेसर]] द्वारा सरलीकृत किया गया था। | ||
[[गणनीय विकल्प]] का उपयोग किए बिना, वास्तविक संख्याओं के निर्माण के आधार पर समिश्र | [[गणनीय विकल्प]] का उपयोग किए बिना, वास्तविक संख्याओं के निर्माण के आधार पर समिश्र संख्याओं के लिए बीजगणित के मौलिक प्रमेय को रचनात्मक रूप से सिद्ध करना संभव नहीं है(जो बिना गणनीय विकल्प के [[कॉची]] वास्तविक संख्याओं के रचनात्मक रूप से समतुल्य नहीं हैं)।<ref>For the minimum necessary to prove their equivalence, see Bridges, Schuster, and Richman; 1998; <cite>A weak countable choice principle</cite>; available from [http://math.fau.edu/richman/HTML/DOCS.HTM].</ref> हालांकि, [[फ्रेड रिचमैन]] ने प्रमेय का एक सुधारित संस्करण प्रमाणित किया जो काम करता है।<ref>See Fred Richman; 1998; <cite>The fundamental theorem of algebra: a constructive development without choice</cite>; available from [http://math.fau.edu/richman/HTML/DOCS.HTM].</ref> | ||
== समतुल्य कथन == | == समतुल्य कथन == | ||
प्रमेय के कई समतुल्य योग हैं: | प्रमेय के कई समतुल्य योग हैं: | ||
* वास्तविक गुणांकों के साथ सकारात्मक घात के प्रत्येक [[अविभाज्य बहुपद]] में कम से कम एक फलन का एक समिश्र | * वास्तविक गुणांकों के साथ सकारात्मक घात के प्रत्येक [[अविभाज्य बहुपद]] में कम से कम एक फलन का एक समिश्र शून्य होता है। | ||
* समिश्र | * समिश्र गुणांकों के साथ धनात्मक घात के प्रत्येक अविभाजित बहुपद में एक फलन का कम से कम एक समिश्र शून्य होता है। | ||
*: इसका तात्पर्य पिछले अभिकथन से है, क्योंकि वास्तविक संख्याएँ भी समिश्र | *: इसका तात्पर्य पिछले अभिकथन से है, क्योंकि वास्तविक संख्याएँ भी समिश्र संख्याएँ हैं। विपरीत परिणाम इस तथ्य से मिलता है कि एक बहुपद और उसके समिश्र संयुग्म के उत्पाद को वास्तविक गुणांक के साथ एक बहुपद प्राप्त होता है(प्रत्येक गुणांक को इसके समिश्र संयुग्म के साथ बदलकर प्राप्त किया जाता है)। इस गुणनफल का एक मूल या तो दिए गए बहुपद का मूल है, या इसके संयुग्म का; बाद वाली स्थिति में, इस मूल का संयुग्मी दिए गए बहुपद का एक मूल है। | ||
* सकारात्मक घात का प्रत्येक अविभाज्य बहुपद {{mvar|n}} समिश्र | * सकारात्मक घात का प्रत्येक अविभाज्य बहुपद {{mvar|n}} समिश्र गुणांक के साथ [[गुणन]]खंड किया जा सकता है <math display =block>c(x-r_1)\cdots(x-r_n),</math> कहाँ पे <math>c, r_1, \ldots, r_n</math> समिश्र संख्याएँ हैं। | ||
*: {{mvar|n}}<nowiki> }} समिश्र | *: {{mvar|n}}<nowiki> }} समिश्र आंकड़े </nowiki><math>r_1, \ldots, r_n</math> बहुपद की मूल हैं। यदि एक मूल कई कारकों में प्रकट होती है, तो यह एक बहुमूल है, और इसकी घटनाओं की संख्या, परिभाषा के अनुसार, मूल की [[बहुलता (गणित)|बहुलता(गणित)]] है। | ||
*: प्रमाण है कि यह कथन पिछले वाले से परिणामित होता है, पर पुनरावर्तन द्वारा किया जाता है {{mvar|n}}: जब एक मूल <math>r_1</math> द्वारा बहुपद विभाजन पाया गया है <math>x-r_1</math> घात का बहुपद प्रदान करता है <math>n-1</math> जिनकी मूल दिए गए बहुपद की अन्य मूल हैं। | *: प्रमाण है कि यह कथन पिछले वाले से परिणामित होता है, पर पुनरावर्तन द्वारा किया जाता है {{mvar|n}}: जब एक मूल <math>r_1</math> द्वारा बहुपद विभाजन पाया गया है <math>x-r_1</math> घात का बहुपद प्रदान करता है <math>n-1</math> जिनकी मूल दिए गए बहुपद की अन्य मूल हैं। | ||
अगले दो कथन पिछले वाले के बराबर हैं, हालांकि उनमें कोई अवास्तविक सम्मिश्र संख्या सम्मिलित | अगले दो कथन पिछले वाले के बराबर हैं, हालांकि उनमें कोई अवास्तविक सम्मिश्र संख्या सम्मिलित नहीं है। इन कथनों को पिछले गुणनखंडों से यह टिप्पणी करके सिद्ध किया जा सकता है कि, यदि {{mvar|r}} वास्तविक गुणांक वाले बहुपद की एक गैर-वास्तविक मूल है, इसका समिश्र संयुग्म <math>\overline r</math> एक मूल भी है, और <math>(x-r)(x-\overline r)</math> वास्तविक गुणांकों के साथ घात दो का बहुपद है। इसके विपरीत, यदि किसी के पास घात दो का गुणनखंड है, तो [[द्विघात सूत्र]] एक मूल देता है। | ||
* दो से अधिक घात के वास्तविक गुणांक वाले प्रत्येक अविभाजित बहुपद में वास्तविक गुणांकों के साथ घात दो का कारक होता है। | * दो से अधिक घात के वास्तविक गुणांक वाले प्रत्येक अविभाजित बहुपद में वास्तविक गुणांकों के साथ घात दो का कारक होता है। | ||
* सकारात्मक घात के वास्तविक गुणांक वाले प्रत्येक अविभाज्य बहुपद को इस प्रकार विभाजित किया जा सकता है <math display = block>cp_1\cdots p_k,</math> कहाँ पे {{mvar|c}} एक वास्तविक संख्या है और प्रत्येक <math>p_i</math> वास्तविक गुणांकों के साथ अधिकतम दो घात का एक [[मोनिक बहुपद]] है। इसके अतिरिक्त, कोई यह मान सकता है कि घात दो के गुणनखंडों का कोई वास्तविक मूल नहीं है। | * सकारात्मक घात के वास्तविक गुणांक वाले प्रत्येक अविभाज्य बहुपद को इस प्रकार विभाजित किया जा सकता है <math display = block>cp_1\cdots p_k,</math> कहाँ पे {{mvar|c}} एक वास्तविक संख्या है और प्रत्येक <math>p_i</math> वास्तविक गुणांकों के साथ अधिकतम दो घात का एक [[मोनिक बहुपद]] है। इसके अतिरिक्त, कोई यह मान सकता है कि घात दो के गुणनखंडों का कोई वास्तविक मूल नहीं है। | ||
== '''प्रमाण''' == | == '''प्रमाण''' == | ||
नीचे दिए गए सभी प्रमाणों में कुछ [[गणितीय विश्लेषण]], या कम से कम वास्तविक या समिश्र फलनों | नीचे दिए गए सभी प्रमाणों में कुछ [[गणितीय विश्लेषण]], या कम से कम वास्तविक या समिश्र फलनों सतता की [[टोपोलॉजी|सांस्थितिक]] अवधारणा सम्मिलित है। कुछ [[यौगिक|अवकलनीय]] या [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]] का भी उपयोग करते हैं। इस आवश्यकता ने इस टिप्पणी को जन्म दिया है कि बीजगणित का मौलिक प्रमेय न तो मौलिक है, न ही बीजगणित का प्रमेय है।<ref>{{Cite book|last1=Aigner|first1=Martin|url=http://worldcat.org/oclc/1033531310|title=पुस्तक से प्रमाण|last2=Ziegler|first2=Günter|publisher=Springer|year=2018|isbn=978-3-662-57264-1|pages=151|oclc=1033531310}}</ref> | ||
प्रमेय के कुछ प्रमाण केवल यह प्रमाणित करते हैं कि वास्तविक गुणांक वाले किसी भी असतत बहुपद का कुछ समिश्र मूल होता है। यह प्रमेय सामान्य कारण को स्थापित करने के लिए पर्याप्त है क्योंकि समिश्र गुणांकों के साथ एक गैर-अचर बहुपद p(z) दिए जाने पर, बहुपद | प्रमेय के कुछ प्रमाण केवल यह प्रमाणित करते हैं कि वास्तविक गुणांक वाले किसी भी असतत बहुपद का कुछ समिश्र मूल होता है। यह प्रमेय सामान्य कारण को स्थापित करने के लिए पर्याप्त है क्योंकि समिश्र गुणांकों के साथ एक गैर-अचर बहुपद p(z) दिए जाने पर, बहुपद | ||
:<math>q(z)=p(z)\overline{p(\overline z)}</math> | :<math>q(z)=p(z)\overline{p(\overline z)}</math> | ||
केवल वास्तविक गुणांक हैं और, यदि z, q(z) का एक शून्य है, तो या तो z या इसका सयुग्मी | केवल वास्तविक गुणांक हैं और, यदि z, q(z) का एक शून्य है, तो या तो z या इसका सयुग्मी p(z) का एक मूल है। | ||
प्रमेय के कई गैर-बीजगणितीय प्रमाण इस तथ्य का उपयोग करते हैं (कभी-कभी विकास प्रमेय कहा जाता है) कि एक बहुपद फलन p(z) घात n जिसका प्रमुख गुणांक 1 है, z की तरह व्यवहार करता है<sup>n</sup> कब |z| काफी बड़ा है। अधिक सटीक रूप से, कुछ धनात्मक वास्तविक संख्या R है जैसे कि | प्रमेय के कई गैर-बीजगणितीय प्रमाण इस तथ्य का उपयोग करते हैं(कभी-कभी विकास प्रमेय कहा जाता है) कि एक बहुपद फलन p(z) घात n जिसका प्रमुख गुणांक 1 है, z की तरह व्यवहार करता है<sup>n</sup> कब |z| काफी बड़ा है। अधिक सटीक रूप से, कुछ धनात्मक वास्तविक संख्या R है जैसे कि | ||
:<math>\tfrac{1}{2}|z^n|<|p(z)|<\tfrac{3}{2}|z^n|</math> | :<math>\tfrac{1}{2}|z^n|<|p(z)|<\tfrac{3}{2}|z^n|</math> | ||
Line 56: | Line 56: | ||
: <math>p(x) = (x^2 - ax - b) q(x) + x\,R_{p(x)}(a, b) + S_{p(x)}(a, b),</math> | : <math>p(x) = (x^2 - ax - b) q(x) + x\,R_{p(x)}(a, b) + S_{p(x)}(a, b),</math> | ||
जहाँ q(x) घात n - 2 का बहुपद है। गुणांक ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') और''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') ''x'' से स्वतंत्र हैं और पूरी तरह से ''p''(''x'') के गुणांक द्वारा परिभाषित हैं। प्रतिनिधित्व के मामले में ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') और ''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') ''a''और ''b'' में द्विचरीय बहुपद हैं। 1799 से इस प्रमेय के गॉस के पहले (अधूरे) प्रमाण के तरीके में, कुंजी यह दिखाने के लिए है कि b के किसी भी बड़े ऋणात्मक मान के लिए, दोनों R की सभी मूल | जहाँ q(x) घात n - 2 का बहुपद है। गुणांक ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') और''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') ''x'' से स्वतंत्र हैं और पूरी तरह से ''p''(''x'') के गुणांक द्वारा परिभाषित हैं। प्रतिनिधित्व के मामले में ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') और ''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') ''a''और ''b'' में द्विचरीय बहुपद हैं। 1799 से इस प्रमेय के गॉस के पहले(अधूरे) प्रमाण के तरीके में, कुंजी यह दिखाने के लिए है कि b के किसी भी बड़े ऋणात्मक मान के लिए, दोनों R की सभी मूल ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') और ''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') चर में a वास्तविक मान हैं और एक-दूसरे को बदलते हैं(अंतरफलक लक्षण )। स्टर्म जैसी श्रृंखला जिसमें ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') और ''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') लगातार फलनों के रूप में सम्मिलित है,चर a अंतरफलक श्रृंखला में सभी लगातार जोड़े के लिए दिखाया जा सकता है जब b में पर्याप्त रूप से बड़ा ऋणात्मक मान हो। जैसे की ''S<sub>p</sub>''(''a'', ''b'' = 0) = ''p''(0) की कोई मूल नहीं है, ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') and ''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') की अंतरफलक चर a, b = 0 पर विफल रहता है। सामयिक तर्कों को अंतरफलक लक्षण पर लागू किया जा सकता है यह दिखाने के लिए कि ''R<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') और ''S<sub>p</sub>''<sub>(''x'')</sub>(''a'', ''b'') की मूलों का बिन्दुपथ कुछ वास्तविक मान a और b <0 के लिए प्रतिच्छेदित करना चाहिए। | ||
=== समिश्र -विश्लेषणात्मक प्रमाण === | === समिश्र -विश्लेषणात्मक प्रमाण === | ||
त्रिज्या r की एक बंद [[डिस्क (गणित)|चकती]] D खोजें जो मूल पर केंद्रित हो जैसे कि|''p''(''z'')| > |''p''(0)| जब भी |z| ≥ r।, D पर |p(z)| न्यूनतम , जो उपस्थित होना चाहिए क्योंकि D [[कॉम्पैक्ट सेट|छोटा]] | त्रिज्या r की एक बंद [[डिस्क (गणित)|चकती]] D खोजें जो मूल पर केंद्रित हो जैसे कि|''p''(''z'')| > |''p''(0)| जब भी |z| ≥ r।, D पर |p(z)| न्यूनतम , जो उपस्थित होना चाहिए क्योंकि D [[कॉम्पैक्ट सेट|छोटा]] है, इसलिए कुछ बिंदु ''z''<sub>0</sub> D के भीतर हासिल किया जाता है , लेकिन इसकी सीमा के किसी भी बिंदु पर नहीं। 1/p(z) पर लागू अधिकतम गुणांक सिद्धांत का अर्थ है कि p(z<sub>0</sub>) = 0. दूसरे शब्दों में, z<sub>0</sub> ,p(z) का शून्य है। | ||
इस सबूत की भिन्नता के लिए अधिकतम गुणांक सिद्धांत की आवश्यकता नहीं होती है (वास्तव में, इसी तरह का तर्क होलोमोर्फिक कार्यों के लिए अधिकतम गुणांक सिद्धांत का प्रमाण भी देता है)। सिद्धांत लागू होने से पहले से जारी है, अगर a := p(z<sub>0</sub>) ≠ 0, फिर, ''z'' − ''z''<sub>0</sub> की घात में p(z) का विस्तार करने पर , हम लिख सकते हैं | इस सबूत की भिन्नता के लिए अधिकतम गुणांक सिद्धांत की आवश्यकता नहीं होती है(वास्तव में, इसी तरह का तर्क होलोमोर्फिक कार्यों के लिए अधिकतम गुणांक सिद्धांत का प्रमाण भी देता है)। सिद्धांत लागू होने से पहले से जारी है, अगर a := p(z<sub>0</sub>) ≠ 0, फिर, ''z'' − ''z''<sub>0</sub> की घात में p(z) का विस्तार करने पर , हम लिख सकते हैं | ||
<math>p(z) = a + c_k (z-z_0)^k + c_{k+1} (z-z_0)^{k+1} + \cdots + c_n (z-z_0)^n.</math> | <math>p(z) = a + c_k (z-z_0)^k + c_{k+1} (z-z_0)^{k+1} + \cdots + c_n (z-z_0)^n.</math> | ||
यहाँ, ''c<sub>j</sub>'' बहुपद z → p(z + z) के गुणांक हैं, विस्तार के बाद, और k स्थिर पद के बाद पहले अशून्य गुणांक का सूचकांक है। Z के लिए पर्याप्त रूप से ''z''<sub>0</sub> के करीब | यहाँ, ''c<sub>j</sub>'' बहुपद z → p(z + z) के गुणांक हैं, विस्तार के बाद, और k स्थिर पद के बाद पहले अशून्य गुणांक का सूचकांक है। Z के लिए पर्याप्त रूप से ''z''<sub>0</sub> के करीब इस फलन का व्यवहार समान रूप से सरल बहुपद के समान है <math>q(z) = a+c_k (z-z_0)^k</math>. अधिक सटीक रूप में , | ||
:<math>\left|\frac{p(z)-q(z)}{(z-z_0)^{k+1}}\right|\leq M</math> | :<math>\left|\frac{p(z)-q(z)}{(z-z_0)^{k+1}}\right|\leq M</math> | ||
''z''<sub>0</sub> के कुछ पड़ोस में कुछ धनात्मक स्थिरांक M के लिए. इसलिए, यदि हम परिभाषित करते हैं <math>\theta_0 = (\arg(a)+\pi-\arg(c_k)) /k</math> और जाने <math>z = z_0 + r e^{i \theta_0}</math> z के चारों ओर त्रिज्या r > 0 के एक वृत्त का अनुरेखण करना, फिर किसी भी पर्याप्त रूप से छोटे r के लिए (ताकि बाध्य M धारण कर सके), हम देखते हैं कि | ''z''<sub>0</sub> के कुछ पड़ोस में कुछ धनात्मक स्थिरांक M के लिए. इसलिए, यदि हम परिभाषित करते हैं <math>\theta_0 = (\arg(a)+\pi-\arg(c_k)) /k</math> और जाने <math>z = z_0 + r e^{i \theta_0}</math> z के चारों ओर त्रिज्या r > 0 के एक वृत्त का अनुरेखण करना, फिर किसी भी पर्याप्त रूप से छोटे r के लिए(ताकि बाध्य M धारण कर सके), हम देखते हैं कि | ||
<math>\begin{align} | <math>\begin{align} | ||
Line 78: | Line 78: | ||
जब r पर्याप्त रूप से 0 के करीब होता है तो यह ऊपरी सीमा |p(z)| के लिए होती है |a| से बिल्कुल छोटा है, जो z की परिभाषा का खंडन करता है. ज्यामितीय रूप से, हमें एक स्पष्ट दिशा θ मिली है<sub>0</sub> ऐसा है कि यदि कोई z तक पहुंचता है<sub>0</sub> उस दिशा से व्यक्ति p(z) का पूर्ण मान |p(z) से छोटा मान प्राप्त कर सकता है<sub>0</sub>)|. | जब r पर्याप्त रूप से 0 के करीब होता है तो यह ऊपरी सीमा |p(z)| के लिए होती है |a| से बिल्कुल छोटा है, जो z की परिभाषा का खंडन करता है. ज्यामितीय रूप से, हमें एक स्पष्ट दिशा θ मिली है<sub>0</sub> ऐसा है कि यदि कोई z तक पहुंचता है<sub>0</sub> उस दिशा से व्यक्ति p(z) का पूर्ण मान |p(z) से छोटा मान प्राप्त कर सकता है<sub>0</sub>)|. | ||
विचार की इस पंक्ति के साथ एक और विश्लेषणात्मक प्रमाण प्राप्त किया जा सकता है, क्योंकि |''p''(''z'')| > |''p''(0)| D के बाहर, |p(z)| का न्यूनतम पूरे समिश्र | विचार की इस पंक्ति के साथ एक और विश्लेषणात्मक प्रमाण प्राप्त किया जा सकता है, क्योंकि |''p''(''z'')| > |''p''(0)| D के बाहर, |p(z)| का न्यूनतम पूरे समिश्र तल पर ''z''<sub>0</sub> पर प्राप्त किया जाता है. अगर |''p''(''z''<sub>0</sub>)| > 0, तो 1/p पूरे समिश्र तल में एक घिरा [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] है, क्योंकि प्रत्येक समिश्र संख्या z के लिए, |1/p(z)| ≤ |1/p(z<sub>0</sub>)|. लिउविले के प्रमेय(समिश्र विश्लेषण) | लिउविल के प्रमेय को लागू करना, जो बताता है कि एक परिबद्ध संपूर्ण फलन स्थिर होना चाहिए, इसका अर्थ यह होगा कि 1/p स्थिर है और इसलिए p स्थिर है। यह एक विरोधाभास देता है, और इसलिए p(z<sub>0</sub>) = 0.<ref>{{Cite book |last=Ahlfors |first=Lars |title=जटिल विश्लेषण|publisher=McGraw-Hill Book Company |edition=2nd |page=122}}</ref> | ||
फिर भी एक अन्य विश्लेषणात्मक प्रमाण [[तर्क सिद्धांत]] का उपयोग करता है। मान लीजिए कि R एक धनात्मक वास्तविक संख्या है जो इतनी बड़ी है कि p(z) के प्रत्येक मूल का निरपेक्ष मान R से छोटा है; ऐसी संख्या का अस्तित्व होना चाहिए क्योंकि घात n के प्रत्येक असतत बहुपद फलन में अधिक से अधिक n शून्य होते हैं। प्रत्येक r > R के लिए, संख्या पर विचार करें | फिर भी एक अन्य विश्लेषणात्मक प्रमाण [[तर्क सिद्धांत]] का उपयोग करता है। मान लीजिए कि R एक धनात्मक वास्तविक संख्या है जो इतनी बड़ी है कि p(z) के प्रत्येक मूल का निरपेक्ष मान R से छोटा है; ऐसी संख्या का अस्तित्व होना चाहिए क्योंकि घात n के प्रत्येक असतत बहुपद फलन में अधिक से अधिक n शून्य होते हैं। प्रत्येक r > R के लिए, संख्या पर विचार करें | ||
Line 87: | Line 87: | ||
परिमेय व्यंजक के समाकलन में अधिकतम n − 1 की घात होती है और हर की घात n+1 होती है। इसलिए, ऊपर की संख्या r → +∞ के रूप में 0 हो जाती है। लेकिन संख्या भी N− n के बराबर है और इसलिए N = n। | परिमेय व्यंजक के समाकलन में अधिकतम n − 1 की घात होती है और हर की घात n+1 होती है। इसलिए, ऊपर की संख्या r → +∞ के रूप में 0 हो जाती है। लेकिन संख्या भी N− n के बराबर है और इसलिए N = n। | ||
कॉची के अभिन्न प्रमेय के साथ रैखिक बीजगणित को जोड़कर एक और समिश्र -विश्लेषणात्मक प्रमाण दिया जा सकता है। यह स्थापित करने के लिए कि घात n > 0 के प्रत्येक समिश्र | कॉची के अभिन्न प्रमेय के साथ रैखिक बीजगणित को जोड़कर एक और समिश्र -विश्लेषणात्मक प्रमाण दिया जा सकता है। यह स्थापित करने के लिए कि घात n > 0 के प्रत्येक समिश्र बहुपद में एक शून्य है, यह दिखाने के लिए पर्याप्त है कि आकार n > 0 के प्रत्येक समिश्र [[स्क्वायर मैट्रिक्स|वर्ग आव्यूह]] में एक(समिश्र ) [[eigenvalue|आइगन मान]] है।<ref>A proof of the fact that this suffices can be seen [[Algebraically closed field#Every endomorphism of Fn has some eigenvector|here]].</ref> बाद वाले कथन का प्रमाण [[विरोधाभास द्वारा प्रमाण]] है। | ||
मान लीजिए कि A आकार n > 0 का एक समिश्र | मान लीजिए कि A आकार n > 0 का एक समिश्र वर्ग [[स्क्वायर मैट्रिक्स|आव्यूह]] है और I<sub>n</sub>एक ही आकार की इकाई आव्यूह हो। मान लें कि A का कोई आइगेन मान नहीं है। हल किये गए फलन पर विचार करें | ||
:<math> R(z)=(zI_n-A)^{-1},</math> | :<math> R(z)=(zI_n-A)^{-1},</math> | ||
जो आव्यूह के सदिश स्थान में मानों के साथ समिश्र | जो आव्यूह के सदिश स्थान में मानों के साथ समिश्र तल पर एक [[मेरोमॉर्फिक फ़ंक्शन|मेरोमॉर्फिक फलन]] है। A के आइगन मान ठीक R(z) के ध्रुव हैं। चूंकि, धारणा के अनुसार, A का कोई आइगेनमान नहीं है, फलन R(z) एक संपूर्ण फलन है और कौशी का समाकल प्रमेय यह दर्शाता है कि | ||
:<math> \int_{c(r)} R(z) \, dz =0.</math> | :<math> \int_{c(r)} R(z) \, dz =0.</math> | ||
Line 98: | Line 98: | ||
:<math>R(z)=z^{-1}(I_n-z^{-1}A)^{-1}=z^{-1}\sum_{k=0}^\infty \frac{1}{z^k}A^k\cdot</math> | :<math>R(z)=z^{-1}(I_n-z^{-1}A)^{-1}=z^{-1}\sum_{k=0}^\infty \frac{1}{z^k}A^k\cdot</math> | ||
यह सूत्र त्रिज्या की बंद [[डिस्क (गणित)|चकती (गणित)]] के बाहर मान्य है <math>\|A\|</math> (a के [[ऑपरेटर मानदंड]])। होने देना <math>r>\|A\|.</math> फिर | यह सूत्र त्रिज्या की बंद [[डिस्क (गणित)|चकती(गणित)]] के बाहर मान्य है <math>\|A\|</math>(a के [[ऑपरेटर मानदंड]])। होने देना <math>r>\|A\|.</math> फिर | ||
:<math>\int_{c(r)}R(z)dz=\sum_{k=0}^{\infty}\int_{c(r)}\frac{dz}{z^{k+1}}A^k=2\pi iI_n</math> | :<math>\int_{c(r)}R(z)dz=\sum_{k=0}^{\infty}\int_{c(r)}\frac{dz}{z^{k+1}}A^k=2\pi iI_n</math> | ||
Line 106: | Line 106: | ||
=== सामयिक प्रमाण === | === सामयिक प्रमाण === | ||
मान लीजिए |p(z)| का न्यूनतम पूरे समिश्र | मान लीजिए |p(z)| का न्यूनतम पूरे समिश्र तल पर ''z''<sub>0</sub> पर प्राप्त किया जाता है; यह सबूत पर देखा गया था जो लिउविल के प्रमेय का उपयोग करता है कि ऐसी संख्या उपस्थित होनी चाहिए। हम p(z) को z − z में एक बहुपद के रूप में लिख सकते हैं<sub>0</sub>: कुछ प्राकृतिक संख्या k है और कुछ समिश्र संख्याएँ c हैं<sub>k</sub>, सी<sub>''k'' + 1</sub>, ..., सी<sub>n</sub>ऐसा कि सी<sub>k</sub>≠ 0 और: | ||
:<math>p(z)=p(z_0)+c_k(z-z_0)^k+c_{k+1}(z-z_0)^{k+1}+ \cdots +c_n(z-z_0)^n.</math> | :<math>p(z)=p(z_0)+c_k(z-z_0)^k+c_{k+1}(z-z_0)^{k+1}+ \cdots +c_n(z-z_0)^n.</math> | ||
अगर पी (जेड<sub>0</sub>) अशून्य है, यह इस प्रकार है कि यदि a एक k है<sup>th</sup> −p(z<sub>0</sub>)/सी<sub>k</sub>और यदि t धनात्मक है और पर्याप्त रूप से छोटा है, तो |p(z<sub>0</sub>+ उसे) | <| डर (में<sub>0</sub>)|, जो असंभव है, क्योंकि |p(z<sub>0</sub>)| |p| का न्यूनतम है डी पर | अगर पी(जेड<sub>0</sub>) अशून्य है, यह इस प्रकार है कि यदि a एक k है<sup>th</sup> −p(z<sub>0</sub>)/सी<sub>k</sub>और यदि t धनात्मक है और पर्याप्त रूप से छोटा है, तो |p(z<sub>0</sub>+ उसे) | <| डर(में<sub>0</sub>)|, जो असंभव है, क्योंकि |p(z<sub>0</sub>)| |p| का न्यूनतम है डी पर | ||
विरोधाभास द्वारा एक अन्य सामयिक प्रमाण के लिए, मान लीजिए कि बहुपद p(z) की कोई मूल नहीं है, और फलस्वरूप कभी भी 0 के बराबर नहीं होता है। बहुपद को समिश्र | विरोधाभास द्वारा एक अन्य सामयिक प्रमाण के लिए, मान लीजिए कि बहुपद p(z) की कोई मूल नहीं है, और फलस्वरूप कभी भी 0 के बराबर नहीं होता है। बहुपद को समिश्र तल से समिश्र तल में एक मानचित्र के रूप में सोचें। यह किसी भी वृत्त को मैप करता है |z| = R एक बंद लूप में, एक वक्र P(R). हम इस बात पर विचार करेंगे कि चरम सीमा पर P(R) की वाइंडिंग संख्या का क्या होता है जब R बहुत बड़ा होता है और जब R = 0 होता है। जब R पर्याप्त रूप से बड़ी संख्या होती है, तो अग्रणी शब्द z<sup>p(z) का n</sup> संयुक्त रूप से अन्य सभी शब्दों पर हावी है; दूसरे शब्दों में, | ||
:<math>\left | z^n \right | > \left | a_{n-1} z^{n-1} + \cdots + a_0 \right |.</math> | :<math>\left | z^n \right | > \left | a_{n-1} z^{n-1} + \cdots + a_0 \right |.</math> | ||
जब z वृत्त को पार करता है <math>Re^{i\theta}</math> एक बार वामावर्त <math>(0\leq \theta \leq 2\pi),</math> फिर <math>z^n=R^ne^{in\theta}</math> हवाएँ n बार वामावर्त चलती हैं <math>(0\leq \theta \leq 2\pi n)</math> मूल बिंदु के आसपास (0,0), और P(R) इसी तरह। दूसरे चरम पर, |z| के साथ = 0, वक्र P(0) केवल एक बिंदु p(0) है, जो अशून्य होना चाहिए क्योंकि p(z) कभी शून्य नहीं होता। इस प्रकार p(0) मूल (0,0) से अलग होना चाहिए, जो समिश्र | जब z वृत्त को पार करता है <math>Re^{i\theta}</math> एक बार वामावर्त <math>(0\leq \theta \leq 2\pi),</math> फिर <math>z^n=R^ne^{in\theta}</math> हवाएँ n बार वामावर्त चलती हैं <math>(0\leq \theta \leq 2\pi n)</math> मूल बिंदु के आसपास(0,0), और P(R) इसी तरह। दूसरे चरम पर, |z| के साथ = 0, वक्र P(0) केवल एक बिंदु p(0) है, जो अशून्य होना चाहिए क्योंकि p(z) कभी शून्य नहीं होता। इस प्रकार p(0) मूल(0,0) से अलग होना चाहिए, जो समिश्र विमान में 0 को दर्शाता है। मूल(0,0) के चारों ओर P(0) की वाइंडिंग संख्या इस प्रकार 0 है। अब R को लगातार बदलने से [[होमोटॉपी]] होगी। कुछ R पर वाइंडिंग संख्या बदलना चाहिए। लेकिन यह तभी हो सकता है जब वक्र P(R) में कुछ R के लिए मूल(0,0) सम्मिलित हो। लेकिन फिर उस वृत्त पर कुछ z के लिए |z| = R हमारे पास p(z) = 0 है, जो हमारी मूल धारणा के विपरीत है। इसलिए, p(z) में कम से कम एक शून्य है। | ||
=== बीजगणितीय प्रमाण === | === बीजगणितीय प्रमाण === | ||
बीजगणित के मौलिक प्रमेय के इन प्रमाणों को वास्तविक संख्याओं के बारे में निम्नलिखित दो तथ्यों का उपयोग करना चाहिए जो बीजगणितीय नहीं हैं लेकिन केवल थोड़ी मात्रा में विश्लेषण की आवश्यकता होती है (अधिक सटीक रूप से, दोनों मामलों में [[मध्यवर्ती मूल्य प्रमेय|मध्यवर्ती मान प्रमेय]]): | बीजगणित के मौलिक प्रमेय के इन प्रमाणों को वास्तविक संख्याओं के बारे में निम्नलिखित दो तथ्यों का उपयोग करना चाहिए जो बीजगणितीय नहीं हैं लेकिन केवल थोड़ी मात्रा में विश्लेषण की आवश्यकता होती है(अधिक सटीक रूप से, दोनों मामलों में [[मध्यवर्ती मूल्य प्रमेय|मध्यवर्ती मान प्रमेय]]): | ||
* एक विषम घात और वास्तविक गुणांक वाले प्रत्येक बहुपद का कुछ वास्तविक मूल होता है; | * एक विषम घात और वास्तविक गुणांक वाले प्रत्येक बहुपद का कुछ वास्तविक मूल होता है; | ||
* प्रत्येक गैर-ऋणात्मक वास्तविक संख्या का एक वर्गमूल होता है। | * प्रत्येक गैर-ऋणात्मक वास्तविक संख्या का एक वर्गमूल होता है। | ||
Line 127: | Line 127: | ||
:<math>p(z)=a(z-z_1)(z-z_2) \cdots (z-z_n).</math> | :<math>p(z)=a(z-z_1)(z-z_2) \cdots (z-z_n).</math> | ||
यदि k = 0, तो n विषम है, और इसलिए p(z) का वास्तविक मूल है। अब, मान लीजिए कि n = 2<sup>k</sup>m (m विषम और k > 0 के साथ) और यह कि प्रमेय पहले ही सिद्ध हो चुका है जब बहुपद की घात का रूप 2 है<sup>k − 1</sup>m′ m′ विषम के साथ। वास्तविक संख्या t के लिए, परिभाषित करें: | यदि k = 0, तो n विषम है, और इसलिए p(z) का वास्तविक मूल है। अब, मान लीजिए कि n = 2<sup>k</sup>m(m विषम और k > 0 के साथ) और यह कि प्रमेय पहले ही सिद्ध हो चुका है जब बहुपद की घात का रूप 2 है<sup>k − 1</sup>m′ m′ विषम के साथ। वास्तविक संख्या t के लिए, परिभाषित करें: | ||
:<math>q_t(z)=\prod_{1\le i<j\le n}\left(z-z_i-z_j-tz_iz_j\right).</math> | :<math>q_t(z)=\prod_{1\le i<j\le n}\left(z-z_i-z_j-tz_iz_j\right).</math> | ||
<blockquote>तब qt(z) के गुणांक वास्तविक गुणांक वाले z में सममित बहुपद हैं। इसलिए, उन्हें प्रारंभिक सममित बहुपदों में वास्तविक गुणांक वाले बहुपदों के रूप में व्यक्त किया जा सकता है, अर्थात -a1, a2, ..., | <blockquote>तब qt(z) के गुणांक वास्तविक गुणांक वाले z में सममित बहुपद हैं। इसलिए, उन्हें प्रारंभिक सममित बहुपदों में वास्तविक गुणांक वाले बहुपदों के रूप में व्यक्त किया जा सकता है, अर्थात -a1, a2, ...,(−1)''<sup>n</sup>a<sub>n</sub>''। तो qt(z) वास्तव में वास्तविक गुणांक हैं। इसके अलावा, qt(z) की घात n(n − 1)/2 = 2k−1m(n − 1) है, और m(n − 1) एक विषम संख्या है। इसलिए, प्रेरण परिकल्पना का उपयोग करते हुए, qt में कम से कम एक सम्मिश्र मूल है; दूसरे शब्दों में, zi + zj + tzi zj दो अलग-अलग तत्वों i और j के लिए {1, ..., n} से सम्मिश्र है। चूंकि जोड़े(i, j) की तुलना में अधिक वास्तविक संख्याएं हैं, कोई विशिष्ट वास्तविक संख्या t और s पा सकता है जैसे कि zi + zj + tzizj और zi + zj + szijj सम्मिश्र हैं(उसी i और j के लिए)। इसलिए, zi + zj और zizzj दोनों सम्मिश्र संख्याएँ हैं। यह जाँचना आसान है कि प्रत्येक सम्मिश्र संख्या का एक सम्मिश्र वर्गमूल होता है, इस प्रकार द्विघात सूत्र द्वारा घात 2 के प्रत्येक सम्मिश्र बहुपद का एक सम्मिश्र मूल होता है। इससे पता चलता है कि zi और zj सम्मिश्र संख्याएँ हैं, क्योंकि वे द्विघात बहुपद z2 -(zi + zj)z + zizz के मूल हैं।</blockquote>जोसेफ शिपमैन ने 2007 में दिखाया कि यह धारणा कि विषम घात बहुपदों की मूल आवश्यकता से अधिक मजबूत हैं; कोई भी क्षेत्र जिसमें प्रमुख घात के बहुपदों की मूल बीजगणितीय रूप से बंद होती हैं(इसलिए विषम को विषम अभाज्य द्वारा प्रतिस्थापित किया जा सकता है और यह सभी विशेषताओं के क्षेत्रों के लिए है)।<ref>Shipman, J. [http://www.jon-arny.com/httpdocs/Gauss/Shipman%20Intellig%20Mod%20p%20FTA.pdf Improving the Fundamental Theorem of Algebra]. ''The Mathematical Intelligencer'', volume 29 (2007), number 4, pp. 9–14.</ref> बीजगणितीय रूप से बंद क्षेत्रों के स्वयंसिद्ध के लिए, यह सबसे अच्छा संभव है, क्योंकि यदि एक एकल अभाज्य को बाहर रखा गया है तो प्रति उदाहरण हैं। हालांकि, ये प्रति उदाहरण -1 के वर्गमूल पर निर्भर करते हैं। यदि हम एक ऐसा क्षेत्र लेते हैं जहां −1 का कोई वर्गमूल नहीं है, और घात n ∈ I के प्रत्येक बहुपद का एक मूल है, जहां I विषम संख्याओं का कोई निश्चित अनंत समुच्चय है, तो विषम कोटि के प्रत्येक बहुपद f(x) का एक मूल होता है( जबसे {{nowrap|(''x''<sup>2</sup> + 1)<sup>''k''</sup>''f''(''x'')}} एक मूल है, जहाँ k को चुना जाता है ताकि {{nowrap|deg(''f'') + 2''k'' ∈ ''I''}}). मोहसिन अलीआबादी सामान्यीकृत{{Dubious|date=July 2019}} 2013 में शिपमैन का परिणाम, एक स्वतंत्र प्रमाण प्रदान करता है कि बीजगणितीय रूप से बंद होने के लिए एक मनमाना क्षेत्र(किसी भी विशेषता के) के लिए पर्याप्त शर्त यह है कि इसकी प्रधान घात के प्रत्येक बहुपद के लिए एक मूल है।<ref>M. Aliabadi, M. R. Darafsheh, [https://arxiv.org/abs/1508.00937 On maximal and minimal linear matching property], ''Algebra and discrete mathematics'', volume 15 (2013), number 2, pp. 174–178.</ref> | ||
====गैलोइस प्रमेय से==== | ====गैलोइस प्रमेय से==== | ||
मौलिक प्रमेय का एक अन्य बीजगणितीय प्रमाण [[गाल्वा सिद्धांत]] का उपयोग करके दिया जा सकता है। यह दिखाने के लिए पर्याप्त है कि C का कोई उचित परिमित क्षेत्र विस्तार नहीं है।<ref>A proof of the fact that this suffices can be seen [[Algebraically closed field#The field has no proper finite extension|here]].</ref> K/'C' को परिमित विस्तार होने दें। चूँकि [[सामान्य विस्तार]] # 'R' पर K का सामान्य समापन अभी भी 'C' (या 'R') पर एक परिमित घात है, हम सामान्यता के नुकसान के बिना मान सकते हैं कि K, 'R' का सामान्य विस्तार है (इसलिए यह है) एक [[गाल्वा विस्तार]], [[विशेषता (बीजगणित)]] 0 के क्षेत्र के प्रत्येक बीजगणितीय विस्तार के रूप में [[वियोज्य विस्तार]] है)। G को इस विस्तार का Galois समूह होने दें, और H को G का एक सिलो प्रमेय 2-उपसमूह होने दें, ताकि H का क्रम (समूह सिद्धांत) 2 की शक्ति हो, और G में H के [[एक उपसमूह का सूचकांक]] है अजीब। गैलोज़ सिद्धांत के मौलिक प्रमेय के अनुसार, K/'R' का एक उप-विस्तार L उपस्थित है जैसे कि Gal(K/L) = H. जैसा कि [L:'R'] = [G:H] विषम है, और वहाँ हैं विषम घात का कोई अरैखिक अप्रासंगिक वास्तविक बहुपद नहीं, हमारे पास L = 'R' होना चाहिए, इस प्रकार [K:'R'] और [K:'C'] 2 की शक्तियाँ हैं। विरोधाभास के माध्यम से यह मानते हुए कि [K:'C '] > 1, हम यह निष्कर्ष निकालते हैं कि p-समूह|2-समूह Gal(K/'C') में अनुक्रमणिका 2 का एक उपसमूह सम्मिलित | मौलिक प्रमेय का एक अन्य बीजगणितीय प्रमाण [[गाल्वा सिद्धांत]] का उपयोग करके दिया जा सकता है। यह दिखाने के लिए पर्याप्त है कि C का कोई उचित परिमित क्षेत्र विस्तार नहीं है।<ref>A proof of the fact that this suffices can be seen [[Algebraically closed field#The field has no proper finite extension|here]].</ref> K/'C' को परिमित विस्तार होने दें। चूँकि [[सामान्य विस्तार]] # 'R' पर K का सामान्य समापन अभी भी 'C'(या 'R') पर एक परिमित घात है, हम सामान्यता के नुकसान के बिना मान सकते हैं कि K, 'R' का सामान्य विस्तार है(इसलिए यह है) एक [[गाल्वा विस्तार]], [[विशेषता (बीजगणित)|विशेषता(बीजगणित)]] 0 के क्षेत्र के प्रत्येक बीजगणितीय विस्तार के रूप में [[वियोज्य विस्तार]] है)। G को इस विस्तार का Galois समूह होने दें, और H को G का एक सिलो प्रमेय 2-उपसमूह होने दें, ताकि H का क्रम(समूह सिद्धांत) 2 की शक्ति हो, और G में H के [[एक उपसमूह का सूचकांक]] है अजीब। गैलोज़ सिद्धांत के मौलिक प्रमेय के अनुसार, K/'R' का एक उप-विस्तार L उपस्थित है जैसे कि Gal(K/L) = H. जैसा कि [L:'R'] = [G:H] विषम है, और वहाँ हैं विषम घात का कोई अरैखिक अप्रासंगिक वास्तविक बहुपद नहीं, हमारे पास L = 'R' होना चाहिए, इस प्रकार [K:'R'] और [K:'C'] 2 की शक्तियाँ हैं। विरोधाभास के माध्यम से यह मानते हुए कि [K:'C '] > 1, हम यह निष्कर्ष निकालते हैं कि p-समूह|2-समूह Gal(K/'C') में अनुक्रमणिका 2 का एक उपसमूह सम्मिलित है, इसलिए घात 2 के 'C' का एक उप-विस्तार M उपस्थित है। हालांकि, 'C' घात 2 का कोई विस्तार नहीं है, क्योंकि प्रत्येक द्विघात सम्मिश्र बहुपद का एक सम्मिश्र मूल होता है, जैसा कि ऊपर उल्लेख किया गया है। इससे पता चलता है कि [K:'C'] = 1, और इसलिए K = 'C', जो उपपत्ति को पूरा करता है। | ||
===ज्यामितीय प्रमाण === | ===ज्यामितीय प्रमाण === | ||
जेएम अलमीरा और ए रोमेरो के कारण बीजगणित के मौलिक प्रमेय तक पहुंचने का एक और तरीका उपस्थित है: रिमेंनियन ज्यामिति तर्कों द्वारा। यहाँ मुख्य विचार यह प्रमाणित | जेएम अलमीरा और ए रोमेरो के कारण बीजगणित के मौलिक प्रमेय तक पहुंचने का एक और तरीका उपस्थित है: रिमेंनियन ज्यामिति तर्कों द्वारा। यहाँ मुख्य विचार यह प्रमाणित करना है कि शून्य के बिना एक असततबहुपद p(z) के अस्तित्व का अर्थ है 'एस' क्षेत्र पर एक फ्लैट कई गुना का अस्तित्व।<sup>2</उप>। यह एक विरोधाभास की ओर ले जाता है क्योंकि गोला समतल नहीं है। | ||
एक रिमेंनियन सतह (M, g) को सपाट कहा जाता है यदि इसकी गाऊसी वक्रता, जिसे हम K द्वारा निरूपित करते हैं<sub>g</sub>, समान रूप से शून्य है। अब, गॉस-बोनट प्रमेय, जब गोले 'S' पर लागू किया जाता है<sup>2</sup>, का दावा है | एक रिमेंनियन सतह(M, g) को सपाट कहा जाता है यदि इसकी गाऊसी वक्रता, जिसे हम K द्वारा निरूपित करते हैं<sub>g</sub>, समान रूप से शून्य है। अब, गॉस-बोनट प्रमेय, जब गोले 'S' पर लागू किया जाता है<sup>2</sup>, का दावा है | ||
:<math>\int_{\mathbf{S}^2}K_g=4\pi,</math> | :<math>\int_{\mathbf{S}^2}K_g=4\pi,</math> | ||
Line 147: | Line 147: | ||
:<math>p(z) = a_0 + a_1 z + \cdots + a_n z^n \neq 0</math> | :<math>p(z) = a_0 + a_1 z + \cdots + a_n z^n \neq 0</math> | ||
प्रत्येक समिश्र | प्रत्येक समिश्र संख्या z के लिए। आइए परिभाषित करते हैं | ||
:<math>p^*(z) = z^n p \left ( \tfrac{1}{z} \right ) = a_0 z^n + a_1 z^{n-1} + \cdots + a_n.</math> | :<math>p^*(z) = z^n p \left ( \tfrac{1}{z} \right ) = a_0 z^n + a_1 z^{n-1} + \cdots + a_n.</math> | ||
Line 159: | Line 159: | ||
:<math>g=\frac{1}{\left |f\left (\tfrac{1}{w} \right ) \right |^{\frac{2}{n}}}\left |d\left (\tfrac{1}{w} \right ) \right |^2 </math> | :<math>g=\frac{1}{\left |f\left (\tfrac{1}{w} \right ) \right |^{\frac{2}{n}}}\left |d\left (\tfrac{1}{w} \right ) \right |^2 </math> | ||
w ∈ 'S' के लिए<sup>2</sup>\{0}, गोले S पर एक अच्छी तरह से परिभाषित रिमेंनियन मेट्रिक है<sup>2</sup> (जिसे हम विस्तारित समिश्र | w ∈ 'S' के लिए<sup>2</sup>\{0}, गोले S पर एक अच्छी तरह से परिभाषित रिमेंनियन मेट्रिक है<sup>2</sup>(जिसे हम विस्तारित समिश्र तल C ∪ {∞} से पहचानते हैं)। | ||
अब, एक साधारण गणना यह दर्शाती है | अब, एक साधारण गणना यह दर्शाती है | ||
Line 167: | Line 167: | ||
== परिणाम == | == परिणाम == | ||
चूँकि बीजगणित के मौलिक प्रमेय को इस कथन के रूप में देखा जा सकता है कि समिश्र | चूँकि बीजगणित के मौलिक प्रमेय को इस कथन के रूप में देखा जा सकता है कि समिश्र संख्याओं का क्षेत्र बीजगणितीय रूप से बंद क्षेत्र है, यह इस प्रकार है कि बीजगणितीय रूप से बंद क्षेत्रों से संबंधित कोई भी प्रमेय समिश्र संख्याओं के क्षेत्र पर लागू होता है। यहाँ प्रमेय के कुछ और परिणाम हैं, जो या तो वास्तविक संख्या के क्षेत्र के बारे में हैं या वास्तविक संख्या के क्षेत्र और समिश्र संख्या के क्षेत्र के बीच संबंध हैं: | ||
* सम्मिश्र संख्याओं का क्षेत्र वास्तविक संख्याओं के क्षेत्र का [[बीजगणितीय समापन]] है। | * सम्मिश्र संख्याओं का क्षेत्र वास्तविक संख्याओं के क्षेत्र का [[बीजगणितीय समापन]] है। | ||
* समिश्र | * समिश्र गुणांक वाले एक चर z में प्रत्येक बहुपद एक समिश्र स्थिरांक और समिश्र के साथ z + a के रूप के बहुपदों का गुणनफल होता है। | ||
* वास्तविक गुणांक वाले एक चर x में प्रत्येक बहुपद को विशिष्ट रूप से x + a के रूप के एक स्थिर, बहुपद के उत्पाद के रूप में लिखा जा सकता है, और प्रपत्र x के बहुपद<sup>2</sup> + ax + b with a और b real और a<sup>2</sup> − 4b < 0 (जो कहने के समान है कि बहुपद x<sup>2</sup> + ax + b का कोई वास्तविक मूल नहीं है)। (एबेल-रफ़िनी प्रमेय द्वारा, वास्तविक संख्याएँ a और b आवश्यक रूप से बहुपद के गुणांकों, मूल अंकगणितीय संक्रियाओं और n-वें मूलों के निष्कर्षण के संदर्भ में अभिव्यक्त नहीं हैं।) इसका तात्पर्य है कि गैर-वास्तविक की संख्या समिश्र | * वास्तविक गुणांक वाले एक चर x में प्रत्येक बहुपद को विशिष्ट रूप से x + a के रूप के एक स्थिर, बहुपद के उत्पाद के रूप में लिखा जा सकता है, और प्रपत्र x के बहुपद<sup>2</sup> + ax + b with a और b real और a<sup>2</sup> − 4b < 0(जो कहने के समान है कि बहुपद x<sup>2</sup> + ax + b का कोई वास्तविक मूल नहीं है)।(एबेल-रफ़िनी प्रमेय द्वारा, वास्तविक संख्याएँ a और b आवश्यक रूप से बहुपद के गुणांकों, मूल अंकगणितीय संक्रियाओं और n-वें मूलों के निष्कर्षण के संदर्भ में अभिव्यक्त नहीं हैं।) इसका तात्पर्य है कि गैर-वास्तविक की संख्या समिश्र मूल हमेशा सम होती हैं और उनकी बहुलता से गिनने पर भी बनी रहती हैं। | ||
* वास्तविक गुणांक वाले एक चर x में प्रत्येक परिमेय फलन को a/(x − b) रूप के परिमेय फलन वाले बहुपद फलन के योग के रूप में लिखा जा सकता है।<sup>n</sup> (जहाँ n एक प्राकृत संख्या है, और a और b वास्तविक संख्याएँ हैं), और (ax + b)/(x) के रूप का परिमेय फलन<sup>2</sup> + सीएक्स + डी)<sup>n</sup> (जहाँ n एक प्राकृतिक संख्या है, और a, b, c, और d वास्तविक संख्याएँ हैं जैसे कि c<sup>2</sup> − 4d < 0). इसका एक [[परिणाम]] यह है कि एक चर और वास्तविक गुणांकों में प्रत्येक परिमेय फलन का एक प्राथमिक फलन (विभेदक बीजगणित) प्रतिअवकलज होता है। | * वास्तविक गुणांक वाले एक चर x में प्रत्येक परिमेय फलन को a/(x − b) रूप के परिमेय फलन वाले बहुपद फलन के योग के रूप में लिखा जा सकता है।<sup>n</sup>(जहाँ n एक प्राकृत संख्या है, और a और b वास्तविक संख्याएँ हैं), और(ax + b)/(x) के रूप का परिमेय फलन<sup>2</sup> + सीएक्स + डी)<sup>n</sup>(जहाँ n एक प्राकृतिक संख्या है, और a, b, c, और d वास्तविक संख्याएँ हैं जैसे कि c<sup>2</sup> − 4d < 0). इसका एक [[परिणाम]] यह है कि एक चर और वास्तविक गुणांकों में प्रत्येक परिमेय फलन का एक प्राथमिक फलन(विभेदक बीजगणित) प्रतिअवकलज होता है। | ||
* वास्तविक क्षेत्र का प्रत्येक [[बीजगणितीय विस्तार]] या तो वास्तविक क्षेत्र या समिश्र | * वास्तविक क्षेत्र का प्रत्येक [[बीजगणितीय विस्तार]] या तो वास्तविक क्षेत्र या समिश्र क्षेत्र के लिए आइसोमोर्फिक है। | ||
== एक बहुपद के शून्य पर सीमा == | == एक बहुपद के शून्य पर सीमा == | ||
Line 197: | Line 197: | ||
:<math>z^n+a_{n-1}z^{n-1}+\cdots+a_1z +a_0;</math> | :<math>z^n+a_{n-1}z^{n-1}+\cdots+a_1z +a_0;</math> | ||
असमानता को प्रमाणित | असमानता को प्रमाणित करने के लिए |ζ| ≤ आर<sub>p</sub>हम निश्चित रूप से मान सकते हैं |ζ| > 1. समीकरण को इस रूप में लिखने पर | ||
:<math>-\zeta^n=a_{n-1}\zeta^{n-1}+\cdots+a_1\zeta+a_0,</math> | :<math>-\zeta^n=a_{n-1}\zeta^{n-1}+\cdots+a_1\zeta+a_0,</math> | ||
Line 226: | Line 226: | ||
* विअरस्ट्रास गुणनखंड प्रमेय, अन्य संपूर्ण कार्यों के लिए प्रमेय का एक सामान्यीकरण | * विअरस्ट्रास गुणनखंड प्रमेय, अन्य संपूर्ण कार्यों के लिए प्रमेय का एक सामान्यीकरण | ||
*इलेनबर्ग-निवेन प्रमेय, चतुर्धातुक गुणांक और चर के साथ बहुपदों के लिए प्रमेय का एक सामान्यीकरण | *इलेनबर्ग-निवेन प्रमेय, चतुर्धातुक गुणांक और चर के साथ बहुपदों के लिए प्रमेय का एक सामान्यीकरण | ||
*हिल्बर्ट का नलस्टेलेंसैट्ज, इस दावे के कई चरों का एक सामान्यीकरण कि समिश्र | *हिल्बर्ट का नलस्टेलेंसैट्ज, इस दावे के कई चरों का एक सामान्यीकरण कि समिश्र मूल उपस्थित हैं | ||
*बेज़ाउट की प्रमेय, मूलों की संख्या पर अभिकथन के कई चरों का सामान्यीकरण। | *बेज़ाउट की प्रमेय, मूलों की संख्या पर अभिकथन के कई चरों का सामान्यीकरण। | ||
Line 238: | Line 238: | ||
=== ऐतिहासिक स्रोत === | === ऐतिहासिक स्रोत === | ||
*{{Citation|last = Cauchy|first = Augustin-Louis|author-link = Augustin-Louis Cauchy|publication-date = 1992|year = 1821|title = Cours d'Analyse de l'École Royale Polytechnique, 1<sup>ère</sup> partie: Analyse Algébrique|url = http://gallica.bnf.fr/ark:/12148/bpt6k29058v|place = Paris|publisher = Éditions Jacques Gabay|isbn = 978-2-87647-053-8}} (tr। इकोले पॉलीटेक्निक के विश्लेषण पर पाठ्यक्रम, भाग 1: बीजगणितीय विश्लेषण) | *{{Citation|last = Cauchy|first = Augustin-Louis|author-link = Augustin-Louis Cauchy|publication-date = 1992|year = 1821|title = Cours d'Analyse de l'École Royale Polytechnique, 1<sup>ère</sup> partie: Analyse Algébrique|url = http://gallica.bnf.fr/ark:/12148/bpt6k29058v|place = Paris|publisher = Éditions Jacques Gabay|isbn = 978-2-87647-053-8}}(tr। इकोले पॉलीटेक्निक के विश्लेषण पर पाठ्यक्रम, भाग 1: बीजगणितीय विश्लेषण) | ||
* {{citation|last = Euler|first = Leonhard|author-link = Leonhard Euler|year = 1751|title = Recherches sur les racines imaginaires des équations|periodical = Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin|location = Berlin|volume = 5|pages = 222–288|url = http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1749&seite:int=228}}. अंग्रेजी अनुवाद: {{citation|last = Euler|first = Leonhard|author-link = Leonhard Euler|year = 1751|title = Investigations on the Imaginary Roots of Equations|periodical = Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin|location = Berlin|volume = 5|pages = 222–288|url = http://eulerarchive.maa.org/docs/translations/E170en.pdf}} | * {{citation|last = Euler|first = Leonhard|author-link = Leonhard Euler|year = 1751|title = Recherches sur les racines imaginaires des équations|periodical = Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin|location = Berlin|volume = 5|pages = 222–288|url = http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1749&seite:int=228}}. अंग्रेजी अनुवाद: {{citation|last = Euler|first = Leonhard|author-link = Leonhard Euler|year = 1751|title = Investigations on the Imaginary Roots of Equations|periodical = Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin|location = Berlin|volume = 5|pages = 222–288|url = http://eulerarchive.maa.org/docs/translations/E170en.pdf}} | ||
* {{citation|last = Gauss|first = Carl Friedrich|author-link = Carl Friedrich Gauss|year = 1799|title = Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse|place = [[Helmstedt]]|publisher = C. G. Fleckeisen}} (tr। प्रमेय का नया प्रमाण है कि एक चर के प्रत्येक अभिन्न तर्कसंगत बीजगणितीय कार्य को पहली या दूसरी घात के वास्तविक कारकों में हल किया जा सकता है)। | * {{citation|last = Gauss|first = Carl Friedrich|author-link = Carl Friedrich Gauss|year = 1799|title = Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse|place = [[Helmstedt]]|publisher = C. G. Fleckeisen}}(tr। प्रमेय का नया प्रमाण है कि एक चर के प्रत्येक अभिन्न तर्कसंगत बीजगणितीय कार्य को पहली या दूसरी घात के वास्तविक कारकों में हल किया जा सकता है)। | ||
* {{Citation|last=Gauss|first=Carl Friedrich|year=1866|title=Carl Friedrich Gauss Werke|publisher=Königlichen Gesellschaft der Wissenschaften zu Göttingen|volume=Band III|url={{Google books|WFxYAAAAYAAJ|Werke: Analysis|plainurl=yes}}}} | * {{Citation|last=Gauss|first=Carl Friedrich|year=1866|title=Carl Friedrich Gauss Werke|publisher=Königlichen Gesellschaft der Wissenschaften zu Göttingen|volume=Band III|url={{Google books|WFxYAAAAYAAJ|Werke: Analysis|plainurl=yes}}}} | ||
*#{{Google books|WFxYAAAAYAAJ|Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse (1799), pp. 1–31.|page=1}} - पहला प्रमाण। | *#{{Google books|WFxYAAAAYAAJ|Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse (1799), pp. 1–31.|page=1}} - पहला प्रमाण। | ||
Line 246: | Line 246: | ||
*#{{Google books|WFxYAAAAYAAJ|Theorematis de resolubilitate functionum algebraicarum integrarum in factores reales demonstratio tertia Supplementum commentationis praecedentis (1816 Jan), pp. 57–64.|page=57}} - तीसरा प्रमाण। | *#{{Google books|WFxYAAAAYAAJ|Theorematis de resolubilitate functionum algebraicarum integrarum in factores reales demonstratio tertia Supplementum commentationis praecedentis (1816 Jan), pp. 57–64.|page=57}} - तीसरा प्रमाण। | ||
*#{{Google books|WFxYAAAAYAAJ|Beiträge zur Theorie der algebraischen Gleichungen (1849 Juli), pp. 71–103.|page=71}} - चौथा प्रमाण। | *#{{Google books|WFxYAAAAYAAJ|Beiträge zur Theorie der algebraischen Gleichungen (1849 Juli), pp. 71–103.|page=71}} - चौथा प्रमाण। | ||
* {{citation|last = Kneser|first = Hellmuth|author-link = Hellmuth Kneser|year = 1940|title = Der Fundamentalsatz der Algebra und der Intuitionismus|url = http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN266833020_0046|periodical = Mathematische Zeitschrift|volume = 46|pages = 287–302|issn = 0025-5874|doi = 10.1007/BF01181442|s2cid = 120861330}} (बीजगणित और अंतर्ज्ञान का मौलिक प्रमेय)। | * {{citation|last = Kneser|first = Hellmuth|author-link = Hellmuth Kneser|year = 1940|title = Der Fundamentalsatz der Algebra und der Intuitionismus|url = http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN266833020_0046|periodical = Mathematische Zeitschrift|volume = 46|pages = 287–302|issn = 0025-5874|doi = 10.1007/BF01181442|s2cid = 120861330}}(बीजगणित और अंतर्ज्ञान का मौलिक प्रमेय)। | ||
* {{citation|last = Kneser|first = Martin|year = 1981|title = Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz der Algebra|url = http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN266833020_0177|periodical = Mathematische Zeitschrift|volume = 177|pages = 285–287|issn = 0025-5874|doi = 10.1007/BF01214206|issue = 2|s2cid = 122310417}} (टीआर। बीजगणित के मौलिक प्रमेय पर हेलमथ केसर के काम का विस्तार)। | * {{citation|last = Kneser|first = Martin|year = 1981|title = Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz der Algebra|url = http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN266833020_0177|periodical = Mathematische Zeitschrift|volume = 177|pages = 285–287|issn = 0025-5874|doi = 10.1007/BF01214206|issue = 2|s2cid = 122310417}}(टीआर। बीजगणित के मौलिक प्रमेय पर हेलमथ केसर के काम का विस्तार)। | ||
* {{citation|last = Ostrowski|first = Alexander | author-link = Alexander Ostrowski | year = 1920 | chapter = Über den ersten und vierten Gaußschen Beweis des Fundamental-Satzes der Algebra | title = Carl Friedrich Gauss ''Werke'' Band X Abt. 2 | chapter-url = http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN236019856&DMDID=dmdlog53}} (tr। बीजगणित के मौलिक प्रमेय के पहले और चौथे गॉसियन प्रमाणों पर)। | * {{citation|last = Ostrowski|first = Alexander | author-link = Alexander Ostrowski | year = 1920 | chapter = Über den ersten und vierten Gaußschen Beweis des Fundamental-Satzes der Algebra | title = Carl Friedrich Gauss ''Werke'' Band X Abt. 2 | chapter-url = http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN236019856&DMDID=dmdlog53}}(tr। बीजगणित के मौलिक प्रमेय के पहले और चौथे गॉसियन प्रमाणों पर)। | ||
* {{citation|last=Weierstraß|first= Karl|author-link=Karl Weierstrass|contribution=Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen|title=Sitzungsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin|pages = 1085–1101|year=1891}} (tr। प्रमेय का नया प्रमाण है कि एक चर के प्रत्येक अभिन्न तर्कसंगत कार्य को उसी चर के रैखिक कार्यों के उत्पाद के रूप में दर्शाया जा सकता है)। | * {{citation|last=Weierstraß|first= Karl|author-link=Karl Weierstrass|contribution=Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen|title=Sitzungsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin|pages = 1085–1101|year=1891}}(tr। प्रमेय का नया प्रमाण है कि एक चर के प्रत्येक अभिन्न तर्कसंगत कार्य को उसी चर के रैखिक कार्यों के उत्पाद के रूप में दर्शाया जा सकता है)। | ||
=== हाल का साहित्य === | === हाल का साहित्य === | ||
Line 258: | Line 258: | ||
* {{citation|last1 = Fine|first1 = Benjamin|last2 = Rosenberger|first2 = Gerhard|title = The Fundamental Theorem of Algebra|publisher = [[Springer Science+Business Media|Springer-Verlag]]|place = Berlin|year = 1997|isbn = 978-0-387-94657-3|series = [[Undergraduate Texts in Mathematics]]|mr = 1454356}} | * {{citation|last1 = Fine|first1 = Benjamin|last2 = Rosenberger|first2 = Gerhard|title = The Fundamental Theorem of Algebra|publisher = [[Springer Science+Business Media|Springer-Verlag]]|place = Berlin|year = 1997|isbn = 978-0-387-94657-3|series = [[Undergraduate Texts in Mathematics]]|mr = 1454356}} | ||
* {{citation|last1 = Gersten|first1 = S.M.|last2 = Stallings|first2 = John R.|year = 1988|title = On Gauss's First Proof of the Fundamental Theorem of Algebra|jstor = 2047574|periodical = [[Proceedings of the American Mathematical Society]]|volume = 103|issue = 1|pages = 331–332|issn = 0002-9939|doi=10.1090/S0002-9939-1988-0938691-3 | doi-access=free}} | * {{citation|last1 = Gersten|first1 = S.M.|last2 = Stallings|first2 = John R.|year = 1988|title = On Gauss's First Proof of the Fundamental Theorem of Algebra|jstor = 2047574|periodical = [[Proceedings of the American Mathematical Society]]|volume = 103|issue = 1|pages = 331–332|issn = 0002-9939|doi=10.1090/S0002-9939-1988-0938691-3 | doi-access=free}} | ||
* {{citation|last = Gilain|first = Christian|year = 1991|title = Sur l'histoire du théorème fondamental de l'algèbre: théorie des équations et calcul intégral|periodical = Archive for History of Exact Sciences|volume = 42|issue = 2|pages = 91–136|issn = 0003-9519|doi = 10.1007/BF00496870|s2cid = 121468210}} (tr। बीजगणित के मौलिक प्रमेय के इतिहास पर: समीकरणों का सिद्धांत और अभिन्न कलन।) | * {{citation|last = Gilain|first = Christian|year = 1991|title = Sur l'histoire du théorème fondamental de l'algèbre: théorie des équations et calcul intégral|periodical = Archive for History of Exact Sciences|volume = 42|issue = 2|pages = 91–136|issn = 0003-9519|doi = 10.1007/BF00496870|s2cid = 121468210}}(tr। बीजगणित के मौलिक प्रमेय के इतिहास पर: समीकरणों का सिद्धांत और अभिन्न कलन।) | ||
* {{citation|last1 = Netto|first1 = Eugen|last2 = Le Vavasseur|first2 = Raymond|author-link = Eugen Netto|year = 1916|chapter = Les fonctions rationnelles §80–88: Le théorème fondamental|editor-last = Meyer|editor-first = François|editor2-last = Molk|editor2-first = Jules|title = Encyclopédie des Sciences Mathématiques Pures et Appliquées, tome I, vol. 2|publication-date = 1992|publisher = Éditions Jacques Gabay|isbn = 978-2-87647-101-6}} (tr। तर्कसंगत कार्य §80–88: मौलिक प्रमेय)। | * {{citation|last1 = Netto|first1 = Eugen|last2 = Le Vavasseur|first2 = Raymond|author-link = Eugen Netto|year = 1916|chapter = Les fonctions rationnelles §80–88: Le théorème fondamental|editor-last = Meyer|editor-first = François|editor2-last = Molk|editor2-first = Jules|title = Encyclopédie des Sciences Mathématiques Pures et Appliquées, tome I, vol. 2|publication-date = 1992|publisher = Éditions Jacques Gabay|isbn = 978-2-87647-101-6}}(tr। तर्कसंगत कार्य §80–88: मौलिक प्रमेय)। | ||
* {{citation|last = Remmert|first = Reinhold|author-link = Reinhold Remmert|year = 1991|chapter = The Fundamental Theorem of Algebra|editor-last = Ebbinghaus|editor-first = Heinz-Dieter|editor2-last = Hermes|editor2-first = Hans|editor3-last = Hirzebruch|editor3-first = Friedrich|title = Numbers|series = Graduate Texts in Mathematics 123|editor3-link = Friedrich Hirzebruch|place = Berlin|publisher = [[Springer Science+Business Media|Springer-Verlag]]|isbn = 978-0-387-97497-2|url-access = registration|url = https://archive.org/details/numbers0000unse_d4i8}} | * {{citation|last = Remmert|first = Reinhold|author-link = Reinhold Remmert|year = 1991|chapter = The Fundamental Theorem of Algebra|editor-last = Ebbinghaus|editor-first = Heinz-Dieter|editor2-last = Hermes|editor2-first = Hans|editor3-last = Hirzebruch|editor3-first = Friedrich|title = Numbers|series = Graduate Texts in Mathematics 123|editor3-link = Friedrich Hirzebruch|place = Berlin|publisher = [[Springer Science+Business Media|Springer-Verlag]]|isbn = 978-0-387-97497-2|url-access = registration|url = https://archive.org/details/numbers0000unse_d4i8}} | ||
* {{citation|last = Shipman|first = Joseph|year = 2007|title = Improving the Fundamental Theorem of Algebra|periodical = Mathematical Intelligencer|volume = 29|issue = 4|pages = 9–14|doi=10.1007/BF02986170|s2cid = 123089882|issn = 0343-6993}} | * {{citation|last = Shipman|first = Joseph|year = 2007|title = Improving the Fundamental Theorem of Algebra|periodical = Mathematical Intelligencer|volume = 29|issue = 4|pages = 9–14|doi=10.1007/BF02986170|s2cid = 123089882|issn = 0343-6993}} |
Revision as of 12:06, 5 December 2022
बीजगणित का मौलिक प्रमेय, जिसे डी'अलेम्बर्ट प्रमेय के रूप में भी जाना जाता है, डी'अलेम्बर्ट-गॉस प्रमेय, के अनुसार सम्मिश्र संख्या गुणांक वाले प्रत्येक गैर अचर बहुपद एकल-चर बहुपद में एक फलन का कम से कम एक सम्मिश्र मूल होता है। इसमें वास्तविक गुणांक वाले बहुपद सम्मिलित हैं, क्योंकि प्रत्येक वास्तविक संख्या एक समिश्र संख्या है जिसका काल्पनिक भाग शून्य के बराबर होता है।
समान रूप से(परिभाषा के अनुसार), प्रमेय कहती है कि समिश्र संख्याओं का क्षेत्र(गणित) बीजगणितीय रूप से बंद क्षेत्र है।
प्रमेय को निम्नानुसार भी कहा गया है: प्रत्येक अशून्य, एकल-चर, समिश्र गुणांक वाले बहुपद n बहुपद की घात, बहुपद(गणित) बहुपद की मूल की बहुलता, ठीक n समिश्र मूलों के साथ गिना जाता है। क्रमिक बहुपद विभाजन के उपयोग के माध्यम से दो कथनों की समानता सिद्ध की जा सकती है।
इसके नाम के अतिरिक्त, प्रमेय का कोई विशुद्ध रूप से बीजगणितीय प्रमाण नहीं है, क्योंकि किसी भी प्रमाण को वास्तविक संख्याओं की विश्लेषणात्मक पूर्णता के किसी रूप का उपयोग करना चाहिए, जो बीजगणितीय प्रमाण है।[1] इसके अतिरिक्त, यह आधुनिक बीजगणित के लिए मौलिक नहीं है; इसका नाम उस समय दिया गया था जब बीजगणित समीकरणों के सिद्धांत का पर्याय बन गया था।
इतिहास
पीटर रोथ ने अपनी पुस्तक अरिथमेटिका फिलोसोफिका में(जोहान लैंट्ज़ेनबर्गर द्वारा नूर्नबर्ग में 1608 में प्रकाशित), में लिखा है कि घात n के एक बहुपद समीकरण(वास्तविक गुणांकों के साथ) के n समाधान हो सकते हैं। अल्बर्ट गिरार्ड ने अपनी पुस्तक एल'इन्वेंशन नौवेल्ले इन एल'एल्जेब्रे(1629 में प्रकाशित) में दावा किया कि घात n के एक बहुपद समीकरण के n समाधान हैं, लेकिन उन्होंने यह नहीं कहा कि उन्हें वास्तविक संख्याएँ होनी चाहिए। इसके अतिरिक्त, उन्होंने कहा कि उनका दावा तब तक बना रहता है जब तक कि समीकरण अधूरा न हो, जिससे उनका मतलब था कि कोई भी गुणांक 0 के बराबर नहीं है।
हालांकि, जब वह विस्तार से बताते हैं कि उनका क्या मतलब है, तो यह स्पष्ट है कि वह वास्तव में मानते हैं कि उनका दावा हमेशा सच होता है। ; उदाहरण के लिए, वह दिखाता है कि समीकरण x2 = 4X - 3हला कि अपूर्ण है, इसके चार हल हैं(बहुगुणों की गिनती): 1(दो बार), तथा -1+√2i तथा -1-√2i जैसा कि नीचे फिर से उल्लेख किया जाएगा, यह बीजगणित के मौलिक प्रमेय का अनुसरण करता है कि वास्तविक गुणांक वाले प्रत्येक गैर-अचर बहुपद को वास्तविक गुणांक वाले बहुपदों के उत्पाद के रूप में लिखा जा सकता है, जिनकी घात या तो 1 या 2 है। हालांकि, 1702 में गॉटफ्रीड लीबनिज ने कहा कि x4 + a4 प्रकार के किसी बहुपद( जिसमे a वास्तविक और 0 से भिन्न) को इस प्रकार नहीं लिखा जा सकता है। बाद में, निकोलस प्रथम बर्नौली ने बहुपद के संबंध में यही अभिकथन किया x4 − 4x3 + 2x2 + 4x + 4, लेकिन उन्हें 1742 में लियोनहार्ड यूलर का एक पत्र मिला जिसमें यह दिखाया गया कि यह निम्न बहुपद के बराबर है
साथ साथ ही, यूलर ने बताया कि
प्रमेय को सिद्ध करने का पहला प्रयास 1746 में जीन ले रोंड डी'अलेम्बर्ट|डी'अलेम्बर्ट द्वारा किया गया था, लेकिन उसका प्रमाण अधूरा था। अन्य समस्याओं के अतिरिक्त, यह एक प्रमेय(अब पुइसेक्स के प्रमेय के रूप में जाना जाता है) को निहित रूप से ग्रहण करता है, जो एक शताब्दी से अधिक समय तक और बीजगणित के मौलिक प्रमेय का उपयोग करके सिद्ध नहीं होगा। लियोनहार्ड यूलर(1749), फ्रांकोइस डेविएट डी फोन्सेंक्स(1759), जोसेफ लुइस लाग्रेंज(1772), और पियरे-साइमन लाप्लास(1795) द्वारा अन्य प्रयास किए गए। इन अंतिम चार प्रयासों में निहित रूप से गिरार्ड के दावे को ग्रहण किया गया; अधिक सटीक होने के लिए, समाधानों के अस्तित्व को मान लिया गया था और जो कुछ प्रमाणित होना बाकी था, वह यह था कि उनका रूप कुछ वास्तविक संख्याओं a और b के लिए a+bi था। आधुनिक शब्दों में, यूलर, डी फोन्सेंक्स, लाग्रेंज, और लाप्लास बहुपद p(z) के विभाजन वाले क्षेत्र के अस्तित्व को मान रहे थे।
18वीं शताब्दी के अंत में, दो नए प्रमाण प्रकाशित हुए जो मूलों के अस्तित्व को नहीं मानते थे, लेकिन इनमें से कोई भी पूर्ण नहीं था। उनमें से एक, जो जेम्स वुड(गणितज्ञ) द्वारा दिया गया था,मुख्य रूप से बीजगणितीय होने के कारण, 1798 में प्रकाशित हुआ था और इसे पूरी तरह से नजरअंदाज कर दिया गया था। वुड के प्रमाण में बीजगणितीय अंतर था। दूसरे को 1799 में कार्ल फ्रेडरिक गॉस द्वारा प्रकाशित किया गया था और यह मुख्य रूप से ज्यामितीय था, लेकिन इसमें एक सामयिक अंतर था, जिसे केवल 1920 में अलेक्जेंडर ओस्ट्रोव्स्की द्वारा भरा गया था, जैसा कि स्मेल(1981) में चर्चा की गई थी। पहला कठोर प्रमाण 1806 में जीन-रॉबर्ट अरगंड, शौकिया गणितज्ञों की एक सूची द्वारा प्रकाशित किया गया था(और 1813 में पुनरीक्षित); यहीं पर पहली बार, बीजगणित के मौलिक प्रमेय को केवल वास्तविक गुणांकों के बजाय समिश्र गुणांक वाले बहुपदों के लिए बताया गया था। गॉस ने 1816 में दो अन्य प्रमाण पेश किए और 1849 में अपने मूल प्रमाण का एक और अधूरा संस्करण पेश किया।
प्रमेय के प्रमाण वाली पहली पाठ्यपुस्तक कौशी का कोर्ट्स डी'एनालिसिस|कोर्ट्स डी'एनालिसिस डी ल'इकोले रोयाले पॉलीटेक्निक(1821) थी। इसमें अरगंड का प्रमाण सम्मिलित था, हालांकि जॉन रॉबर्ट अरगंड को इसका श्रेय नहीं दिया जाता है।
अब तक उल्लिखित कोई भी प्रमाण रचनावाद(गणित) नहीं है। 19वीं शताब्दी के मध्य में पहली बार विअरस्ट्रास ने बीजगणित के मौलिक प्रमेय के रचनात्मक प्रमाण को खोजने की समस्या को उठाया। उन्होंने अपना समाधान प्रस्तुत किया, जो 1891 में होमोटोपी निरंतरता सिद्धांत के साथ डुरंड-कर्नर पद्धति के संयोजन के लिए आधुनिक शब्दों में है। इस तरह का एक और प्रमाण 1940 में हेलमथ केसर द्वारा प्राप्त किया गया था और 1981 में उनके बेटे मार्टिन केनेसर द्वारा सरलीकृत किया गया था।
गणनीय विकल्प का उपयोग किए बिना, वास्तविक संख्याओं के निर्माण के आधार पर समिश्र संख्याओं के लिए बीजगणित के मौलिक प्रमेय को रचनात्मक रूप से सिद्ध करना संभव नहीं है(जो बिना गणनीय विकल्प के कॉची वास्तविक संख्याओं के रचनात्मक रूप से समतुल्य नहीं हैं)।[2] हालांकि, फ्रेड रिचमैन ने प्रमेय का एक सुधारित संस्करण प्रमाणित किया जो काम करता है।[3]
समतुल्य कथन
प्रमेय के कई समतुल्य योग हैं:
- वास्तविक गुणांकों के साथ सकारात्मक घात के प्रत्येक अविभाज्य बहुपद में कम से कम एक फलन का एक समिश्र शून्य होता है।
- समिश्र गुणांकों के साथ धनात्मक घात के प्रत्येक अविभाजित बहुपद में एक फलन का कम से कम एक समिश्र शून्य होता है।
- इसका तात्पर्य पिछले अभिकथन से है, क्योंकि वास्तविक संख्याएँ भी समिश्र संख्याएँ हैं। विपरीत परिणाम इस तथ्य से मिलता है कि एक बहुपद और उसके समिश्र संयुग्म के उत्पाद को वास्तविक गुणांक के साथ एक बहुपद प्राप्त होता है(प्रत्येक गुणांक को इसके समिश्र संयुग्म के साथ बदलकर प्राप्त किया जाता है)। इस गुणनफल का एक मूल या तो दिए गए बहुपद का मूल है, या इसके संयुग्म का; बाद वाली स्थिति में, इस मूल का संयुग्मी दिए गए बहुपद का एक मूल है।
- सकारात्मक घात का प्रत्येक अविभाज्य बहुपद n समिश्र गुणांक के साथ गुणनखंड किया जा सकता है कहाँ पे समिश्र संख्याएँ हैं।
- n }} समिश्र आंकड़े बहुपद की मूल हैं। यदि एक मूल कई कारकों में प्रकट होती है, तो यह एक बहुमूल है, और इसकी घटनाओं की संख्या, परिभाषा के अनुसार, मूल की बहुलता(गणित) है।
- प्रमाण है कि यह कथन पिछले वाले से परिणामित होता है, पर पुनरावर्तन द्वारा किया जाता है n: जब एक मूल द्वारा बहुपद विभाजन पाया गया है घात का बहुपद प्रदान करता है जिनकी मूल दिए गए बहुपद की अन्य मूल हैं।
अगले दो कथन पिछले वाले के बराबर हैं, हालांकि उनमें कोई अवास्तविक सम्मिश्र संख्या सम्मिलित नहीं है। इन कथनों को पिछले गुणनखंडों से यह टिप्पणी करके सिद्ध किया जा सकता है कि, यदि r वास्तविक गुणांक वाले बहुपद की एक गैर-वास्तविक मूल है, इसका समिश्र संयुग्म एक मूल भी है, और वास्तविक गुणांकों के साथ घात दो का बहुपद है। इसके विपरीत, यदि किसी के पास घात दो का गुणनखंड है, तो द्विघात सूत्र एक मूल देता है।
- दो से अधिक घात के वास्तविक गुणांक वाले प्रत्येक अविभाजित बहुपद में वास्तविक गुणांकों के साथ घात दो का कारक होता है।
- सकारात्मक घात के वास्तविक गुणांक वाले प्रत्येक अविभाज्य बहुपद को इस प्रकार विभाजित किया जा सकता है कहाँ पे c एक वास्तविक संख्या है और प्रत्येक वास्तविक गुणांकों के साथ अधिकतम दो घात का एक मोनिक बहुपद है। इसके अतिरिक्त, कोई यह मान सकता है कि घात दो के गुणनखंडों का कोई वास्तविक मूल नहीं है।
प्रमाण
नीचे दिए गए सभी प्रमाणों में कुछ गणितीय विश्लेषण, या कम से कम वास्तविक या समिश्र फलनों सतता की सांस्थितिक अवधारणा सम्मिलित है। कुछ अवकलनीय या विश्लेषणात्मक फलन का भी उपयोग करते हैं। इस आवश्यकता ने इस टिप्पणी को जन्म दिया है कि बीजगणित का मौलिक प्रमेय न तो मौलिक है, न ही बीजगणित का प्रमेय है।[4] प्रमेय के कुछ प्रमाण केवल यह प्रमाणित करते हैं कि वास्तविक गुणांक वाले किसी भी असतत बहुपद का कुछ समिश्र मूल होता है। यह प्रमेय सामान्य कारण को स्थापित करने के लिए पर्याप्त है क्योंकि समिश्र गुणांकों के साथ एक गैर-अचर बहुपद p(z) दिए जाने पर, बहुपद
केवल वास्तविक गुणांक हैं और, यदि z, q(z) का एक शून्य है, तो या तो z या इसका सयुग्मी p(z) का एक मूल है।
प्रमेय के कई गैर-बीजगणितीय प्रमाण इस तथ्य का उपयोग करते हैं(कभी-कभी विकास प्रमेय कहा जाता है) कि एक बहुपद फलन p(z) घात n जिसका प्रमुख गुणांक 1 है, z की तरह व्यवहार करता हैn कब |z| काफी बड़ा है। अधिक सटीक रूप से, कुछ धनात्मक वास्तविक संख्या R है जैसे कि
जब |z| > R.
वास्तविक-विश्लेषणात्मक प्रमाण
सम्मिश्र संख्याओं का उपयोग किए बिना भी, यह दिखाना संभव है कि एक वास्तविक मान का बहुपद p(x): p(0) ≠ 0 घात n > 2 को हमेशा वास्तविक गुणांक वाले किसी द्विघात बहुपद द्वारा विभाजित किया जा सकता है।[5] दूसरे शब्दों में, कुछ वास्तविक मान वाले a और b के लिए, p(x) को x से विभाजित करने पर रैखिक शेष के गुणांक2 − ax − b एक साथ शून्य हो जाता है।
जहाँ q(x) घात n - 2 का बहुपद है। गुणांक Rp(x)(a, b) औरSp(x)(a, b) x से स्वतंत्र हैं और पूरी तरह से p(x) के गुणांक द्वारा परिभाषित हैं। प्रतिनिधित्व के मामले में Rp(x)(a, b) और Sp(x)(a, b) aऔर b में द्विचरीय बहुपद हैं। 1799 से इस प्रमेय के गॉस के पहले(अधूरे) प्रमाण के तरीके में, कुंजी यह दिखाने के लिए है कि b के किसी भी बड़े ऋणात्मक मान के लिए, दोनों R की सभी मूल Rp(x)(a, b) और Sp(x)(a, b) चर में a वास्तविक मान हैं और एक-दूसरे को बदलते हैं(अंतरफलक लक्षण )। स्टर्म जैसी श्रृंखला जिसमें Rp(x)(a, b) और Sp(x)(a, b) लगातार फलनों के रूप में सम्मिलित है,चर a अंतरफलक श्रृंखला में सभी लगातार जोड़े के लिए दिखाया जा सकता है जब b में पर्याप्त रूप से बड़ा ऋणात्मक मान हो। जैसे की Sp(a, b = 0) = p(0) की कोई मूल नहीं है, Rp(x)(a, b) and Sp(x)(a, b) की अंतरफलक चर a, b = 0 पर विफल रहता है। सामयिक तर्कों को अंतरफलक लक्षण पर लागू किया जा सकता है यह दिखाने के लिए कि Rp(x)(a, b) और Sp(x)(a, b) की मूलों का बिन्दुपथ कुछ वास्तविक मान a और b <0 के लिए प्रतिच्छेदित करना चाहिए।
समिश्र -विश्लेषणात्मक प्रमाण
त्रिज्या r की एक बंद चकती D खोजें जो मूल पर केंद्रित हो जैसे कि|p(z)| > |p(0)| जब भी |z| ≥ r।, D पर |p(z)| न्यूनतम , जो उपस्थित होना चाहिए क्योंकि D छोटा है, इसलिए कुछ बिंदु z0 D के भीतर हासिल किया जाता है , लेकिन इसकी सीमा के किसी भी बिंदु पर नहीं। 1/p(z) पर लागू अधिकतम गुणांक सिद्धांत का अर्थ है कि p(z0) = 0. दूसरे शब्दों में, z0 ,p(z) का शून्य है।
इस सबूत की भिन्नता के लिए अधिकतम गुणांक सिद्धांत की आवश्यकता नहीं होती है(वास्तव में, इसी तरह का तर्क होलोमोर्फिक कार्यों के लिए अधिकतम गुणांक सिद्धांत का प्रमाण भी देता है)। सिद्धांत लागू होने से पहले से जारी है, अगर a := p(z0) ≠ 0, फिर, z − z0 की घात में p(z) का विस्तार करने पर , हम लिख सकते हैं
यहाँ, cj बहुपद z → p(z + z) के गुणांक हैं, विस्तार के बाद, और k स्थिर पद के बाद पहले अशून्य गुणांक का सूचकांक है। Z के लिए पर्याप्त रूप से z0 के करीब इस फलन का व्यवहार समान रूप से सरल बहुपद के समान है . अधिक सटीक रूप में ,
z0 के कुछ पड़ोस में कुछ धनात्मक स्थिरांक M के लिए. इसलिए, यदि हम परिभाषित करते हैं और जाने z के चारों ओर त्रिज्या r > 0 के एक वृत्त का अनुरेखण करना, फिर किसी भी पर्याप्त रूप से छोटे r के लिए(ताकि बाध्य M धारण कर सके), हम देखते हैं कि
जब r पर्याप्त रूप से 0 के करीब होता है तो यह ऊपरी सीमा |p(z)| के लिए होती है |a| से बिल्कुल छोटा है, जो z की परिभाषा का खंडन करता है. ज्यामितीय रूप से, हमें एक स्पष्ट दिशा θ मिली है0 ऐसा है कि यदि कोई z तक पहुंचता है0 उस दिशा से व्यक्ति p(z) का पूर्ण मान |p(z) से छोटा मान प्राप्त कर सकता है0)|.
विचार की इस पंक्ति के साथ एक और विश्लेषणात्मक प्रमाण प्राप्त किया जा सकता है, क्योंकि |p(z)| > |p(0)| D के बाहर, |p(z)| का न्यूनतम पूरे समिश्र तल पर z0 पर प्राप्त किया जाता है. अगर |p(z0)| > 0, तो 1/p पूरे समिश्र तल में एक घिरा होलोमॉर्फिक फलन है, क्योंकि प्रत्येक समिश्र संख्या z के लिए, |1/p(z)| ≤ |1/p(z0)|. लिउविले के प्रमेय(समिश्र विश्लेषण) | लिउविल के प्रमेय को लागू करना, जो बताता है कि एक परिबद्ध संपूर्ण फलन स्थिर होना चाहिए, इसका अर्थ यह होगा कि 1/p स्थिर है और इसलिए p स्थिर है। यह एक विरोधाभास देता है, और इसलिए p(z0) = 0.[6] फिर भी एक अन्य विश्लेषणात्मक प्रमाण तर्क सिद्धांत का उपयोग करता है। मान लीजिए कि R एक धनात्मक वास्तविक संख्या है जो इतनी बड़ी है कि p(z) के प्रत्येक मूल का निरपेक्ष मान R से छोटा है; ऐसी संख्या का अस्तित्व होना चाहिए क्योंकि घात n के प्रत्येक असतत बहुपद फलन में अधिक से अधिक n शून्य होते हैं। प्रत्येक r > R के लिए, संख्या पर विचार करें
जहां c(r) 0 पर केंद्रित वृत्त है, जिसकी त्रिज्या r वामावर्त दिशा में है; तब तर्क सिद्धांत कहता है कि यह संख्या r त्रिज्या के साथ 0 पर केंद्रित खुली गेंद में p(z) के शून्यों की संख्या N है, जो, चूंकि r > R, p(z) के शून्यों की कुल संख्या है। दूसरी ओर, c(r) के साथ n/z का समाकल 2πi से विभाजित n के बराबर है। लेकिन दोनों संख्याों के बीच का अंतर है
परिमेय व्यंजक के समाकलन में अधिकतम n − 1 की घात होती है और हर की घात n+1 होती है। इसलिए, ऊपर की संख्या r → +∞ के रूप में 0 हो जाती है। लेकिन संख्या भी N− n के बराबर है और इसलिए N = n।
कॉची के अभिन्न प्रमेय के साथ रैखिक बीजगणित को जोड़कर एक और समिश्र -विश्लेषणात्मक प्रमाण दिया जा सकता है। यह स्थापित करने के लिए कि घात n > 0 के प्रत्येक समिश्र बहुपद में एक शून्य है, यह दिखाने के लिए पर्याप्त है कि आकार n > 0 के प्रत्येक समिश्र वर्ग आव्यूह में एक(समिश्र ) आइगन मान है।[7] बाद वाले कथन का प्रमाण विरोधाभास द्वारा प्रमाण है।
मान लीजिए कि A आकार n > 0 का एक समिश्र वर्ग आव्यूह है और Inएक ही आकार की इकाई आव्यूह हो। मान लें कि A का कोई आइगेन मान नहीं है। हल किये गए फलन पर विचार करें
जो आव्यूह के सदिश स्थान में मानों के साथ समिश्र तल पर एक मेरोमॉर्फिक फलन है। A के आइगन मान ठीक R(z) के ध्रुव हैं। चूंकि, धारणा के अनुसार, A का कोई आइगेनमान नहीं है, फलन R(z) एक संपूर्ण फलन है और कौशी का समाकल प्रमेय यह दर्शाता है कि
दूसरी ओर, ज्यामितीय श्रृंखला के रूप में विस्तारित R(z) देता है:
यह सूत्र त्रिज्या की बंद चकती(गणित) के बाहर मान्य है (a के ऑपरेटर मानदंड)। होने देना फिर
(जिसमें केवल योग k = 0 का एक अशून्य समाकल है)। यह एक विरोधाभास है, और इसलिए a का आइगन मान है।
अंत में, रूचे का प्रमेय शायद प्रमेय का सबसे छोटा प्रमाण देता है।
सामयिक प्रमाण
मान लीजिए |p(z)| का न्यूनतम पूरे समिश्र तल पर z0 पर प्राप्त किया जाता है; यह सबूत पर देखा गया था जो लिउविल के प्रमेय का उपयोग करता है कि ऐसी संख्या उपस्थित होनी चाहिए। हम p(z) को z − z में एक बहुपद के रूप में लिख सकते हैं0: कुछ प्राकृतिक संख्या k है और कुछ समिश्र संख्याएँ c हैंk, सीk + 1, ..., सीnऐसा कि सीk≠ 0 और:
अगर पी(जेड0) अशून्य है, यह इस प्रकार है कि यदि a एक k हैth −p(z0)/सीkऔर यदि t धनात्मक है और पर्याप्त रूप से छोटा है, तो |p(z0+ उसे) | <| डर(में0)|, जो असंभव है, क्योंकि |p(z0)| |p| का न्यूनतम है डी पर
विरोधाभास द्वारा एक अन्य सामयिक प्रमाण के लिए, मान लीजिए कि बहुपद p(z) की कोई मूल नहीं है, और फलस्वरूप कभी भी 0 के बराबर नहीं होता है। बहुपद को समिश्र तल से समिश्र तल में एक मानचित्र के रूप में सोचें। यह किसी भी वृत्त को मैप करता है |z| = R एक बंद लूप में, एक वक्र P(R). हम इस बात पर विचार करेंगे कि चरम सीमा पर P(R) की वाइंडिंग संख्या का क्या होता है जब R बहुत बड़ा होता है और जब R = 0 होता है। जब R पर्याप्त रूप से बड़ी संख्या होती है, तो अग्रणी शब्द zp(z) का n संयुक्त रूप से अन्य सभी शब्दों पर हावी है; दूसरे शब्दों में,
जब z वृत्त को पार करता है एक बार वामावर्त फिर हवाएँ n बार वामावर्त चलती हैं मूल बिंदु के आसपास(0,0), और P(R) इसी तरह। दूसरे चरम पर, |z| के साथ = 0, वक्र P(0) केवल एक बिंदु p(0) है, जो अशून्य होना चाहिए क्योंकि p(z) कभी शून्य नहीं होता। इस प्रकार p(0) मूल(0,0) से अलग होना चाहिए, जो समिश्र विमान में 0 को दर्शाता है। मूल(0,0) के चारों ओर P(0) की वाइंडिंग संख्या इस प्रकार 0 है। अब R को लगातार बदलने से होमोटॉपी होगी। कुछ R पर वाइंडिंग संख्या बदलना चाहिए। लेकिन यह तभी हो सकता है जब वक्र P(R) में कुछ R के लिए मूल(0,0) सम्मिलित हो। लेकिन फिर उस वृत्त पर कुछ z के लिए |z| = R हमारे पास p(z) = 0 है, जो हमारी मूल धारणा के विपरीत है। इसलिए, p(z) में कम से कम एक शून्य है।
बीजगणितीय प्रमाण
बीजगणित के मौलिक प्रमेय के इन प्रमाणों को वास्तविक संख्याओं के बारे में निम्नलिखित दो तथ्यों का उपयोग करना चाहिए जो बीजगणितीय नहीं हैं लेकिन केवल थोड़ी मात्रा में विश्लेषण की आवश्यकता होती है(अधिक सटीक रूप से, दोनों मामलों में मध्यवर्ती मान प्रमेय):
- एक विषम घात और वास्तविक गुणांक वाले प्रत्येक बहुपद का कुछ वास्तविक मूल होता है;
- प्रत्येक गैर-ऋणात्मक वास्तविक संख्या का एक वर्गमूल होता है।
दूसरा तथ्य, द्विघात सूत्र के साथ, वास्तविक द्विघात बहुपदों के लिए प्रमेय का तात्पर्य है। दूसरे शब्दों में, मौलिक प्रमेय के बीजगणितीय प्रमाण वास्तव में दिखाते हैं कि यदि R कोई वास्तविक बंद क्षेत्र है, तो इसका विस्तार C = R(√−1) बीजगणितीय रूप से बंद है।
प्रेरण द्वारा
जैसा कि ऊपर उल्लेख किया गया है, यह कथन की जाँच करने के लिए पर्याप्त है कि वास्तविक गुणांक वाले प्रत्येक गैर-अचर बहुपद p(z) का एक सम्मिश्र मूल होता है। इस कथन को सबसे बड़े गैर-ऋणात्मक पूर्णांक k पर आगमन द्वारा सिद्ध किया जा सकता है जैसे कि 2k p(z) की घात n को विभाजित करता है। माना a, z का गुणांक हैn p(z) में और F को C के ऊपर p(z) का विभाजित क्षेत्र होने दें; दूसरे शब्दों में, फ़ील्ड F में C है और वहाँ तत्व z हैं1, साथ2, ..., साथnएफ में ऐसा है कि
यदि k = 0, तो n विषम है, और इसलिए p(z) का वास्तविक मूल है। अब, मान लीजिए कि n = 2km(m विषम और k > 0 के साथ) और यह कि प्रमेय पहले ही सिद्ध हो चुका है जब बहुपद की घात का रूप 2 हैk − 1m′ m′ विषम के साथ। वास्तविक संख्या t के लिए, परिभाषित करें:
तब qt(z) के गुणांक वास्तविक गुणांक वाले z में सममित बहुपद हैं। इसलिए, उन्हें प्रारंभिक सममित बहुपदों में वास्तविक गुणांक वाले बहुपदों के रूप में व्यक्त किया जा सकता है, अर्थात -a1, a2, ...,(−1)nan। तो qt(z) वास्तव में वास्तविक गुणांक हैं। इसके अलावा, qt(z) की घात n(n − 1)/2 = 2k−1m(n − 1) है, और m(n − 1) एक विषम संख्या है। इसलिए, प्रेरण परिकल्पना का उपयोग करते हुए, qt में कम से कम एक सम्मिश्र मूल है; दूसरे शब्दों में, zi + zj + tzi zj दो अलग-अलग तत्वों i और j के लिए {1, ..., n} से सम्मिश्र है। चूंकि जोड़े(i, j) की तुलना में अधिक वास्तविक संख्याएं हैं, कोई विशिष्ट वास्तविक संख्या t और s पा सकता है जैसे कि zi + zj + tzizj और zi + zj + szijj सम्मिश्र हैं(उसी i और j के लिए)। इसलिए, zi + zj और zizzj दोनों सम्मिश्र संख्याएँ हैं। यह जाँचना आसान है कि प्रत्येक सम्मिश्र संख्या का एक सम्मिश्र वर्गमूल होता है, इस प्रकार द्विघात सूत्र द्वारा घात 2 के प्रत्येक सम्मिश्र बहुपद का एक सम्मिश्र मूल होता है। इससे पता चलता है कि zi और zj सम्मिश्र संख्याएँ हैं, क्योंकि वे द्विघात बहुपद z2 -(zi + zj)z + zizz के मूल हैं।
जोसेफ शिपमैन ने 2007 में दिखाया कि यह धारणा कि विषम घात बहुपदों की मूल आवश्यकता से अधिक मजबूत हैं; कोई भी क्षेत्र जिसमें प्रमुख घात के बहुपदों की मूल बीजगणितीय रूप से बंद होती हैं(इसलिए विषम को विषम अभाज्य द्वारा प्रतिस्थापित किया जा सकता है और यह सभी विशेषताओं के क्षेत्रों के लिए है)।[8] बीजगणितीय रूप से बंद क्षेत्रों के स्वयंसिद्ध के लिए, यह सबसे अच्छा संभव है, क्योंकि यदि एक एकल अभाज्य को बाहर रखा गया है तो प्रति उदाहरण हैं। हालांकि, ये प्रति उदाहरण -1 के वर्गमूल पर निर्भर करते हैं। यदि हम एक ऐसा क्षेत्र लेते हैं जहां −1 का कोई वर्गमूल नहीं है, और घात n ∈ I के प्रत्येक बहुपद का एक मूल है, जहां I विषम संख्याओं का कोई निश्चित अनंत समुच्चय है, तो विषम कोटि के प्रत्येक बहुपद f(x) का एक मूल होता है( जबसे (x2 + 1)kf(x) एक मूल है, जहाँ k को चुना जाता है ताकि deg(f) + 2k ∈ I). मोहसिन अलीआबादी सामान्यीकृत[dubious ] 2013 में शिपमैन का परिणाम, एक स्वतंत्र प्रमाण प्रदान करता है कि बीजगणितीय रूप से बंद होने के लिए एक मनमाना क्षेत्र(किसी भी विशेषता के) के लिए पर्याप्त शर्त यह है कि इसकी प्रधान घात के प्रत्येक बहुपद के लिए एक मूल है।[9]
गैलोइस प्रमेय से
मौलिक प्रमेय का एक अन्य बीजगणितीय प्रमाण गाल्वा सिद्धांत का उपयोग करके दिया जा सकता है। यह दिखाने के लिए पर्याप्त है कि C का कोई उचित परिमित क्षेत्र विस्तार नहीं है।[10] K/'C' को परिमित विस्तार होने दें। चूँकि सामान्य विस्तार # 'R' पर K का सामान्य समापन अभी भी 'C'(या 'R') पर एक परिमित घात है, हम सामान्यता के नुकसान के बिना मान सकते हैं कि K, 'R' का सामान्य विस्तार है(इसलिए यह है) एक गाल्वा विस्तार, विशेषता(बीजगणित) 0 के क्षेत्र के प्रत्येक बीजगणितीय विस्तार के रूप में वियोज्य विस्तार है)। G को इस विस्तार का Galois समूह होने दें, और H को G का एक सिलो प्रमेय 2-उपसमूह होने दें, ताकि H का क्रम(समूह सिद्धांत) 2 की शक्ति हो, और G में H के एक उपसमूह का सूचकांक है अजीब। गैलोज़ सिद्धांत के मौलिक प्रमेय के अनुसार, K/'R' का एक उप-विस्तार L उपस्थित है जैसे कि Gal(K/L) = H. जैसा कि [L:'R'] = [G:H] विषम है, और वहाँ हैं विषम घात का कोई अरैखिक अप्रासंगिक वास्तविक बहुपद नहीं, हमारे पास L = 'R' होना चाहिए, इस प्रकार [K:'R'] और [K:'C'] 2 की शक्तियाँ हैं। विरोधाभास के माध्यम से यह मानते हुए कि [K:'C '] > 1, हम यह निष्कर्ष निकालते हैं कि p-समूह|2-समूह Gal(K/'C') में अनुक्रमणिका 2 का एक उपसमूह सम्मिलित है, इसलिए घात 2 के 'C' का एक उप-विस्तार M उपस्थित है। हालांकि, 'C' घात 2 का कोई विस्तार नहीं है, क्योंकि प्रत्येक द्विघात सम्मिश्र बहुपद का एक सम्मिश्र मूल होता है, जैसा कि ऊपर उल्लेख किया गया है। इससे पता चलता है कि [K:'C'] = 1, और इसलिए K = 'C', जो उपपत्ति को पूरा करता है।
ज्यामितीय प्रमाण
जेएम अलमीरा और ए रोमेरो के कारण बीजगणित के मौलिक प्रमेय तक पहुंचने का एक और तरीका उपस्थित है: रिमेंनियन ज्यामिति तर्कों द्वारा। यहाँ मुख्य विचार यह प्रमाणित करना है कि शून्य के बिना एक असततबहुपद p(z) के अस्तित्व का अर्थ है 'एस' क्षेत्र पर एक फ्लैट कई गुना का अस्तित्व।2</उप>। यह एक विरोधाभास की ओर ले जाता है क्योंकि गोला समतल नहीं है।
एक रिमेंनियन सतह(M, g) को सपाट कहा जाता है यदि इसकी गाऊसी वक्रता, जिसे हम K द्वारा निरूपित करते हैंg, समान रूप से शून्य है। अब, गॉस-बोनट प्रमेय, जब गोले 'S' पर लागू किया जाता है2, का दावा है
जो सिद्ध करता है कि गोला समतल नहीं है।
आइए अब मान लें कि n> 0 और
प्रत्येक समिश्र संख्या z के लिए। आइए परिभाषित करते हैं
जाहिर है, p*(z) ≠ 0 'C' में सभी z के लिए। बहुपद f(z) = p(z)p*(z) पर विचार करें। फिर 'C' में प्रत्येक z के लिए f(z) ≠ 0। आगे,
हम इस क्रियात्मक समीकरण का प्रयोग यह सिद्ध करने के लिए कर सकते हैं कि g, द्वारा दिया गया है
डब्ल्यू के लिए 'सी' में, और
w ∈ 'S' के लिए2\{0}, गोले S पर एक अच्छी तरह से परिभाषित रिमेंनियन मेट्रिक है2(जिसे हम विस्तारित समिश्र तल C ∪ {∞} से पहचानते हैं)।
अब, एक साधारण गणना यह दर्शाती है
चूंकि एक विश्लेषणात्मक कार्य का वास्तविक भाग हार्मोनिक है। इससे सिद्ध होता है कि केg = 0.
परिणाम
चूँकि बीजगणित के मौलिक प्रमेय को इस कथन के रूप में देखा जा सकता है कि समिश्र संख्याओं का क्षेत्र बीजगणितीय रूप से बंद क्षेत्र है, यह इस प्रकार है कि बीजगणितीय रूप से बंद क्षेत्रों से संबंधित कोई भी प्रमेय समिश्र संख्याओं के क्षेत्र पर लागू होता है। यहाँ प्रमेय के कुछ और परिणाम हैं, जो या तो वास्तविक संख्या के क्षेत्र के बारे में हैं या वास्तविक संख्या के क्षेत्र और समिश्र संख्या के क्षेत्र के बीच संबंध हैं:
- सम्मिश्र संख्याओं का क्षेत्र वास्तविक संख्याओं के क्षेत्र का बीजगणितीय समापन है।
- समिश्र गुणांक वाले एक चर z में प्रत्येक बहुपद एक समिश्र स्थिरांक और समिश्र के साथ z + a के रूप के बहुपदों का गुणनफल होता है।
- वास्तविक गुणांक वाले एक चर x में प्रत्येक बहुपद को विशिष्ट रूप से x + a के रूप के एक स्थिर, बहुपद के उत्पाद के रूप में लिखा जा सकता है, और प्रपत्र x के बहुपद2 + ax + b with a और b real और a2 − 4b < 0(जो कहने के समान है कि बहुपद x2 + ax + b का कोई वास्तविक मूल नहीं है)।(एबेल-रफ़िनी प्रमेय द्वारा, वास्तविक संख्याएँ a और b आवश्यक रूप से बहुपद के गुणांकों, मूल अंकगणितीय संक्रियाओं और n-वें मूलों के निष्कर्षण के संदर्भ में अभिव्यक्त नहीं हैं।) इसका तात्पर्य है कि गैर-वास्तविक की संख्या समिश्र मूल हमेशा सम होती हैं और उनकी बहुलता से गिनने पर भी बनी रहती हैं।
- वास्तविक गुणांक वाले एक चर x में प्रत्येक परिमेय फलन को a/(x − b) रूप के परिमेय फलन वाले बहुपद फलन के योग के रूप में लिखा जा सकता है।n(जहाँ n एक प्राकृत संख्या है, और a और b वास्तविक संख्याएँ हैं), और(ax + b)/(x) के रूप का परिमेय फलन2 + सीएक्स + डी)n(जहाँ n एक प्राकृतिक संख्या है, और a, b, c, और d वास्तविक संख्याएँ हैं जैसे कि c2 − 4d < 0). इसका एक परिणाम यह है कि एक चर और वास्तविक गुणांकों में प्रत्येक परिमेय फलन का एक प्राथमिक फलन(विभेदक बीजगणित) प्रतिअवकलज होता है।
- वास्तविक क्षेत्र का प्रत्येक बीजगणितीय विस्तार या तो वास्तविक क्षेत्र या समिश्र क्षेत्र के लिए आइसोमोर्फिक है।
एक बहुपद के शून्य पर सीमा
जबकि बीजगणित का मौलिक प्रमेय एक सामान्य अस्तित्व परिणाम बताता है, यह सैद्धांतिक और व्यावहारिक दोनों दृष्टिकोणों से, किसी दिए गए बहुपद के शून्यों के स्थान पर जानकारी रखने के लिए कुछ रुचि का है। इस दिशा में सरल परिणाम गुणांक पर बाध्य है: एक मोनिक बहुपद के सभी शून्य ζ एक असमानता को संतुष्ट करें |ζ| ≤ आर∞, कहाँ पे
ध्यान दें कि, जैसा कि कहा गया है, यह अभी तक एक अस्तित्व का परिणाम नहीं है, बल्कि एक उदाहरण है जिसे एक प्राथमिकता और पश्चवर्ती बाध्यता कहा जाता है: यह कहता है कि यदि समाधान हैं तो वे केंद्र की बंद चकती के अंदर स्थित हैं और त्रिज्या आर∞. हालांकि, एक बार बीजगणित के मौलिक प्रमेय के साथ मिलकर यह कहता है कि चकती में वास्तव में कम से कम एक समाधान होता है। अधिक आम तौर पर, गुणांक के एन-वेक्टर के किसी भी पी-मानदंड के संदर्भ में एक बाध्य सीधे दिया जा सकता है वह है |ζ| ≤ आरp, जहां आरpठीक 2-वेक्टर का क्यू-नॉर्म है क्यू पी के संयुग्मी प्रतिपादक होने के नाते, किसी भी 1 ≤ पी ≤ ∞ के लिए। इस प्रकार, किसी भी विलयन का मापांक भी द्वारा परिबद्ध होता है
1 <पी <∞ के लिए, और विशेष रूप से
(जहाँ हम a को परिभाषित करते हैंnमतलब 1, जो उचित है क्योंकि 1 वास्तव में हमारे बहुपद का एन-वां गुणांक है)। घात एन के एक सामान्य बहुपद का मामला,
निश्चित रूप से एक मोनिक के मामले में कम हो गया है, सभी गुणांकों को एक से विभाजित करते हुएn≠ 0. साथ ही, अगर 0 एक रूट नहीं है, यानी a0 ≠ 0, मूलों पर नीचे से सीमाएं ζ ऊपर से सीमा के रूप में तुरंत पालन करती हैं यानी की मूल
अंत में, दूरी मूलों से ζ किसी भी बिंदु तक नीचे और ऊपर से देखकर अंदाजा लगाया जा सकता है बहुपद के शून्य के रूप में , जिसका गुणांक P(z) का टेलर विस्तार है माना ζ बहुपद का एक मूल है
असमानता को प्रमाणित करने के लिए |ζ| ≤ आरpहम निश्चित रूप से मान सकते हैं |ζ| > 1. समीकरण को इस रूप में लिखने पर
और होल्डर की असमानता का उपयोग करके हम पाते हैं
अब, यदि p = 1, यह है
इस प्रकार
1 <p ≤ ∞ की स्थिति में, ज्यामितीय प्रगति के योग सूत्र को ध्यान में रखते हुए, हमारे पास है
इस प्रकार
और सरलीकरण,
इसलिए
धारण करता है, सभी के लिए 1 ≤ p ≤ ∞.
यह भी देखें
- विअरस्ट्रास गुणनखंड प्रमेय, अन्य संपूर्ण कार्यों के लिए प्रमेय का एक सामान्यीकरण
- इलेनबर्ग-निवेन प्रमेय, चतुर्धातुक गुणांक और चर के साथ बहुपदों के लिए प्रमेय का एक सामान्यीकरण
- हिल्बर्ट का नलस्टेलेंसैट्ज, इस दावे के कई चरों का एक सामान्यीकरण कि समिश्र मूल उपस्थित हैं
- बेज़ाउट की प्रमेय, मूलों की संख्या पर अभिकथन के कई चरों का सामान्यीकरण।
संदर्भ
उद्धरण
- ↑ Even the proof that the equation has a solution involves the definition of the real numbers through some form of completeness (specifically the intermediate value theorem).
- ↑ For the minimum necessary to prove their equivalence, see Bridges, Schuster, and Richman; 1998; A weak countable choice principle; available from [1].
- ↑ See Fred Richman; 1998; The fundamental theorem of algebra: a constructive development without choice; available from [2].
- ↑ Aigner, Martin; Ziegler, Günter (2018). पुस्तक से प्रमाण. Springer. p. 151. ISBN 978-3-662-57264-1. OCLC 1033531310.
- ↑ Basu, S. STRICTLY REAL FUNDAMENTAL THEOREM OF ALGEBRA USING POLYNOMIAL INTERLACING. Bulletin of the Australian Mathematical Society, volume 104 (2021), issue 2. pp. 249–255.
- ↑ Ahlfors, Lars. जटिल विश्लेषण (2nd ed.). McGraw-Hill Book Company. p. 122.
- ↑ A proof of the fact that this suffices can be seen here.
- ↑ Shipman, J. Improving the Fundamental Theorem of Algebra. The Mathematical Intelligencer, volume 29 (2007), number 4, pp. 9–14.
- ↑ M. Aliabadi, M. R. Darafsheh, On maximal and minimal linear matching property, Algebra and discrete mathematics, volume 15 (2013), number 2, pp. 174–178.
- ↑ A proof of the fact that this suffices can be seen here.
ऐतिहासिक स्रोत
- Cauchy, Augustin-Louis (1821), Cours d'Analyse de l'École Royale Polytechnique, 1ère partie: Analyse Algébrique, Paris: Éditions Jacques Gabay (published 1992), ISBN 978-2-87647-053-8(tr। इकोले पॉलीटेक्निक के विश्लेषण पर पाठ्यक्रम, भाग 1: बीजगणितीय विश्लेषण)
- Euler, Leonhard (1751), "Recherches sur les racines imaginaires des équations", Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin, Berlin, vol. 5, pp. 222–288. अंग्रेजी अनुवाद: Euler, Leonhard (1751), "Investigations on the Imaginary Roots of Equations" (PDF), Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin, Berlin, vol. 5, pp. 222–288
- Gauss, Carl Friedrich (1799), Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse, Helmstedt: C. G. Fleckeisen(tr। प्रमेय का नया प्रमाण है कि एक चर के प्रत्येक अभिन्न तर्कसंगत बीजगणितीय कार्य को पहली या दूसरी घात के वास्तविक कारकों में हल किया जा सकता है)।
- Gauss, Carl Friedrich (1866), Carl Friedrich Gauss Werke, vol. Band III, Königlichen Gesellschaft der Wissenschaften zu Göttingen
- Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse (1799), pp. 1–31., p. 1, at Google Books - पहला प्रमाण।
- Demonstratio nova altera theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse (1815 Dec), pp. 32–56., p. 32, at Google Books - दूसरा प्रमाण।
- Theorematis de resolubilitate functionum algebraicarum integrarum in factores reales demonstratio tertia Supplementum commentationis praecedentis (1816 Jan), pp. 57–64., p. 57, at Google Books - तीसरा प्रमाण।
- Beiträge zur Theorie der algebraischen Gleichungen (1849 Juli), pp. 71–103., p. 71, at Google Books - चौथा प्रमाण।
- Kneser, Hellmuth (1940), "Der Fundamentalsatz der Algebra und der Intuitionismus", Mathematische Zeitschrift, vol. 46, pp. 287–302, doi:10.1007/BF01181442, ISSN 0025-5874, S2CID 120861330(बीजगणित और अंतर्ज्ञान का मौलिक प्रमेय)।
- Kneser, Martin (1981), "Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz der Algebra", Mathematische Zeitschrift, vol. 177, no. 2, pp. 285–287, doi:10.1007/BF01214206, ISSN 0025-5874, S2CID 122310417(टीआर। बीजगणित के मौलिक प्रमेय पर हेलमथ केसर के काम का विस्तार)।
- Ostrowski, Alexander (1920), "Über den ersten und vierten Gaußschen Beweis des Fundamental-Satzes der Algebra", Carl Friedrich Gauss Werke Band X Abt. 2(tr। बीजगणित के मौलिक प्रमेय के पहले और चौथे गॉसियन प्रमाणों पर)।
- Weierstraß, Karl (1891), "Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen", Sitzungsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin, pp. 1085–1101(tr। प्रमेय का नया प्रमाण है कि एक चर के प्रत्येक अभिन्न तर्कसंगत कार्य को उसी चर के रैखिक कार्यों के उत्पाद के रूप में दर्शाया जा सकता है)।
हाल का साहित्य
- Almira, J.M.; Romero, A. (2007), "Yet another application of the Gauss-Bonnet Theorem for the sphere", Bulletin of the Belgian Mathematical Society, vol. 14, pp. 341–342
- Almira, J.M.; Romero, A. (2012), "Some Riemannian geometric proofs of the Fundamental Theorem of Algebra" (PDF), Differential Geometry – Dynamical Systems, vol. 14, pp. 1–4
- de Oliveira, O.R.B. (2011), "The Fundamental Theorem of Algebra: an elementary and direct proof", Mathematical Intelligencer, vol. 33, no. 2, pp. 1–2, doi:10.1007/s00283-011-9199-2, S2CID 5243991
- de Oliveira, O.R.B. (2012), "The Fundamental Theorem of Algebra: from the four basic operations", American Mathematical Monthly, vol. 119, no. 9, pp. 753–758, arXiv:1110.0165, doi:10.4169/amer.math.monthly.119.09.753, S2CID 218548926
- Fine, Benjamin; Rosenberger, Gerhard (1997), The Fundamental Theorem of Algebra, Undergraduate Texts in Mathematics, Berlin: Springer-Verlag, ISBN 978-0-387-94657-3, MR 1454356
- Gersten, S.M.; Stallings, John R. (1988), "On Gauss's First Proof of the Fundamental Theorem of Algebra", Proceedings of the American Mathematical Society, vol. 103, no. 1, pp. 331–332, doi:10.1090/S0002-9939-1988-0938691-3, ISSN 0002-9939, JSTOR 2047574
- Gilain, Christian (1991), "Sur l'histoire du théorème fondamental de l'algèbre: théorie des équations et calcul intégral", Archive for History of Exact Sciences, vol. 42, no. 2, pp. 91–136, doi:10.1007/BF00496870, ISSN 0003-9519, S2CID 121468210(tr। बीजगणित के मौलिक प्रमेय के इतिहास पर: समीकरणों का सिद्धांत और अभिन्न कलन।)
- Netto, Eugen; Le Vavasseur, Raymond (1916), "Les fonctions rationnelles §80–88: Le théorème fondamental", in Meyer, François; Molk, Jules (eds.), Encyclopédie des Sciences Mathématiques Pures et Appliquées, tome I, vol. 2, Éditions Jacques Gabay (published 1992), ISBN 978-2-87647-101-6(tr। तर्कसंगत कार्य §80–88: मौलिक प्रमेय)।
- Remmert, Reinhold (1991), "The Fundamental Theorem of Algebra", in Ebbinghaus, Heinz-Dieter; Hermes, Hans; Hirzebruch, Friedrich (eds.), Numbers, Graduate Texts in Mathematics 123, Berlin: Springer-Verlag, ISBN 978-0-387-97497-2
- Shipman, Joseph (2007), "Improving the Fundamental Theorem of Algebra", Mathematical Intelligencer, vol. 29, no. 4, pp. 9–14, doi:10.1007/BF02986170, ISSN 0343-6993, S2CID 123089882
- Smale, Steve (1981), "The Fundamental Theorem of Algebra and Complexity Theory", Bulletin of the American Mathematical Society, New Series, 4 (1): 1–36, doi:10.1090/S0273-0979-1981-14858-8 [एचटीटीपी://प्रोजेक्टउक्लिड.ऑर्ग/डपबस?सर्विस=ुइ&वर्शन=1.0&वर्ब=डिस्प्ले&हैंडल=यूक्लिड.बांस/1183547848]
- Smith, David Eugene (1959), A Source Book in Mathematics, Dover, ISBN 978-0-486-64690-9
- Smithies, Frank (2000), "A forgotten paper on the fundamental theorem of algebra", Notes & Records of the Royal Society, vol. 54, no. 3, pp. 333–341, doi:10.1098/rsnr.2000.0116, ISSN 0035-9149, S2CID 145593806
- Taylor, Paul (2 June 2007), Gauss's second proof of the fundamental theorem of algebra - गॉस के दूसरे प्रमाण का अंग्रेजी अनुवाद।
- van der Waerden, Bartel Leendert (2003), Algebra, vol. I (7th ed.), Springer-Verlag, ISBN 978-0-387-40624-4
बाहरी संबंध
- Algebra, fundamental theorem of at Encyclopaedia of Mathematics
- Fundamental Theorem of Algebra — a collection of proofs
- From the Fundamental Theorem of Algebra to Astrophysics: A "Harmonious" Path
- Gauss's first proof (in Latin) at Google Books
- Gauss's first proof (in Latin) at Google Books
- Mizar system proof: http://mizar.org/version/current/html/polynom5.html#T74