विभेदक वक्र: Difference between revisions

From Vigyanwiki
m (Abhishek moved page अवकलनीय वक्र to विभेदक वक्र without leaving a redirect)
No edit summary
Line 1: Line 1:
{{short description|Study of curves from a differential point of view}}
{{short description|Study of curves from a differential point of view}}
{{About|curves in Euclidean space|curves in an arbitrary topological space|Curve}}
{{About|curves in Euclidean space|curves in an arbitrary topological space|Curve}}
[[वक्र]]ों की विभेदक [[ज्यामिति]] ज्यामिति की वह शाखा है जो [[अंतर कलन]] और [[अभिन्न]] कैलकुलस के तरीकों से [[यूक्लिडियन विमान]] और यूक्लिडियन स्पेस में स्मूदनेस (गणित) वक्रों से संबंधित है।
[[वक्र]]ों की विभेदक [[ज्यामिति]] ज्यामिति की वह शाखा है जो [[अंतर कलन]] और [[अभिन्न]] के तरीकों से [[यूक्लिडियन विमान]] और यूक्लिडियन '''स्पे'''  स्मूदनेस (गणित) वक्रों से संबंधित है।


[[सिंथेटिक ज्यामिति]] का उपयोग करके कई [[वक्रों की सूची]] की पूरी तरह से जांच की गई है। [[विभेदक ज्यामिति]] एक और रास्ता अपनाती है: कर्व्स को एक [[पैरामीट्रिक समीकरण]] में दर्शाया जाता है, और उनके ज्यामितीय गुण और उनसे जुड़ी विभिन्न मात्राएँ, जैसे कि [[वक्रता]] और चाप की लंबाई, [[वेक्टर पथरी]] का उपयोग करके [[यौगिक]] और इंटीग्रल के माध्यम से व्यक्त की जाती हैं। वक्र का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे महत्वपूर्ण उपकरणों में से एक [[फ्रेनेट फ्रेम]] है, एक गतिशील फ्रेम जो वक्र के प्रत्येक बिंदु पर एक समन्वय प्रणाली प्रदान करता है जो उस बिंदु के निकट वक्र के लिए सबसे अच्छा अनुकूलित होता है।
[[सिंथेटिक ज्यामिति]] का उपयोग करके कई [[वक्रों की सूची]] की पूरी तरह से जांच की गई है। [[विभेदक ज्यामिति]] एक और रास्ता अपनाती है: कर्व्स को एक [[पैरामीट्रिक समीकरण]] में दर्शाया जाता है, और उनके ज्यामितीय गुण और उनसे जुड़ी विभिन्न मात्राएँ, जैसे कि [[वक्रता]] और चाप की लंबाई, [[वेक्टर पथरी]] का उपयोग करके [[यौगिक]] और इंटीग्रल के माध्यम से व्यक्त की जाती हैं। वक्र का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे महत्वपूर्ण उपकरणों में से एक [[फ्रेनेट फ्रेम]] है, एक गतिशील फ्रेम जो वक्र के प्रत्येक बिंदु पर एक समन्वय प्रणाली प्रदान करता है जो उस बिंदु के निकट वक्र के लिए सबसे अच्छा अनुकूलित होता है।


[[सतहों की अंतर ज्यामिति]] और इसके उच्च-आयामी सामान्यीकरण की तुलना में घटता का सिद्धांत बहुत सरल और संकीर्ण है क्योंकि [[यूक्लिडियन अंतरिक्ष]] में एक नियमित वक्र में कोई आंतरिक ज्यामिति नहीं है। चाप की लंबाई ("प्राकृतिक पैरामीट्रिजेशन") द्वारा किसी भी नियमित वक्र को पैरामीट्रिज किया जा सकता है। वक्र पर एक [[परीक्षण कण]] के दृष्टिकोण से जो परिवेश स्थान के बारे में कुछ भी नहीं जानता है, सभी वक्र समान दिखाई देंगे। अलग-अलग अंतरिक्ष वक्र केवल इस बात से अलग होते हैं कि वे कैसे झुकते और मुड़ते हैं। मात्रात्मक रूप से, यह एक वक्र के 'वक्रता' और '[[वक्रों का मरोड़]]' कहे जाने वाले अंतर-ज्यामितीय आक्रमणकारियों द्वारा मापा जाता है। वक्रों का मौलिक प्रमेय दावा करता है कि इन अपरिवर्तनीयों का ज्ञान वक्र को पूरी तरह से निर्धारित करता है।
[[सतहों की अंतर ज्यामिति]] और इसके उच्च-आयामी सामान्यीकरण की तुलना में घटता का सिद्धांत बहुत सरल और संकीर्ण है क्योंकि [[यूक्लिडियन अंतरिक्ष]] में एक नियमित वक्र में कोई आंतरिक ज्यामिति नहीं है। चाप की लंबाई ("प्राकृतिक पैरामीट्रिजेशन") द्वारा किसी भी नियमित वक्र को '''पैरामीट्रिज''' किया जा सकता है। वक्र पर एक [[परीक्षण कण]] के दृष्टिकोण से जो परिवेश स्थान के बारे में कुछ भी नहीं जानता है, सभी वक्र समान दिखाई देंगे। अलग-अलग अंतरिक्ष वक्र केवल इस बात से अलग होते हैं कि वे कैसे झुकते और मुड़ते हैं। मात्रात्मक रूप से, यह एक वक्र के 'वक्रता' और '[[वक्रों का मरोड़]]' कहे जाने वाले अंतर-ज्यामितीय आक्रमणकारियों द्वारा मापा जाता है। वक्रों का मौलिक प्रमेय दावा करता है कि इन अपरिवर्तनीयों का ज्ञान वक्र को पूरी तरह से निर्धारित करता है।


== परिभाषाएँ ==
== परिभाषाएँ ==
Line 11: Line 11:
एक पैरामीट्रिक {{math|''C''<sup>''r''</sup>}}-वक्र या ए {{math|''C''<sup>''r''</sup>}}-पैरामेट्रिजेशन एक [[वेक्टर-मूल्यवान फ़ंक्शन]] है
एक पैरामीट्रिक {{math|''C''<sup>''r''</sup>}}-वक्र या ए {{math|''C''<sup>''r''</sup>}}-पैरामेट्रिजेशन एक [[वेक्टर-मूल्यवान फ़ंक्शन]] है
:<math>\gamma: I \to \mathbb{R}^{n}</math>
:<math>\gamma: I \to \mathbb{R}^{n}</math>
वह है {{mvar|r}}-समय लगातार अलग-अलग (अर्थात, का घटक कार्य करता है {{mvar|γ}} लगातार अलग-अलग हैं), जहां <math>n \isin \mathbb{N}</math>, <math>r \isin \mathbb{N} \cup \{\infty\}</math>, तथा {{mvar|I}} वास्तविक संख्याओं का एक गैर-खाली [[अंतराल (गणित)]] है। {{em|image}} पैरामीट्रिक वक्र का }} है <math>\gamma[I] \subseteq \mathbb{R}^n</math>. पैरामीट्रिक वक्र {{mvar|γ}} और इसकी छवि {{math|''γ''[''I'']}} प्रतिष्ठित होना चाहिए क्योंकि एक दिया गया सबसेट <math>\mathbb{R}^n</math> कई अलग-अलग पैरामीट्रिक वक्रों की छवि हो सकती है। पैरामीटर {{mvar|t}} में {{math|''γ''(''t'')}} समय का प्रतिनिधित्व करने के रूप में सोचा जा सकता है, और {{mvar|γ}} अंतरिक्ष में एक गतिमान बिंदु का [[प्रक्षेपवक्र]]। कब {{mvar|I}} एक बंद अंतराल है {{math|[''a'',''b'']}}, {{math|''γ''(''a'')}} प्रारंभिक बिंदु कहा जाता है और {{math|''γ''(''b'')}} का चरमोत्कर्ष है {{mvar|γ}}. यदि आरंभिक और अंतिम बिंदु संपाती हैं (अर्थात, {{math|''γ''(''a'') {{=}} ''γ''(''b'')}}), फिर {{mvar|γ}} एक बंद वक्र या एक पाश है। होना चाहिए {{math|''C''<sup>''r''</sup>}}-लूप, समारोह {{mvar|γ}} होना चाहिए {{mvar|r}}-समय लगातार अलग और संतुष्ट {{math|''γ''<sup>(''k'')</sup>(''a'') {{=}} ''γ''<sup>(''k'')</sup>(''b'')}} के लिये {{math|0 ≤ ''k'' ≤ ''r''}}.
वह {{mvar|r}}-समय लगातार अलग-अलग है (अर्थात, का घटक कार्य करता है {{mvar|γ}} लगातार अलग-अलग हैं), जहां <math>n \isin \mathbb{N}</math>, <math>r \isin \mathbb{N} \cup \{\infty\}</math>, तथा {{mvar|I}} वास्तविक संख्याओं का एक गैर-खाली [[अंतराल (गणित)]] है। {{em|image}} पैरामीट्रिक वक्र का }} है <math>\gamma[I] \subseteq \mathbb{R}^n</math>. पैरामीट्रिक वक्र {{mvar|γ}} और इसकी छवि {{math|''γ''[''I'']}} प्रतिष्ठित होना चाहिए क्योंकि एक दिया गया सबसेट <math>\mathbb{R}^n</math> कई अलग-अलग पैरामीट्रिक वक्रों की छवि हो सकती है। पैरामीटर {{mvar|t}} में {{math|''γ''(''t'')}} समय का प्रतिनिधित्व करने के रूप में सोचा जा सकता है, और {{mvar|γ}} अंतरिक्ष में एक गतिमान बिंदु का [[प्रक्षेपवक्र]]। कब {{mvar|I}} एक बंद अंतराल है {{math|[''a'',''b'']}}, {{math|''γ''(''a'')}} प्रारंभिक बिंदु कहा जाता है और {{math|''γ''(''b'')}} का चरमोत्कर्ष है {{mvar|γ}}. यदि आरंभिक और अंतिम बिंदु संपाती हैं (अर्थात, {{math|''γ''(''a'') {{=}} ''γ''(''b'')}}), फिर {{mvar|γ}} एक बंद वक्र या एक पाश है। होना चाहिए {{math|''C''<sup>''r''</sup>}}-लूप, समारोह {{mvar|γ}} होना चाहिए {{mvar|r}}-समय लगातार अलग और संतुष्ट {{math|''γ''<sup>(''k'')</sup>(''a'') {{=}} ''γ''<sup>(''k'')</sup>(''b'')}} के लिये {{math|0 ≤ ''k'' ≤ ''r''}}.


पैरामीट्रिक वक्र है {{em|simple}} यदि
पैरामीट्रिक वक्र है {{em|simple}} यदि
Line 23: Line 23:
== पुन: पैरामीट्रिजेशन और तुल्यता संबंध ==
== पुन: पैरामीट्रिजेशन और तुल्यता संबंध ==
{{See also|Position vector|Vector-valued function}}
{{See also|Position vector|Vector-valued function}}
पैरामीट्रिक वक्र की छवि को देखते हुए, पैरामीट्रिक वक्र के कई अलग-अलग पैरामीट्रिजेशन हैं। डिफरेंशियल ज्योमेट्री का उद्देश्य पैरामीट्रिक वक्रों के गुणों का वर्णन करना है जो कुछ पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं। सभी पैरामीट्रिक वक्रों के समुच्चय पर एक उपयुक्त [[तुल्यता संबंध]] परिभाषित किया जाना चाहिए। एक पैरामीट्रिक वक्र के अंतर-ज्यामितीय गुण (जैसे इसकी लंबाई, इसकी #Frenet फ्रेम, और इसकी सामान्यीकृत वक्रता) पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं और इसलिए सम[[तुल्यता वर्ग]] के गुण हैं। समतुल्य वर्ग कहलाते हैं {{math|''C''<sup>''r''</sup>}}-curves और घटता के अंतर ज्यामिति में अध्ययन की जाने वाली केंद्रीय वस्तुएं हैं।
'''पैरामीट्रिक''' वक्र की छवि को देखते हुए, पैरामीट्रिक वक्र के कई अलग-अलग '''पैरामीट्रिजेशन''' हैं। '''डिफरेंशियल''' '''ज्योमेट्री''' का उद्देश्य '''पैरामीट्रिक''' वक्रों के गुणों का वर्णन करना है जो कुछ पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं। सभी पैरामीट्रिक वक्रों के समुच्चय पर एक उपयुक्त [[तुल्यता संबंध]] परिभाषित किया जाना चाहिए। एक पैरामीट्रिक वक्र के अंतर-ज्यामितीय गुण (जैसे इसकी लंबाई, इसकी #Frenet फ्रेम, और इसकी सामान्यीकृत वक्रता) पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं और इसलिए सम[[तुल्यता वर्ग]] के गुण हैं। समतुल्य वर्ग कहलाते हैं {{math|''C''<sup>''r''</sup>}}-curves और घटता के अंतर ज्यामिति में अध्ययन की जाने वाली केंद्रीय वस्तुएं हैं।


दो पैरामीट्रिक {{math|''C''<sup>''r''</sup>}}-वक्र, <math>\gamma_1 : I_1 \to \mathbb{R}^n</math> तथा <math>\gamma_2 : I_2 \to \mathbb{R}^n</math>, कहा जाता है {{em|equivalent}} यदि और केवल यदि कोई विशेषण मौजूद है {{math|''C''<sup>''r''</sup>}}-नक्शा {{math|''φ'' : ''I''<sub>1</sub> → ''I''<sub>2</sub>}} ऐसा है कि
दो पैरामीट्रिक {{math|''C''<sup>''r''</sup>}}-वक्र, <math>\gamma_1 : I_1 \to \mathbb{R}^n</math> तथा <math>\gamma_2 : I_2 \to \mathbb{R}^n</math>, कहा जाता है {{em|equivalent}} यदि और केवल यदि कोई विशेषण मौजूद है {{math|''C''<sup>''r''</sup>}}-नक्शा {{math|''φ'' : ''I''<sub>1</sub> → ''I''<sub>2</sub>}} ऐसा है कि

Revision as of 00:44, 2 December 2022

वक्रों की विभेदक ज्यामिति ज्यामिति की वह शाखा है जो अंतर कलन और अभिन्न के तरीकों से यूक्लिडियन विमान और यूक्लिडियन स्पे स्मूदनेस (गणित) वक्रों से संबंधित है।

सिंथेटिक ज्यामिति का उपयोग करके कई वक्रों की सूची की पूरी तरह से जांच की गई है। विभेदक ज्यामिति एक और रास्ता अपनाती है: कर्व्स को एक पैरामीट्रिक समीकरण में दर्शाया जाता है, और उनके ज्यामितीय गुण और उनसे जुड़ी विभिन्न मात्राएँ, जैसे कि वक्रता और चाप की लंबाई, वेक्टर पथरी का उपयोग करके यौगिक और इंटीग्रल के माध्यम से व्यक्त की जाती हैं। वक्र का विश्लेषण करने के लिए उपयोग किए जाने वाले सबसे महत्वपूर्ण उपकरणों में से एक फ्रेनेट फ्रेम है, एक गतिशील फ्रेम जो वक्र के प्रत्येक बिंदु पर एक समन्वय प्रणाली प्रदान करता है जो उस बिंदु के निकट वक्र के लिए सबसे अच्छा अनुकूलित होता है।

सतहों की अंतर ज्यामिति और इसके उच्च-आयामी सामान्यीकरण की तुलना में घटता का सिद्धांत बहुत सरल और संकीर्ण है क्योंकि यूक्लिडियन अंतरिक्ष में एक नियमित वक्र में कोई आंतरिक ज्यामिति नहीं है। चाप की लंबाई ("प्राकृतिक पैरामीट्रिजेशन") द्वारा किसी भी नियमित वक्र को पैरामीट्रिज किया जा सकता है। वक्र पर एक परीक्षण कण के दृष्टिकोण से जो परिवेश स्थान के बारे में कुछ भी नहीं जानता है, सभी वक्र समान दिखाई देंगे। अलग-अलग अंतरिक्ष वक्र केवल इस बात से अलग होते हैं कि वे कैसे झुकते और मुड़ते हैं। मात्रात्मक रूप से, यह एक वक्र के 'वक्रता' और 'वक्रों का मरोड़' कहे जाने वाले अंतर-ज्यामितीय आक्रमणकारियों द्वारा मापा जाता है। वक्रों का मौलिक प्रमेय दावा करता है कि इन अपरिवर्तनीयों का ज्ञान वक्र को पूरी तरह से निर्धारित करता है।

परिभाषाएँ

एक पैरामीट्रिक Cr-वक्र या ए Cr-पैरामेट्रिजेशन एक वेक्टर-मूल्यवान फ़ंक्शन है

वह r-समय लगातार अलग-अलग है (अर्थात, का घटक कार्य करता है γ लगातार अलग-अलग हैं), जहां , , तथा I वास्तविक संख्याओं का एक गैर-खाली अंतराल (गणित) है। image पैरामीट्रिक वक्र का }} है . पैरामीट्रिक वक्र γ और इसकी छवि γ[I] प्रतिष्ठित होना चाहिए क्योंकि एक दिया गया सबसेट कई अलग-अलग पैरामीट्रिक वक्रों की छवि हो सकती है। पैरामीटर t में γ(t) समय का प्रतिनिधित्व करने के रूप में सोचा जा सकता है, और γ अंतरिक्ष में एक गतिमान बिंदु का प्रक्षेपवक्र। कब I एक बंद अंतराल है [a,b], γ(a) प्रारंभिक बिंदु कहा जाता है और γ(b) का चरमोत्कर्ष है γ. यदि आरंभिक और अंतिम बिंदु संपाती हैं (अर्थात, γ(a) = γ(b)), फिर γ एक बंद वक्र या एक पाश है। होना चाहिए Cr-लूप, समारोह γ होना चाहिए r-समय लगातार अलग और संतुष्ट γ(k)(a) = γ(k)(b) के लिये 0 ≤ kr.

पैरामीट्रिक वक्र है simple यदि

इंजेक्शन है। यह है analytic यदि प्रत्येक घटक कार्य करता है γ एक विश्लेषणात्मक कार्य है, अर्थात यह वर्ग का है Cω.

वक्र γ नियमानुकूल है m (कहाँ पे mr) अगर, हर के लिए tI,

का एक रैखिक रूप से स्वतंत्र उपसमुच्चय है . विशेष रूप से, एक पैरामीट्रिक C1-वक्र γ है regular अगर और केवल अगर γ(t) ≠ 0 किसी के लिए tI.

पुन: पैरामीट्रिजेशन और तुल्यता संबंध

पैरामीट्रिक वक्र की छवि को देखते हुए, पैरामीट्रिक वक्र के कई अलग-अलग पैरामीट्रिजेशन हैं। डिफरेंशियल ज्योमेट्री का उद्देश्य पैरामीट्रिक वक्रों के गुणों का वर्णन करना है जो कुछ पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं। सभी पैरामीट्रिक वक्रों के समुच्चय पर एक उपयुक्त तुल्यता संबंध परिभाषित किया जाना चाहिए। एक पैरामीट्रिक वक्र के अंतर-ज्यामितीय गुण (जैसे इसकी लंबाई, इसकी #Frenet फ्रेम, और इसकी सामान्यीकृत वक्रता) पुनर्मूल्यांकन के तहत अपरिवर्तनीय हैं और इसलिए समतुल्यता वर्ग के गुण हैं। समतुल्य वर्ग कहलाते हैं Cr-curves और घटता के अंतर ज्यामिति में अध्ययन की जाने वाली केंद्रीय वस्तुएं हैं।

दो पैरामीट्रिक Cr-वक्र, तथा , कहा जाता है equivalent यदि और केवल यदि कोई विशेषण मौजूद है Cr-नक्शा φ : I1I2 ऐसा है कि

तथा

γ2 तब ए कहा जाता है re-parametrization का γ1.

पुन: पैरामीट्रिजेशन सभी पैरामीट्रिक के सेट पर एक समानता संबंध को परिभाषित करता है Crवर्ग के वक्र Cr. इस संबंध का तुल्यता वर्ग केवल a Cr-वक्र।

ओरिएंटेड पैरामीट्रिक का और भी बेहतर तुल्यता संबंध Cr-curves को आवश्यकता के द्वारा परिभाषित किया जा सकता है φ को पूरा करने के φ(t) > 0.

समतुल्य पैरामीट्रिक Cr-curves की एक ही छवि है, और समतुल्य उन्मुख पैरामीट्रिक है Cr-वक्र छवि को उसी दिशा में पार भी करते हैं।

लंबाई और प्राकृतिक पैरामीट्रिजेशन

लंबाई l एक पैरामीट्रिक का C1-वक्र की तरह परिभाषित किया गया है

एक पैरामीट्रिक वक्र की लंबाई पुनर्मूल्यांकन के तहत अपरिवर्तनीय है और इसलिए पैरामीट्रिक वक्र की एक अंतर-ज्यामितीय संपत्ति है।

प्रत्येक नियमित पैरामीट्रिक के लिए Cr-वक्र , कहाँ पे r ≥ 1, फ़ंक्शन परिभाषित किया गया है

लिख रहे हैं γ(s) = γ(t(s)), कहाँ पे t(s) का प्रतिलोम कार्य है s(t). यह एक पुनः पैरामीट्रिजेशन है γ का γ जिसे एक कहा जाता हैarc-length parametrization, प्राकृतिक पैरामीट्रिजेशन, यूनिट-स्पीड पैरामीट्रिजेशन। पैरामीटर s(t) कहा जाता है natural parameter का γ.

यह parametrization पसंद किया जाता है क्योंकि प्राकृतिक पैरामीटर s(t) की छवि को पार करता है γ इकाई गति से, ताकि

व्यवहार में, पैरामीट्रिक वक्र के प्राकृतिक पैरामीट्रिजेशन की गणना करना अक्सर बहुत कठिन होता है, लेकिन यह सैद्धांतिक तर्कों के लिए उपयोगी होता है।

दिए गए पैरामीट्रिक वक्र के लिए γ, प्राकृतिक पैरामीट्रिजेशन पैरामीटर की शिफ्ट तक अद्वितीय है।

मात्रा

को कभी-कभी कहा जाता है energy या वक्र की क्रिया (भौतिकी); यह नाम उचित है क्योंकि इस क्रिया के लिए geodesic समीकरण यूलर-लैग्रेंज गति के समीकरण हैं।

फ्रेनेट फ्रेम

अंतरिक्ष वक्र पर एक बिंदु के लिए फ्रेनेट फ्रेम का एक उदाहरण। T इकाई स्पर्शरेखा है, P इकाई सामान्य, और B इकाई असामान्य।

फ्रेनेट फ्रेम किसका मूविंग फ्रेम है n ऑर्थोनॉर्मल वैक्टर ei(t) जिनका उपयोग प्रत्येक बिंदु पर स्थानीय रूप से वक्र का वर्णन करने के लिए किया जाता है γ(t). यह घटता के विभेदक ज्यामितीय उपचार में मुख्य उपकरण है क्योंकि यूक्लिडियन निर्देशांक जैसे वैश्विक एक का उपयोग करने की तुलना में स्थानीय संदर्भ प्रणाली के संदर्भ में स्थानीय गुणों (जैसे वक्रता, मरोड़) का वर्णन करना कहीं अधिक आसान और अधिक स्वाभाविक है।

ए दिया Cn + 1-वक्र γ में जो नियमानुसार है n वक्र के लिए फ्रेनेट फ्रेम ऑर्थोनॉर्मल वैक्टर का सेट है

फ्रेनेट-सेरेट सूत्र कहलाते हैं। वे के डेरिवेटिव से निर्मित होते हैं γ(t) ग्राम-श्मिट प्रक्रिया का उपयोग करना | ग्राम-श्मिट ऑर्थोगोनलाइज़ेशन एल्गोरिथम के साथ

वास्तविक मूल्यवान कार्य χi(t) सामान्यीकृत वक्रताएँ कहलाती हैं और इन्हें इस रूप में परिभाषित किया जाता है

फ्रेनेट फ्रेम और सामान्यीकृत वक्रता पुनर्परमेट्रिजेशन के तहत अपरिवर्तनीय हैं और इसलिए वक्र के विभेदक ज्यामितीय गुण हैं। में घटता के लिए वक्रता है और मरोड़ है।

बर्ट्रेंड वक्र

एक बर्ट्रेंड वक्र एक नियमित वक्र है अतिरिक्त संपत्ति के साथ जिसमें एक दूसरा वक्र है जैसे कि #सामान्य या वक्रता सदिश इन दो वक्रों के लिए प्रत्येक संबंधित बिंदु पर समान हैं। दूसरे शब्दों में, अगर γ1(t) तथा γ2(t) में दो वक्र हैं ऐसा कि किसी के लिए t, दो प्रमुख सामान्य N1(t), N2(t) बराबर हैं, तो γ1 तथा γ2 बर्ट्रेंड वक्र हैं, और γ2 का बर्ट्रेंड मेट कहा जाता है γ1. हम लिख सकते हैं γ2(t) = γ1(t) + r N1(t) कुछ स्थिर के लिए r.[1] कुनेल की डिफरेंशियल ज्योमेट्री कर्व्स - सरफेस - मैनिफोल्ड्स में समस्या 25 के अनुसार, यह भी सच है कि दो बर्ट्रेंड वक्र जो एक ही द्वि-आयामी विमान में नहीं होते हैं, एक रैखिक संबंध के अस्तित्व की विशेषता है a κ(t) + b τ(t) = 1 कहाँ पे κ(t) तथा τ(t) की वक्रता और मरोड़ हैं γ1(t) तथा a तथा b के साथ वास्तविक स्थिरांक हैं a ≠ 0.[2] इसके अलावा, बर्ट्रेंड जोड़ी वक्रों के #Torsion का उत्पाद स्थिर है।[3] यदि γ1 एक से अधिक बर्ट्रेंड मेट हैं तो उसके पास अपरिमित रूप से अनेक हैं। यह तभी होता है जब γ1 एक गोलाकार हेलिक्स है।[1]


विशेष फ्रेनेट वैक्टर और सामान्यीकृत वक्रता

पहले तीन फ़्रेनेट वैक्टर और सामान्यीकृत वक्रताओं को त्रि-आयामी अंतरिक्ष में देखा जा सकता है। उनके पास अतिरिक्त नाम और उनसे जुड़ी अधिक अर्थपूर्ण जानकारी है।

स्पर्शरेखा वेक्टर

अगर एक वक्र γ एक कण के पथ का प्रतिनिधित्व करता है, फिर किसी दिए गए बिंदु पर कण का तात्क्षणिक वेग P एक वेक्टर (ज्यामितीय) द्वारा व्यक्त किया जाता है, जिसे वक्र पर स्पर्शरेखा वेक्टर कहा जाता है P. गणितीय रूप से, एक पैरामीट्रिज्ड दिया गया C1 वक्र γ = γ(t), प्रत्येक मूल्य के लिए t = t0 पैरामीटर का, वेक्टर

बिंदु पर स्पर्शरेखा सदिश है P = γ(t0). सामान्यतया, स्पर्शरेखा वेक्टर शून्य वेक्टर हो सकता है। स्पर्शरेखा सदिश का परिमाण

गति उस समय है t0.

पहला फ्रेनेट वेक्टर e1(t) के प्रत्येक नियमित बिंदु पर परिभाषित एक ही दिशा में इकाई स्पर्शरेखा सदिश है γ:

यदि t = s प्राकृतिक पैरामीटर है, तो स्पर्शरेखा वेक्टर की इकाई लंबाई होती है। सूत्र सरल करता है:

.

इकाई स्पर्शरेखा वेक्टर पैरामीटर के बढ़ते मूल्यों के अनुरूप, वक्र के उन्मुखीकरण या आगे की दिशा को निर्धारित करता है। वक्र के रूप में ली गई इकाई स्पर्शरेखा सदिश मूल वक्र की गोलाकार छवि का पता लगाती है।

सामान्य वेक्टर या वक्रता वेक्टर

एक वक्र सामान्य वेक्टर, जिसे कभी-कभी 'वक्रता वेक्टर' कहा जाता है, एक सीधी रेखा होने से वक्र के विचलन को इंगित करता है। इसे के रूप में परिभाषित किया गया है

इसका सामान्यीकृत रूप, इकाई सामान्य वेक्टर, दूसरा फ़्रेनेट वेक्टर है e2(t) और के रूप में परिभाषित किया गया है

बिंदु पर स्पर्शरेखा और सामान्य वेक्टर t बिंदु पर स्पष्ट रूप से हिलना को परिभाषित करें t.

यह दिखाया जा सकता है ē2(t) ∝ e1(t). इसलिए,


वक्रता

पहला सामान्यीकृत वक्रता χ1(t) वक्रता कहलाती है और विचलन को मापती है γ ऑस्कुलेटिंग प्लेन के सापेक्ष एक सीधी रेखा होने से। इसे के रूप में परिभाषित किया गया है

और की वक्रता कहलाती है γ बिंदु पर t. यह दिखाया जा सकता है

वक्रता का गुणक प्रतिलोम

वक्रता की त्रिज्या (गणित) कहलाती है।

त्रिज्या वाला एक वृत्त r की निरंतर वक्रता है

जबकि एक रेखा की वक्रता 0 होती है।

द्विसामान्य वेक्टर

यूनिट बिनॉर्मल वेक्टर तीसरा फ्रेनेट वेक्टर है e3(t). यह इकाई स्पर्शरेखा और सामान्य वैक्टर के लिए हमेशा ऑर्थोगोनल होता है t. इसे के रूप में परिभाषित किया गया है

3-आयामी अंतरिक्ष में, समीकरण सरल हो जाता है

या करने के लिए

दोनों में से कोई भी संकेत हो सकता है, यह एक दाएं हाथ के हेलिक्स और एक बाएं हाथ के हेलिक्स के उदाहरणों से स्पष्ट होता है।

मरोड़

दूसरा सामान्यीकृत वक्रता χ2(t) कहा जाता है torsion और के विचलन को मापता है γ समतल वक्र होने से। दूसरे शब्दों में, यदि मरोड़ शून्य है, तो वक्र पूरी तरह से एक ही दोलन तल में स्थित होता है (प्रत्येक बिंदु के लिए केवल एक दोलन तल होता है। t). इसे के रूप में परिभाषित किया गया है

और का मरोड़ (अंतर ज्यामिति) कहा जाता है γ बिंदु पर t.

ऐबरेंसी

तीसरा व्युत्पन्न का उपयोग असामान्यता को परिभाषित करने के लिए किया जा सकता है, जो घेरा की एक मीट्रिक है | वक्र की गैर-परिपत्रता।[4][5][6]


वक्र सिद्धांत का मुख्य प्रमेय

दिया गया n − 1 कार्य:

तो वहाँ एक अद्वितीय मौजूद है (यूक्लिडियन समूह का उपयोग करके परिवर्तनों तक) Cn + 1-वक्र γ जो क्रम n का नियमित है और इसमें निम्नलिखित गुण हैं:

जहां सेट

वक्र के लिए फ्रेनेट फ्रेम है।

अतिरिक्त रूप से एक शुरुआत प्रदान करके t0 में I, एक प्रारंभिक बिंदु p0 में और एक प्रारंभिक सकारात्मक ऑर्थोनॉर्मल फ्रेनेट फ्रेम {e1, ..., en − 1} साथ

एक अद्वितीय वक्र प्राप्त करने के लिए यूक्लिडियन परिवर्तनों को समाप्त कर दिया जाता है γ.

फ्रेनेट-सीरेट सूत्र

फ़्रेनेट-सेरेट सूत्र पहले क्रम के साधारण अंतर समीकरणों का एक सेट हैं। समाधान सामान्यीकृत वक्रता कार्यों द्वारा निर्दिष्ट वक्र का वर्णन करने वाले फ़्रेनेट वैक्टर का सेट है χi.

2 आयाम


3 आयाम


n आयाम (सामान्य सूत्र)


यह भी देखें

संदर्भ

  1. 1.0 1.1 do Carmo, Manfredo P. (2016). वक्रों और सतहों की विभेदक ज्यामिति (revised & updated 2nd ed.). Mineola, NY: Dover Publications, Inc. pp. 27–28. ISBN 978-0-486-80699-0.
  2. Kühnel, Wolfgang (2005). डिफरेंशियल ज्योमेट्री: कर्व्स, सरफेस, मैनिफोल्ड्स. Providence: AMS. p. 53. ISBN 0-8218-3988-8.
  3. Weisstein, Eric W. "बर्ट्रेंड वक्र". mathworld.wolfram.com.
  4. Schot, Stephen (November 1978). "एबरेंसी: थर्ड डेरिवेटिव की ज्यामिति". Mathematics Magazine. 5. 51 (5): 259–275. doi:10.2307/2690245. JSTOR 2690245.
  5. Cameron Byerley; Russell a. Gordon (2007). "ऐबरेंसी के उपाय". Real Analysis Exchange. Michigan State University Press. 32 (1): 233. doi:10.14321/realanalexch.32.1.0233. ISSN 0147-1937.
  6. Gordon, Russell A. (2004). "समतल वक्रों की विषमता". The Mathematical Gazette. Cambridge University Press (CUP). 89 (516): 424–436. doi:10.1017/s0025557200178271. ISSN 0025-5572. S2CID 118533002.


इस पेज में लापता आंतरिक लिंक की सूची

  • चिकनाई (गणित)
  • समाकलन गणित
  • घटता का मौलिक प्रमेय
  • वक्राकार लंबाई
  • लगातार अलग करने योग्य
  • द्विभाजित
  • गुणात्मक प्रतिलोम
  • सामान्य अवकल समीकरण

अग्रिम पठन

  • Kreyszig, Erwin (1991). Differential Geometry. New York: Dover Publications. ISBN 0-486-66721-9. Chapter II is a classical treatment of Theory of Curves in 3-dimensions.