विलोम संबंध: Difference between revisions
(minor changes) |
|||
Line 1: | Line 1: | ||
{{Short description|Reversal of the order of elements of a binary relation}} | {{Short description|Reversal of the order of elements of a binary relation}} | ||
{{For| | {{For|सांख्यिकी में उलटा संबंध|नकारात्मक संबंध}} | ||
गणित में, एक [[द्विआधारी संबंध]] का विलोम संबंध, या स्थानान्तरण, वह संबंध | गणित में, एक [[द्विआधारी संबंध]] का विलोम संबंध, या स्थानान्तरण, वह संबंध है जो संबंध में तत्वों के क्रम को बदलने पर होता है। उदाहरण के लिए, 'का बच्चा' संबंध का विलोम 'का जनक' संबंध है। औपचारिक शब्दों में, यदि <math>X</math> और <math>Y</math> [[सेट (गणित)|समुच्चय]] हैं और <math>L \subseteq X \times Y</math> <math>X</math> से <math>Y,</math> तक का संबंध है, तो <math>L^{\operatorname{T}}</math> संबंध परिभाषित किया गया है ताकि <math>yL^{\operatorname{T}}x</math> यदि और केवल यदि <math>xLy</math> हो। [[सेट-बिल्डर नोटेशन]] में, | ||
:<math>L^{\operatorname{T}} = \{ (y, x) \in Y \times X : (x, y) \in L \}.</math> | :<math>L^{\operatorname{T}} = \{ (y, x) \in Y \times X : (x, y) \in L \}.</math> | ||
एक व्युत्क्रम कार्य के लिए संकेतन इसके अनुरूप है। हालाँकि कई फलनों का प्रतिलोम नहीं होता है, फिर भी प्रत्येक संबंध का एक विशिष्ट विलोम होता है। [[एकात्मक ऑपरेशन|यूनरी ऑपरेशन]] जो एक संबंध को बातचीत के संबंध में मैप करता है, एक इनवोल्यूशन है, इसलिए यह एक सेट पर बाइनरी रिलेशंस पर इनवोल्यूशन के साथ एक सेमीग्रुप की संरचना को प्रेरित करता है, या, अधिक आम तौर पर, नीचे दिए गए विवरण के अनुसार [[संबंधों की श्रेणी]] पर एक डैगर श्रेणी उत्पन्न करता है। एक यूनरी ऑपरेशन के रूप में, बातचीत (कभी-कभी रूपांतरण या [[पक्षांतरित|ट्रांसपोज़िशन]] कहा जाता है) लेने से संबंधों के कैलकुस के ऑर्डर-संबंधित संचालन के साथ शुरू होता है, यानी यह संघ, चौराहे और पूरक के साथ कम्यूट करता है। | |||
चूँकि एक संबंध एक तार्किक मैट्रिक्स द्वारा दर्शाया जा सकता है, और विलोम संबंध का तार्किक मैट्रिक्स मूल का स्थानान्तरण है, विलोम संबंध को भी पारगमन संबंध कहा जाता है।<ref name="R&G">{{cite book|author1=Gunther Schmidt|author2=Thomas Ströhlein|title=संबंध और रेखांकन: कंप्यूटर वैज्ञानिकों के लिए असतत गणित|url=https://archive.org/details/relationsgraphsd00schm|url-access=limited|year=1993|publisher=Springer Berlin Heidelberg|isbn=978-3-642-77970-1|pages=[https://archive.org/details/relationsgraphsd00schm/page/n16 9]–10}}</ref> इसे मूल संबंध का विपरीत या दोहरा भी कहा गया है,<ref>{{cite book|author1=Celestina Cotti Ferrero|author2=Giovanni Ferrero|title=नियरिंग्स: सेमीग्रुप्स और ग्रुप्स से जुड़े कुछ विकास|year=2002|publisher=Kluwer Academic Publishers|isbn=978-1-4613-0267-4|page=3}}</ref> या मूल संबंध का व्युत्क्रम,<ref>{{cite book|author=Daniel J. Velleman|title=इसे कैसे साबित करें: एक संरचित दृष्टिकोण|url=https://books.google.com/books?id=sXt-ROLLNHcC&pg=PA173|year=2006|publisher=Cambridge University Press|isbn=978-1-139-45097-3|page=173}}</ref><ref name="S&S">{{cite book|author1=Shlomo Sternberg|author2=Lynn Loomis|title=उन्नत कैलकुलस|year=2014|publisher=World Scientific Publishing Company|isbn=978-9814583930|page=9}}</ref><ref>{{Cite book|last=Rosen|first=Kenneth H.|url=https://www.worldcat.org/oclc/994604351|title=असतत और संयोजी गणित की पुस्तिका|others=Rosen, Kenneth H., Shier, Douglas R., Goddard, Wayne.|year=2017|isbn=978-1-315-15648-4|edition=Second|location=Boca Raton, FL|pages=43|oclc=994604351}}</ref> या संबंध <math>L</math> का पारस्परिक <math>L^{\circ}</math>।<ref>[[Peter J. Freyd]] & Andre Scedrov (1990) Categories, Allegories, page 79, North Holland {{ISBN|0-444-70368-3}}</ref> | |||
विलोम संबंध के लिए अन्य संकेतन में <math>L^{\operatorname{C}}, L^{-1}, \breve{L}, L^{\circ},</math> या <math>L^{\vee}</math> शामिल हैं। | |||
== उदाहरण == | == उदाहरण == | ||
सामान्य (शायद सख्त या आंशिक) [[आदेश संबंध]] | सामान्य (शायद सख्त या आंशिक) [[आदेश संबंध|आदेश संबंधों]] के लिए, बातचीत भोले-भाले अपेक्षित "विपरीत" क्रम है, उदाहरण के लिए, <math>{\leq^\operatorname{T}} = {\geq},\quad {<^\operatorname{T}} = {>}</math>। | ||
एक संबंध को तार्किक मैट्रिक्स द्वारा दर्शाया जा सकता है जैसे | एक संबंध को एक तार्किक मैट्रिक्स द्वारा दर्शाया जा सकता है जैसे कि<math display="block">\begin{pmatrix} | ||
<math display=block>\begin{pmatrix} | |||
1 & 1 & 1 & 1 \\ | 1 & 1 & 1 & 1 \\ | ||
0 & 1 & 0 & 1 \\ | 0 & 1 & 0 & 1 \\ | ||
Line 18: | Line 16: | ||
0 & 0 & 0 & 1 | 0 & 0 & 0 & 1 | ||
\end{pmatrix}. | \end{pmatrix}. | ||
</math> | </math>तब विलोम संबंध को उसके स्थानान्तरण मैट्रिक्स द्वारा दर्शाया जाता है:<math display="block">\begin{pmatrix} | ||
तब विलोम संबंध को उसके स्थानान्तरण मैट्रिक्स द्वारा दर्शाया जाता है: | |||
<math display=block>\begin{pmatrix} | |||
1 & 0 & 0 & 0 \\ | 1 & 0 & 0 & 0 \\ | ||
1 & 1 & 0 & 0 \\ | 1 & 1 & 0 & 0 \\ | ||
Line 26: | Line 22: | ||
1 & 1 & 0 & 1 | 1 & 1 & 0 & 1 | ||
\end{pmatrix}. | \end{pmatrix}. | ||
</math> | </math>रिश्तेदारी संबंधों के विलोम का नाम दिया गया है: "<math>A</math> <math>B</math> की संतान है" का विलोम "<math>B</math> <math>A</math> के माता-पिता हैं"। "<math>A</math>, <math>B</math> का भतीजा या भतीजी है" का विलोम है "<math>B</math>, <math>A</math> के [[चाचा]] या [[चाची]] हैं"। संबंध "<math>A</math> <math>B</math> का [[भाई|सहोदर]] है" इसका स्वयं का विलोम है, क्योंकि यह एक सममित संबंध है। | ||
== गुण == | == गुण == | ||
एक सेट पर बाइनरी [[android]] के [[मोनोइड]] में (संबंधों की संरचना होने वाले संबंधों पर [[बाइनरी ऑपरेशन]] के साथ), | एक सेट पर बाइनरी [[android|एंडोरेलेशन]] के [[मोनोइड]] में (संबंधों की संरचना होने वाले संबंधों पर [[बाइनरी ऑपरेशन]] के साथ), विपरीत संबंध समूह सिद्धांत से व्युत्क्रम की परिभाषा को संतुष्ट नहीं करता है, अर्थात्, यदि <math>L</math> <math>X,</math> पर एक मनमाना संबंध है, तो <math>L \circ L^{\operatorname{T}}</math> सामान्य रूप से <math>X</math> पर [[पहचान समारोह|तत्समक संबंध]] के बराबर नहीं है। विलोम संबंध एक अर्धसमूह के (कमजोर) सिद्धांतों को अंतर्वलन से संतुष्ट करता है: <math>\left(L^{\operatorname{T}}\right)^{\operatorname{T}} = L</math> और <math>(L \circ R)^{\operatorname{T}} = R^{\operatorname{T}} \circ L^{\operatorname{T}}</math>।<ref name="Lambek20012">{{cite book|editor= Ewa Orłowska|editor-link= Ewa Orłowska |editor2=Andrzej Szalas|title=कंप्यूटर विज्ञान अनुप्रयोगों के लिए संबंधपरक तरीके|year=2001|publisher=Springer Science & Business Media|isbn=978-3-7908-1365-4|pages=135–146|chapter=Relations Old and New|author=Joachim Lambek|author-link=Joachim Lambek}}</ref> | ||
चूंकि | चूंकि आम तौर पर विभिन्न सेटों के बीच संबंधों पर विचार किया जा सकता है (जो एक मोनोइड के बजाय एक [[श्रेणी (गणित)|श्रेणी]] बनाते हैं, अर्थात् संबंधों की श्रेणी रिले), इस संदर्भ में विपर्यय संबंध एक डैगर श्रेणी (इनवोल्यूशन के साथ उर्फ श्रेणी) के सिद्धांतों के अनुरूप है।<ref name="Lambek2001">{{cite book|editor= Ewa Orłowska|editor-link= Ewa Orłowska |editor2=Andrzej Szalas|title=कंप्यूटर विज्ञान अनुप्रयोगों के लिए संबंधपरक तरीके|year=2001|publisher=Springer Science & Business Media|isbn=978-3-7908-1365-4|pages=135–146|chapter=Relations Old and New|author=Joachim Lambek|author-link=Joachim Lambek}}</ref> इसके व्युत्क्रम के बराबर संबंध एक [[सममित संबंध]] है; खंजर श्रेणियों की भाषा में यह स्वतःसंबद्ध है। | ||
इसके अलावा, एक सेट पर एंडोरेलेशन का सेमीग्रुप भी एक आंशिक रूप से | इसके अलावा, एक सेट पर एंडोरेलेशन का सेमीग्रुप भी एक आंशिक रूप से क्रमबद्ध संरचना है (संबंधों को सेट के रूप में शामिल करने के साथ), और वास्तव में एक समावेशी [[कितना|क्वांटले]] है। इसी प्रकार, [[विषम संबंध|विषम संबंधों]] की श्रेणी, Rel भी एक क्रमबद्ध श्रेणी है।<ref name="Lambek2001" /> | ||
यदि कोई संबंध रिफ्लेक्सिव | संबंधों की कलन में, रूपांतरण (विपरीत संबंध लेने की एकात्मक संक्रिया) संघ और प्रतिच्छेदन की अन्य द्विआधारी संक्रियाओं के साथ संचलित होता है। रूपांतरण पूरकता के एकात्मक संचालन के साथ-साथ [[उच्चतम|सुप्रीमा]] और इन्फिमा लेने के साथ भी शुरू होता है। रूपांतरण समावेशन द्वारा संबंधों के क्रम के साथ भी संगत है।<ref name="R&G" /> | ||
यदि कोई संबंध रिफ्लेक्सिव, इर्रेफ्लेक्सिव, सममित, [[एंटीसिमेट्रिक संबंध|एंटीसिमेट्रिक]], [[असममित संबंध|असममित]], [[सकर्मक संबंध|सकर्मक]], जुड़ा हुआ, त्रिकोटोमस, एक आंशिक क्रम, कुल आदेश, सख्त कमजोर आदेश, [[कुल आदेश|कुल पूर्व आदेश]] (कमजोर क्रम), या एक [[तुल्यता संबंध]] है, तो इसका विलोम भी है। | |||
== उलटा == | == उलटा == | ||
यदि <math>I</math> तत्समक संबंध को प्रदर्शित करता है, तो संबंध <math>R</math> का प्रतिलोम इस प्रकार हो सकता है: <math>R</math> कहलाता है | |||
; दाहिने प्रतीप्य | |||
: यदि कोई संबंध <math>X</math> मौजूद है, जिसे <math>R</math> का सही प्रतिलोम कहा जाता है, जो <math>R \circ X = I</math> को संतुष्ट करता है। | |||
; बाँया प्रतीप्य | |||
: यदि कोई संबंध <math>Y,</math> मौजूद है, जिसे <math>R,</math> का बायां प्रतिलोम कहा जाता है, जो <math>Y \circ R = I</math> को संतुष्ट करता है। | |||
; प्रतीप्य | |||
: यदि यह दायां-उलटा और बायां-उलटा दोनों है। | |||
एक व्युत्क्रमणीय समरूप संबंध <math>R,</math> के लिए, सभी दाएँ और बाएँ व्युत्क्रम संपाती हैं; इस अनूठे सेट को इसका व्युत्क्रम कहा जाता है और इसे <math>R^{-1}</math> द्वारा दर्शाया जाता है, इस मामले में, <math>R^{-1} = R^{\operatorname{T}}</math> होल्ड करता है। <ref name=R&G/>{{rp|79}} | |||
=== किसी फलन का विलोम संबंध === | |||
एक फलन व्युत्क्रमणीय होता है यदि और केवल यदि इसका विलोम संबंध एक फलन हो, तो इस मामले में विलोम संबंध प्रतिलोम फलन होता है। | |||
किसी फलन <math>f : X \to Y</math> का विलोम संबंध <math>\operatorname{graph}\, f^{-1} = \{ (y, x) \in Y \times X : y = f(x) \}</math> द्वारा परिभाषित संबंध <math>f^{-1} \subseteq Y \times X</math> है। | |||
एक | |||
यह आवश्यक रूप से एक कार्य नहीं है: एक आवश्यक शर्त यह है कि <math>f</math> [[इंजेक्शन|अंतःक्षेपी]] हो, क्योंकि <math>f^{-1}</math> बहु-मूल्यवान है। यह स्थिति <math>f^{-1}</math> के लिए एक आंशिक कार्य होने के लिए पर्याप्त है, और यह स्पष्ट है कि <math>f^{-1}</math> तब एक (कुल) कार्य है [[अगर और केवल अगर|यदि और केवल यदि]] <math>f</math> [[विशेषण]] है। उस मामले में, यदि <math>f</math> एक विशेषण है, तो <math>f^{-1}</math> को <math>f</math> का व्युत्क्रम कार्य कहा जा सकता है। | |||
उदाहरण के लिए, फ़ंक्शन <math>f(x) = 2x + 2</math> में व्युत्क्रम फ़ंक्शन <math>f^{-1}(x) = \frac{x}{2} - 1</math> है। | |||
हालांकि, फलन <math>g(x) = x^2</math> का व्युत्क्रम संबंध <math>g^{-1}(x) = \pm \sqrt{x},</math> है जो कि बहु-मूल्यवान होने के कारण फलन नहीं है। | |||
== संबंध के साथ रचना == | == संबंध के साथ रचना == | ||
संबंधों | संबंधों के संघटन का प्रयोग करते हुए, विलोम को मूल संबंध से बनाया जा सकता है। उदाहरण के लिए, इसके विलोम से बना उपसमुच्चय संबंध हमेशा सार्वभौमिक संबंध है: | ||
:∀A ∀B ∅ ⊂ A ∩B ⇔ A ⊃ ∅ ⊂ B ⇔ A ⊃ ⊂ B. इसी प्रकार, | :∀A ∀B ∅ ⊂ A ∩B ⇔ A ⊃ ∅ ⊂ B ⇔ A ⊃ ⊂ B. इसी प्रकार, | ||
: | : U = [[ब्रह्मांड (गणित)|ब्रह्मांड]] के लिए, A ∪ B ⊂ U ⇔ A ⊂ U ⊃ B ⇔ A ⊂ ⊃ B. | ||
अब | अब सेट सदस्यता संबंध और इसके विलोम पर विचार करें। | ||
:<math>A \ni z \in B \Leftrightarrow z \in A \cap B \Leftrightarrow A \cap B \ne \empty.</math> | :<math>A \ni z \in B \Leftrightarrow z \in A \cap B \Leftrightarrow A \cap B \ne \empty.</math> | ||
इस प्रकार <math>A \ni \in B \Leftrightarrow A \cap B \ne \empty .</math> विपरीत रचना <math>\in \ni</math> सार्वभौम संबंध है। | इस प्रकार <math>A \ni \in B \Leftrightarrow A \cap B \ne \empty .</math> विपरीत रचना <math>\in \ni</math> सार्वभौम संबंध है। | ||
रचनाओं का उपयोग प्रकार के अनुसार | रचनाओं का उपयोग संबंधों को प्रकार के अनुसार वर्गीकृत करने के लिए किया जाता है: एक संबंध क्यू के लिए, जब क्यू की सीमा पर [[पहचान संबंध]] में क्यूटीक्यू होता है, तो क्यू को एकतरफा कहा जाता है। जब Q के डोमेन पर तत्समक संबंध Q QT में निहित होता है, तो Q को कुल कहा जाता है। जब Q एकसंयोजक और कुल दोनों हो तो यह एक फलन है। जब क्यूटी एकतरफा होता है, तो क्यू को इंजेक्शन कहा जाता है। जब QT कुल होता है, तो Q को विशेषण कहा जाता है।<ref>[[Gunther Schmidt]] & Michael Winter (2018) ''Relational Topology'', Springer Lecture Notes in Mathematics #2208, page 8, {{ISBN|978-3-319-74450-6}}</ref> | ||
यदि Q एकसंयोजक है, तो | |||
यदि Q एकसंयोजक है, तो QQT, Q के प्रांत पर एक तुल्यता संबंध है, देखें सकर्मक संबंध#संबंधित गुण। | |||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|द्वैत (आदेश सिद्धांत)}} | ||
* {{annotated link| | * {{annotated link|रेखांकन ग्राफ}} | ||
== संदर्भ == | == संदर्भ == | ||
{{reflist}} | {{reflist}} |
Revision as of 13:37, 5 December 2022
गणित में, एक द्विआधारी संबंध का विलोम संबंध, या स्थानान्तरण, वह संबंध है जो संबंध में तत्वों के क्रम को बदलने पर होता है। उदाहरण के लिए, 'का बच्चा' संबंध का विलोम 'का जनक' संबंध है। औपचारिक शब्दों में, यदि और समुच्चय हैं और से तक का संबंध है, तो संबंध परिभाषित किया गया है ताकि यदि और केवल यदि हो। सेट-बिल्डर नोटेशन में,
एक व्युत्क्रम कार्य के लिए संकेतन इसके अनुरूप है। हालाँकि कई फलनों का प्रतिलोम नहीं होता है, फिर भी प्रत्येक संबंध का एक विशिष्ट विलोम होता है। यूनरी ऑपरेशन जो एक संबंध को बातचीत के संबंध में मैप करता है, एक इनवोल्यूशन है, इसलिए यह एक सेट पर बाइनरी रिलेशंस पर इनवोल्यूशन के साथ एक सेमीग्रुप की संरचना को प्रेरित करता है, या, अधिक आम तौर पर, नीचे दिए गए विवरण के अनुसार संबंधों की श्रेणी पर एक डैगर श्रेणी उत्पन्न करता है। एक यूनरी ऑपरेशन के रूप में, बातचीत (कभी-कभी रूपांतरण या ट्रांसपोज़िशन कहा जाता है) लेने से संबंधों के कैलकुस के ऑर्डर-संबंधित संचालन के साथ शुरू होता है, यानी यह संघ, चौराहे और पूरक के साथ कम्यूट करता है।
चूँकि एक संबंध एक तार्किक मैट्रिक्स द्वारा दर्शाया जा सकता है, और विलोम संबंध का तार्किक मैट्रिक्स मूल का स्थानान्तरण है, विलोम संबंध को भी पारगमन संबंध कहा जाता है।[1] इसे मूल संबंध का विपरीत या दोहरा भी कहा गया है,[2] या मूल संबंध का व्युत्क्रम,[3][4][5] या संबंध का पारस्परिक ।[6]
विलोम संबंध के लिए अन्य संकेतन में या शामिल हैं।
उदाहरण
सामान्य (शायद सख्त या आंशिक) आदेश संबंधों के लिए, बातचीत भोले-भाले अपेक्षित "विपरीत" क्रम है, उदाहरण के लिए, । एक संबंध को एक तार्किक मैट्रिक्स द्वारा दर्शाया जा सकता है जैसे कि
गुण
एक सेट पर बाइनरी एंडोरेलेशन के मोनोइड में (संबंधों की संरचना होने वाले संबंधों पर बाइनरी ऑपरेशन के साथ), विपरीत संबंध समूह सिद्धांत से व्युत्क्रम की परिभाषा को संतुष्ट नहीं करता है, अर्थात्, यदि पर एक मनमाना संबंध है, तो सामान्य रूप से पर तत्समक संबंध के बराबर नहीं है। विलोम संबंध एक अर्धसमूह के (कमजोर) सिद्धांतों को अंतर्वलन से संतुष्ट करता है: और ।[7]
चूंकि आम तौर पर विभिन्न सेटों के बीच संबंधों पर विचार किया जा सकता है (जो एक मोनोइड के बजाय एक श्रेणी बनाते हैं, अर्थात् संबंधों की श्रेणी रिले), इस संदर्भ में विपर्यय संबंध एक डैगर श्रेणी (इनवोल्यूशन के साथ उर्फ श्रेणी) के सिद्धांतों के अनुरूप है।[8] इसके व्युत्क्रम के बराबर संबंध एक सममित संबंध है; खंजर श्रेणियों की भाषा में यह स्वतःसंबद्ध है।
इसके अलावा, एक सेट पर एंडोरेलेशन का सेमीग्रुप भी एक आंशिक रूप से क्रमबद्ध संरचना है (संबंधों को सेट के रूप में शामिल करने के साथ), और वास्तव में एक समावेशी क्वांटले है। इसी प्रकार, विषम संबंधों की श्रेणी, Rel भी एक क्रमबद्ध श्रेणी है।[8]
संबंधों की कलन में, रूपांतरण (विपरीत संबंध लेने की एकात्मक संक्रिया) संघ और प्रतिच्छेदन की अन्य द्विआधारी संक्रियाओं के साथ संचलित होता है। रूपांतरण पूरकता के एकात्मक संचालन के साथ-साथ सुप्रीमा और इन्फिमा लेने के साथ भी शुरू होता है। रूपांतरण समावेशन द्वारा संबंधों के क्रम के साथ भी संगत है।[1]
यदि कोई संबंध रिफ्लेक्सिव, इर्रेफ्लेक्सिव, सममित, एंटीसिमेट्रिक, असममित, सकर्मक, जुड़ा हुआ, त्रिकोटोमस, एक आंशिक क्रम, कुल आदेश, सख्त कमजोर आदेश, कुल पूर्व आदेश (कमजोर क्रम), या एक तुल्यता संबंध है, तो इसका विलोम भी है।
उलटा
यदि तत्समक संबंध को प्रदर्शित करता है, तो संबंध का प्रतिलोम इस प्रकार हो सकता है: कहलाता है
- दाहिने प्रतीप्य
- यदि कोई संबंध मौजूद है, जिसे का सही प्रतिलोम कहा जाता है, जो को संतुष्ट करता है।
- बाँया प्रतीप्य
- यदि कोई संबंध मौजूद है, जिसे का बायां प्रतिलोम कहा जाता है, जो को संतुष्ट करता है।
- प्रतीप्य
- यदि यह दायां-उलटा और बायां-उलटा दोनों है।
एक व्युत्क्रमणीय समरूप संबंध के लिए, सभी दाएँ और बाएँ व्युत्क्रम संपाती हैं; इस अनूठे सेट को इसका व्युत्क्रम कहा जाता है और इसे द्वारा दर्शाया जाता है, इस मामले में, होल्ड करता है। [1]: 79
किसी फलन का विलोम संबंध
एक फलन व्युत्क्रमणीय होता है यदि और केवल यदि इसका विलोम संबंध एक फलन हो, तो इस मामले में विलोम संबंध प्रतिलोम फलन होता है।
किसी फलन का विलोम संबंध द्वारा परिभाषित संबंध है।
यह आवश्यक रूप से एक कार्य नहीं है: एक आवश्यक शर्त यह है कि अंतःक्षेपी हो, क्योंकि बहु-मूल्यवान है। यह स्थिति के लिए एक आंशिक कार्य होने के लिए पर्याप्त है, और यह स्पष्ट है कि तब एक (कुल) कार्य है यदि और केवल यदि विशेषण है। उस मामले में, यदि एक विशेषण है, तो को का व्युत्क्रम कार्य कहा जा सकता है।
उदाहरण के लिए, फ़ंक्शन में व्युत्क्रम फ़ंक्शन है।
हालांकि, फलन का व्युत्क्रम संबंध है जो कि बहु-मूल्यवान होने के कारण फलन नहीं है।
संबंध के साथ रचना
संबंधों के संघटन का प्रयोग करते हुए, विलोम को मूल संबंध से बनाया जा सकता है। उदाहरण के लिए, इसके विलोम से बना उपसमुच्चय संबंध हमेशा सार्वभौमिक संबंध है:
- ∀A ∀B ∅ ⊂ A ∩B ⇔ A ⊃ ∅ ⊂ B ⇔ A ⊃ ⊂ B. इसी प्रकार,
- U = ब्रह्मांड के लिए, A ∪ B ⊂ U ⇔ A ⊂ U ⊃ B ⇔ A ⊂ ⊃ B.
अब सेट सदस्यता संबंध और इसके विलोम पर विचार करें।
इस प्रकार विपरीत रचना सार्वभौम संबंध है।
रचनाओं का उपयोग संबंधों को प्रकार के अनुसार वर्गीकृत करने के लिए किया जाता है: एक संबंध क्यू के लिए, जब क्यू की सीमा पर पहचान संबंध में क्यूटीक्यू होता है, तो क्यू को एकतरफा कहा जाता है। जब Q के डोमेन पर तत्समक संबंध Q QT में निहित होता है, तो Q को कुल कहा जाता है। जब Q एकसंयोजक और कुल दोनों हो तो यह एक फलन है। जब क्यूटी एकतरफा होता है, तो क्यू को इंजेक्शन कहा जाता है। जब QT कुल होता है, तो Q को विशेषण कहा जाता है।[9]
यदि Q एकसंयोजक है, तो QQT, Q के प्रांत पर एक तुल्यता संबंध है, देखें सकर्मक संबंध#संबंधित गुण।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 Gunther Schmidt; Thomas Ströhlein (1993). संबंध और रेखांकन: कंप्यूटर वैज्ञानिकों के लिए असतत गणित. Springer Berlin Heidelberg. pp. 9–10. ISBN 978-3-642-77970-1.
- ↑ Celestina Cotti Ferrero; Giovanni Ferrero (2002). नियरिंग्स: सेमीग्रुप्स और ग्रुप्स से जुड़े कुछ विकास. Kluwer Academic Publishers. p. 3. ISBN 978-1-4613-0267-4.
- ↑ Daniel J. Velleman (2006). इसे कैसे साबित करें: एक संरचित दृष्टिकोण. Cambridge University Press. p. 173. ISBN 978-1-139-45097-3.
- ↑ Shlomo Sternberg; Lynn Loomis (2014). उन्नत कैलकुलस. World Scientific Publishing Company. p. 9. ISBN 978-9814583930.
- ↑ Rosen, Kenneth H. (2017). असतत और संयोजी गणित की पुस्तिका. Rosen, Kenneth H., Shier, Douglas R., Goddard, Wayne. (Second ed.). Boca Raton, FL. p. 43. ISBN 978-1-315-15648-4. OCLC 994604351.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Peter J. Freyd & Andre Scedrov (1990) Categories, Allegories, page 79, North Holland ISBN 0-444-70368-3
- ↑ Joachim Lambek (2001). "Relations Old and New". In Ewa Orłowska; Andrzej Szalas (eds.). कंप्यूटर विज्ञान अनुप्रयोगों के लिए संबंधपरक तरीके. Springer Science & Business Media. pp. 135–146. ISBN 978-3-7908-1365-4.
- ↑ 8.0 8.1 Joachim Lambek (2001). "Relations Old and New". In Ewa Orłowska; Andrzej Szalas (eds.). कंप्यूटर विज्ञान अनुप्रयोगों के लिए संबंधपरक तरीके. Springer Science & Business Media. pp. 135–146. ISBN 978-3-7908-1365-4.
- ↑ Gunther Schmidt & Michael Winter (2018) Relational Topology, Springer Lecture Notes in Mathematics #2208, page 8, ISBN 978-3-319-74450-6
- Halmos, Paul R. (1974), Naive Set Theory, p. 40, ISBN 978-0-387-90092-6