गणितीय सर्वसमिका: Difference between revisions
No edit summary |
|||
Line 22: | Line 22: | ||
=== घातीय सर्वसमिका === | === घातीय सर्वसमिका === | ||
{{Main| | {{Main|घातांक}} | ||
निम्नलिखित | |||
निम्नलिखित सर्वसमिकाएं सभी [[पूर्णांक]] घातांकों के लिए मान्य हैं, बशर्ते आधार शून्य न हो: | |||
:<math>\begin{align} | :<math>\begin{align} | ||
b^{m + n} &= b^m \cdot b^n \\ | b^{m + n} &= b^m \cdot b^n \\ | ||
Line 29: | Line 30: | ||
(b \cdot c)^n &= b^n \cdot c^n | (b \cdot c)^n &= b^n \cdot c^n | ||
\end{align}</math> | \end{align}</math> | ||
जोड़ और गुणा के विपरीत, घातांक | जोड़ और गुणा के विपरीत, घातांक [[विनिमेय]] नहीं है। उदाहरण के लिए, {{nowrap|1=2 + 3 = 3 + 2 = 5}} और {{nowrap|1=2 · 3 = 3 · 2 = 6}} परंतु {{nowrap|1=2<sup>3</sup> = 8}} जबकि {{nowrap|1=3<sup>2</sup> = 9}}। | ||
योग और गुणन के विपरीत, घातांक भी साहचर्य नहीं है। उदाहरण के लिए, {{nowrap|1=(2 + 3) + 4 = 2 + (3 + 4) = 9}} और {{nowrap|1=(2 · 3) · 4 = 2 · (3 · 4) = 24}}, लेकिन 2<sup>3</sup> से 4 है 8<sub>4</sub> (या 4,096)। जबकि 2 से 3<sup>4</sup> है 2<sup>81</sup> (या 2,417,851,639,229,258,349,412,352)। जब किसी कोष्ठक का उपयोग नहीं किया जाता है, तो परंपरा के अनुसार क्रम ऊपर-नीचे होता है, न कि नीचे-ऊपर: | |||
:<math>b^{p^q} := b^{(p^q)} ,</math> जबकि <math>(b^p)^q = b^{p \cdot q}.</math> | :<math>b^{p^q} := b^{(p^q)} ,</math> जबकि <math>(b^p)^q = b^{p \cdot q}.</math> | ||
=== लघुगणकीय सर्वसमिकाएँ === | |||
{{Main|लघुगणकीय सर्वसमिकाएँ}} | |||
=== लघुगणकीय | |||
{{Main| | |||
कई महत्वपूर्ण सूत्र, जिन्हें कभी-कभी लघुगणकीय पहचान या लॉग कानून कहा जाता है, लघुगणक को एक दूसरे से संबंधित करते हैं:{{efn|All statements in this section can be found in {{harvnb|Shirali|2002|p=|loc=Section 4}}, {{harvnb|Downing|2003|p=275}}, or {{harvnb|Kate|Bhapkar|2009|p=1-1}}, for example.}} | कई महत्वपूर्ण सूत्र, जिन्हें कभी-कभी लघुगणकीय पहचान या लॉग कानून कहा जाता है, लघुगणक को एक दूसरे से संबंधित करते हैं:{{efn|All statements in this section can be found in {{harvnb|Shirali|2002|p=|loc=Section 4}}, {{harvnb|Downing|2003|p=275}}, or {{harvnb|Kate|Bhapkar|2009|p=1-1}}, for example.}} | ||
==== गुणनफल, भागफल, शक्ति और मूल ==== | |||
किसी गुणनफल का लघुगणक गुणित की जाने वाली संख्याओं के लघुगणकों का योग होता है; दो संख्याओं के अनुपात का लघुगणक, लघुगणकों के बीच का अंतर है। किसी संख्या का {{mvar|p}}th घात का लघुगणक स्वयं संख्या के लघुगणक का {{mvar|p}} गुना है; {{mvar|p}}th मूल का लघुगणक {{mvar|p}} से विभाजित संख्या का लघुगणक है। निम्नलिखित तालिका उदाहरणों के साथ इन सर्वसमिकाओं को सूचीबद्ध करती है। बाईं ओर लॉगरिदमिक परिभाषा <math>x=b^{\log_b x},</math> और/या <math>y=b^{\log_b y},</math>को प्रतिस्थापित करके प्रत्येक पहचान प्राप्त की जा सकती है। | |||
==== | |||
किसी गुणनफल का लघुगणक | |||
{| class="wikitable" style="margin:1em auto;" | {| class="wikitable" style="margin:1em auto;" | ||
! | ! !! सूत्र !! उदाहरण | ||
|- | |- | ||
| | | गुणन || <cite id="labegarithmProducts"><math>\log_b(x y) = \log_b(x) + \log_b(y)</math></cite>|| <math>\log_3(243) = \log_3(9 \cdot 27) = \log_3(9) + \log_3(27) = 2 + 3 = 5</math> | ||
|- | |- | ||
| | | भागफल || <math>\log_b\! \left( \frac{x}{y} \right) = \log_b(x) - \log_b(y)</math>|| <math>\log_2(16) = \log_2\!\left( \frac{64}{4} \right) = \log_2(64) - \log_2(4) = 6 - 2 = 4</math> | ||
|- | |- | ||
| | | घात || <cite id="labelLogarithmPowers"><math>\log_b(x^p) = p \log_b(x)</math></cite>|| <math>\log_2(64) = \log_2(2^6) = 6 \log_2 (2) = 6</math> | ||
|- | |- | ||
| | | मूल || <math>\log_b\! \sqrt[p]{x} = \frac{\log_b(x)} p</math>|| <math>\log_{10}\! \sqrt{1000} = \frac{1}{2}\log_{10} 1000 = \frac{3}{2} = 1.5</math> | ||
|} | |} | ||
==== आधार परिवर्तन ==== | ==== आधार परिवर्तन ==== | ||
लघुगणक | लघुगणक log<sub>''b''</sub>(''x'') की गणना x और b के लघुगणक से की जा सकती है, जो कि निम्नलिखित सूत्र का उपयोग करके एक मनमाना आधार k के संबंध में है: | ||
: | : <math> \log_b(x) = \frac{\log_k(x)}{\log_k(b)}.</math> | ||
विशिष्ट वैज्ञानिक कैलकुलेटर 10 और | विशिष्ट वैज्ञानिक कैलकुलेटर 10 और e के आधार पर लघुगणक की गणना करते हैं।<ref>{{Citation | last1=Bernstein | first1=Stephen | last2=Bernstein | first2=Ruth | title=Schaum's outline of theory and problems of elements of statistics. I, Descriptive statistics and probability | publisher=[[McGraw-Hill]] | location=New York | series=Schaum's outline series | isbn=978-0-07-005023-5 | year=1999 | url-access=registration | url=https://archive.org/details/schaumsoutlineof00bern }}, p. 21</ref> किसी भी आधार b के संबंध में लघुगणक इन दो लघुगणकों में से किसी एक का उपयोग करके पिछले सूत्र द्वारा निर्धारित किया जा सकता है: | ||
:<math> \log_b (x) = \frac{\log_{10} (x)}{\log_{10} (b)} = \frac{\log_{e} (x)}{\log_{e} (b)}. </math> | :<math> \log_b (x) = \frac{\log_{10} (x)}{\log_{10} (b)} = \frac{\log_{e} (x)}{\log_{e} (b)}. </math> | ||
एक संख्या x और | किसी अज्ञात आधार b को एक संख्या x और उसका लघुगणक log<sub>''b''</sub>(''x'') दिया गया है, तो आधार इस प्रकार दिया गया है: | ||
: <math> b = x^\frac{1}{\log_b(x)}.</math> | : <math> b = x^\frac{1}{\log_b(x)}.</math> | ||
=== हाइपरबोलिक फ़ंक्शन सर्वसमिका === | |||
{{Main|हाइपरबोलिक सर्वसमिका }} | |||
अतिशयोक्तिपूर्ण कार्य कई सर्वसमिकाओं को संतुष्ट करते हैं, उनमें से सभी त्रिकोणमितीय सर्वसमिकाओं के समान रूप में हैं। वास्तव में, ओसबोर्न के नियम <ref>{{cite journal|jstor=3602492|title=109. अतिशयोक्तिपूर्ण सूत्रों के लिए स्मरक|journal=The Mathematical Gazette|first=G.|last=Osborn|date=1 January 1902|volume=2|issue=34|pages=189|doi=10.2307/3602492|url=https://zenodo.org/record/1449741}}</ref> में कहा गया है कि किसी भी त्रिकोणमितीय पहचान को ज्या और कोज्या की पूर्णांक शक्तियों के संदर्भ में पूरी तरह से विस्तारित किया जा सकता है, साइन को sinh और कोसाइन को cosh में बदलना और प्रत्येक पद के चिह्न को बदलना। एक अतिपरवलयिक पहचान में परिवर्तित किया जा सकता है जिसमें अतिशयोक्तिपूर्ण साइन की संख्या भी गुणा की जाती है।<ref>{{cite book | |||
अतिशयोक्तिपूर्ण कार्य कई सर्वसमिकाओं को संतुष्ट करते हैं, | |||
|title=कलन के साथ तकनीकी गणित|edition=3rd | |title=कलन के साथ तकनीकी गणित|edition=3rd | ||
|first1=John Charles | |first1=John Charles | ||
Line 76: | Line 72: | ||
|page=1155 | |page=1155 | ||
|url=https://books.google.com/books?id=PGuSDjHvircC}}, [https://books.google.com/books?id=PGuSDjHvircC&pg=PA1155 Chapter 26, page 1155]</ref> | |url=https://books.google.com/books?id=PGuSDjHvircC}}, [https://books.google.com/books?id=PGuSDjHvircC&pg=PA1155 Chapter 26, page 1155]</ref> | ||
[[गुडरमैनियन समारोह]] त्रिकोणमितीय फ़ंक्शंस और | |||
[[गुडरमैनियन समारोह|गुडरमेनियन फ़ंक्शन]] त्रिकोणमितीय फ़ंक्शंस और हाइपरबोलिक कार्यों के बीच सीधा संबंध देता है जिसमें [[जटिल संख्या|जटिल संख्याएं]] सम्मिलित नहीं होती हैं। | |||
== तर्क और सार्वभौमिक बीजगणित == | == तर्क और सार्वभौमिक बीजगणित == |
Revision as of 10:58, 8 December 2022
गणित में, एक पहचान एक गणितीय अभिव्यक्ति A से दूसरे गणितीय अभिव्यक्ति B से संबंधित एक समानता है, जैसे कि A और B (जिसमें कुछ चर शामिल हो सकते हैं) वैधता की एक निश्चित सीमा के भीतर चर के सभी मूल्यों के लिए समान मूल्य देते हैं।[1] दूसरे शब्दों में, A = B एक पहचान है यदि ए और बी एक ही कार्य को परिभाषित करते हैं, और एक पहचान भिन्न रूप से परिभाषित कार्यों के बीच एक समानता है। उदाहरण के लिए और तत्समक हैं। [1] पहचान को कभी-कभी ट्रिपल बार प्रतीक ≡ के बजाय बराबर का चिह्न = द्वारा दर्शाया जाता है।[2]
सामान्य सर्वसमिका
बीजगणितीय सर्वसमिका
कुछ सर्वसमिकाएँ, जैसे और बीजगणित का आधार बनती हैं,[3] जबकि अन्य, जैसे और बीजीय व्यंजकों को सरल और विस्तृत करने के लिए उपयोगी हो सकता है।[4]
त्रिकोणमितीय सर्वसमिकाएँ
ज्यामितीय रूप से, त्रिकोणमितीय सर्वसमिकाएँ एक या अधिक कोणों से कुछ कार्यों से संबंधित पहचान हैं।[5] वे त्रिभुजों की सर्वसमिकाओं से भिन्न होते हैं, जो एक त्रिभुज के दो कोणों और भुजाओं की लंबाई की पहचान होती हैं। यह लेख केवल पूर्व को कवर करता है।
जब भी त्रिकोणमितीय कार्यों को सम्मिलित करने वाले भावों को सरल बनाने की आवश्यकता होती है, तब ये सर्वसमिकाएँ उपयोगी होती हैं। एक अन्य महत्वपूर्ण अनुप्रयोग गैर-त्रिकोणमितीय कार्यों का एकीकरण है: एक सामान्य तकनीक जिसमें पहले त्रिकोणमितीय फ़ंक्शन के साथ प्रतिस्थापन नियम का उपयोग करना और फिर त्रिकोणमितीय सर्वसमिकाओं के साथ परिणामी अभिन्न को सरल बनाना सम्मिलित है।
त्रिकोणमितीय सर्वसमिका के सबसे प्रमुख उदाहरणों में समीकरण शामिल है, जो के सभी वास्तविक मूल्यों के लिए सत्य है। दूसरी ओर समीकरण
केवल के कुछ मानों के लिए सत्य है, सभी के लिए नहीं। उदाहरण के लिए, यह समीकरण तब सत्य होता है जब होता है, लेकिन असत्य होता है जब होता है।
त्रिकोणमितीय सर्वसमिकाओं का एक अन्य समूह तथाकथित जोड़/घटाव सूत्रों से संबंधित है (उदाहरण के लिए द्वि-कोण पहचान ,[2] के लिए अतिरिक्त सूत्र जिसका उपयोग बड़े कोणों के व्यंजकों को छोटे घटकों वाले व्यंजकों में विभाजित करने के लिए किया जा सकता है।
घातीय सर्वसमिका
निम्नलिखित सर्वसमिकाएं सभी पूर्णांक घातांकों के लिए मान्य हैं, बशर्ते आधार शून्य न हो:
जोड़ और गुणा के विपरीत, घातांक विनिमेय नहीं है। उदाहरण के लिए, 2 + 3 = 3 + 2 = 5 और 2 · 3 = 3 · 2 = 6 परंतु 23 = 8 जबकि 32 = 9।
योग और गुणन के विपरीत, घातांक भी साहचर्य नहीं है। उदाहरण के लिए, (2 + 3) + 4 = 2 + (3 + 4) = 9 और (2 · 3) · 4 = 2 · (3 · 4) = 24, लेकिन 23 से 4 है 84 (या 4,096)। जबकि 2 से 34 है 281 (या 2,417,851,639,229,258,349,412,352)। जब किसी कोष्ठक का उपयोग नहीं किया जाता है, तो परंपरा के अनुसार क्रम ऊपर-नीचे होता है, न कि नीचे-ऊपर:
- जबकि
लघुगणकीय सर्वसमिकाएँ
कई महत्वपूर्ण सूत्र, जिन्हें कभी-कभी लघुगणकीय पहचान या लॉग कानून कहा जाता है, लघुगणक को एक दूसरे से संबंधित करते हैं:[lower-alpha 1]
गुणनफल, भागफल, शक्ति और मूल
किसी गुणनफल का लघुगणक गुणित की जाने वाली संख्याओं के लघुगणकों का योग होता है; दो संख्याओं के अनुपात का लघुगणक, लघुगणकों के बीच का अंतर है। किसी संख्या का pth घात का लघुगणक स्वयं संख्या के लघुगणक का p गुना है; pth मूल का लघुगणक p से विभाजित संख्या का लघुगणक है। निम्नलिखित तालिका उदाहरणों के साथ इन सर्वसमिकाओं को सूचीबद्ध करती है। बाईं ओर लॉगरिदमिक परिभाषा और/या को प्रतिस्थापित करके प्रत्येक पहचान प्राप्त की जा सकती है।
सूत्र | उदाहरण | |
---|---|---|
गुणन | ||
भागफल | ||
घात | ||
मूल |
आधार परिवर्तन
लघुगणक logb(x) की गणना x और b के लघुगणक से की जा सकती है, जो कि निम्नलिखित सूत्र का उपयोग करके एक मनमाना आधार k के संबंध में है:
विशिष्ट वैज्ञानिक कैलकुलेटर 10 और e के आधार पर लघुगणक की गणना करते हैं।[6] किसी भी आधार b के संबंध में लघुगणक इन दो लघुगणकों में से किसी एक का उपयोग करके पिछले सूत्र द्वारा निर्धारित किया जा सकता है:
किसी अज्ञात आधार b को एक संख्या x और उसका लघुगणक logb(x) दिया गया है, तो आधार इस प्रकार दिया गया है:
हाइपरबोलिक फ़ंक्शन सर्वसमिका
अतिशयोक्तिपूर्ण कार्य कई सर्वसमिकाओं को संतुष्ट करते हैं, उनमें से सभी त्रिकोणमितीय सर्वसमिकाओं के समान रूप में हैं। वास्तव में, ओसबोर्न के नियम [7] में कहा गया है कि किसी भी त्रिकोणमितीय पहचान को ज्या और कोज्या की पूर्णांक शक्तियों के संदर्भ में पूरी तरह से विस्तारित किया जा सकता है, साइन को sinh और कोसाइन को cosh में बदलना और प्रत्येक पद के चिह्न को बदलना। एक अतिपरवलयिक पहचान में परिवर्तित किया जा सकता है जिसमें अतिशयोक्तिपूर्ण साइन की संख्या भी गुणा की जाती है।[8]
गुडरमेनियन फ़ंक्शन त्रिकोणमितीय फ़ंक्शंस और हाइपरबोलिक कार्यों के बीच सीधा संबंध देता है जिसमें जटिल संख्याएं सम्मिलित नहीं होती हैं।
तर्क और सार्वभौमिक बीजगणित
औपचारिक रूप से, एक सर्वसमिका एक वास्तविक सार्वभौम परिमाणक है जो अच्छी तरह से निर्मित सूत्र#रूप का विधेय तर्क है कहाँ पे s तथा t शब्द (तर्क) हैं जिनके अलावा कोई अन्य मुक्त चर नहीं है क्वांटिफायर उपसर्ग अक्सर अस्पष्ट छोड़ दिया जाता है, जब यह कहा जाता है कि सूत्र एक पहचान है। उदाहरण के लिए, एक मोनोइड के सिद्धांतों को अक्सर सूत्रों के रूप में दिया जाता है
या, शीघ्र ही,
तो, ये सूत्र प्रत्येक मोनॉइड में सर्वसमिका हैं। किसी भी समानता के लिए, क्वांटिफायर के बिना सूत्रों को अक्सर समीकरण कहा जाता है। दूसरे शब्दों में, एक सर्वसमिका एक समीकरण है जो चरों के सभी मानों के लिए सत्य है।[9][10]
यह भी देखें
संदर्भ
टिप्पणियाँ
- ↑ All statements in this section can be found in Shirali 2002, Section 4, Downing 2003, p. 275, or Kate & Bhapkar 2009, p. 1-1, for example.
उद्धरण
- ↑ 1.0 1.1 "गणित: पहचान". www.mathwords.com. Retrieved 2019-12-01.
- ↑ 2.0 2.1 "पहचान - गणित शब्द की परिभाषा - गणित खुला संदर्भ". www.mathopenref.com. Retrieved 2019-12-01.
- ↑ "बुनियादी पहचान". www.math.com. Retrieved 2019-12-01.
- ↑ "बीजीय पहचान". www.sosmath.com. Retrieved 2019-12-01.
- ↑ Stapel, Elizabeth. "त्रिकोणमितीय पहचान". Purplemath. Retrieved 2019-12-01.
- ↑ Bernstein, Stephen; Bernstein, Ruth (1999), Schaum's outline of theory and problems of elements of statistics. I, Descriptive statistics and probability, Schaum's outline series, New York: McGraw-Hill, ISBN 978-0-07-005023-5, p. 21
- ↑ Osborn, G. (1 January 1902). "109. अतिशयोक्तिपूर्ण सूत्रों के लिए स्मरक". The Mathematical Gazette. 2 (34): 189. doi:10.2307/3602492. JSTOR 3602492.
- ↑ Peterson, John Charles (2003). कलन के साथ तकनीकी गणित (3rd ed.). Cengage Learning. p. 1155. ISBN 0-7668-6189-9., Chapter 26, page 1155
- ↑ Nachum Dershowitz; Jean-Pierre Jouannaud (1990). "Rewrite Systems". In Jan van Leeuwen (ed.). औपचारिक मॉडल और शब्दार्थ. Handbook of Theoretical Computer Science. Vol. B. Elsevier. pp. 243–320.
- ↑ Wolfgang Wechsler (1992). Wilfried Brauer; Grzegorz Rozenberg; Arto Salomaa (eds.). कंप्यूटर वैज्ञानिकों के लिए सार्वभौमिक बीजगणित. EATCS Monographs on Theoretical Computer Science. Vol. 25. Berlin: Springer. ISBN 3-540-54280-9. Here: Def.1 of Sect.3.2.1, p.160.
स्रोत
- Downing, Douglas (2003). बीजगणित आसान तरीका. Barrons Educational Series. ISBN 978-0-7641-1972-9.
- Kate, S.K.; Bhapkar, H.R. (2009). गणित की मूल बातें. Technical Publications. ISBN 978-81-8431-755-8.
- Shirali, S. (2002). एडवेंचर्स इन प्रॉब्लम सॉल्विंग. Universities Press. ISBN 978-81-7371-413-9.
इस पेज में लापता आंतरिक लिंक की सूची
- यूनिट सर्कल
- चर (गणित)
- अंक शास्त्र
- समारोह (गणित)
- जोड़नेवाला
- लोगारित्म
- साइंटिफ़िक कैलकुलेटर
- समता (गणित)
- यूनिवर्सल क्वांटिफायर
- स्वयंसिद्ध
बाहरी संबंध
- The Encyclopedia of Equation Online encyclopedia of mathematical identities (archived)
- A Collection of Algebraic Identities