विलोम संबंध: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 85: | Line 85: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 25/11/2022]] | [[Category:Created On 25/11/2022]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:12, 12 December 2022
गणित में, वह सम्बन्ध जो सम्बन्ध में तत्वों के क्रम को परिवर्तित करने पर प्राप्त होता है, द्विआधारी सम्बन्ध का प्रतिलोम-सम्बन्ध (कन्वेर्ज़ रिलेशन), या आव्यूहपरिवर्त (ट्रांस्पोज) कहलाता है। उदाहरण के लिए, 'चाइल्ड ऑफ़' सम्बन्ध का प्रतिलोम 'पैरेंट ऑफ़' सम्बन्ध होता है। औपचारिक पदों में, यदि और समुच्चय हैं और से तक का सम्बन्ध है, तो सम्बन्ध परिभाषित किया जाता है ताकि यदि और केवल यदि हो। समुच्चय-बिल्डर नोटेशन में,
किसी प्रतिलोम फलन के लिए संकेतन इसके अनुरूप होता है। हालाँकि कई फलनों का प्रतिलोम नहीं होता है, फिर भी प्रत्येक सम्बन्ध का एक विशिष्ट प्रतिलोम होता है। एकल संक्रिया जो एक सम्बन्ध को प्रतिलोम-सम्बन्ध में प्रतिचित्रित (मैप) करता है, एक अंतर्वलन (इनवोल्यूशन) होता है, अतः यह एक समुच्चय पर द्विआधारी सम्बन्धों पर अंतर्वलन के साथ एक अर्द्धसमुह की संरचना को प्रेरित करता है, या, अधिक साधारणतयः, नीचे दिए गए विवरण के अनुसार सम्बन्धों की श्रेणी पर एक डैगर श्रेणी उत्पन्न करता है। एक एकल संक्रिया के रूप में, संबंधों की गणना के क्रम से संबंधित संचालन के साथ प्रतिलोम (कभी-कभी रूपांतरण या आव्यूहपरिवर्त कहा जाता है) प्राप्त करना, अर्थात यह संघ, उभयनिष्ठ और पूरक के साथ विनिमय करता है।
चूँकि सम्बन्ध एक तार्किक आव्यूह द्वारा दर्शाया जा सकता है, और प्रतिलोम-सम्बन्ध का तार्किक आव्यूह मूल आव्यूह का आव्यूहपरिवर्त होता है, प्रतिलोम-सम्बन्ध को भी आव्यूहपरिवर्त सम्बन्ध कहा जाता है।[1] इसे मूल सम्बन्ध का सम्मुख या द्वैत भी कहा जाता है,[2] या मूल सम्बन्ध का व्युत्क्रम,[3][4][5] या सम्बन्ध का व्युत्क्रम ।[6]
प्रतिलोम-सम्बन्ध के लिए अन्य संकेतन में या सम्मिलित हैं।
उदाहरण
सामान्य (सम्भवतः पूर्णतः या आंशिक) अनुक्रम सम्बन्धों के लिए, प्रतिलोम स्वाभाविक रूप से अपेक्षित "विपरीत" अनुक्रम है, उदाहरण के लिए, । सम्बन्ध को एक तार्किक आव्यूह द्वारा दर्शाया जा सकता है जैसे कि
गुण
समुच्चय पर द्विआधारी अंतःसम्बन्ध के मोनोइड में (सम्बन्धों की संरचना होने वाले सम्बन्धों पर द्विआधारी संक्रिया के साथ), प्रतिलोम सम्बन्ध समूह सिद्धांत से व्युत्क्रम की परिभाषा को संतुष्ट नहीं करता है, अर्थात्, यदि , पर एक यादृच्छिक सम्बन्ध है, तो सामान्य रूप से पर तत्समक सम्बन्ध के बराबर नहीं है। प्रतिलोम-सम्बन्ध किसी अर्धसमूह के (दुर्बल) सिद्धांतों को अंतर्वलन से संतुष्ट करता है: और ।[7]
चूंकि सामान्यतः विभिन्न समुच्चयों के बीच सम्बन्धों पर विचार किया जा सकता है (जो मोनोइड के बजाय एक श्रेणी बनाते हैं, अर्थात् सम्बन्धों की श्रेणी रेल), इस संदर्भ में विपर्यय सम्बन्ध एक डैगर श्रेणी (अंतर्वलन के साथ उर्फ श्रेणी) के सिद्धांतों के अनुरूप है।[8] इसके व्युत्क्रम के बराबर सम्बन्ध एक सममित सम्बन्ध है; कटार श्रेणियों की भाषा में यह स्वतःसंबद्ध है।
इसके अतिरिक्त, एक समुच्चय पर अंतःसम्बन्ध का सेमीग्रुप भी एक आंशिक रूप से क्रमबद्ध संरचना है (सम्बन्धों को समुच्चय के रूप में सम्मिलित करने के साथ), और वास्तव में एक समावेशी क्वांटले है। इसी प्रकार, विषम सम्बन्धों की श्रेणी, रेल भी एक क्रमबद्ध श्रेणी है।[8]
सम्बन्धों के कलन में, रूपांतरण (प्रतिलोम सम्बन्ध लेने की एकल संक्रिया) संघ और उभयनिष्ठ की अन्य द्विआधारी संक्रियाओं के साथ संचलित होता है। रूपांतरण पूरकता के एकात्मक संचालन के साथ-साथ सुप्रीमा और इन्फिमा लेने के साथ भी शुरू होता है। रूपांतरण समावेशन द्वारा सम्बन्धों के क्रम के साथ भी संगत है।[1]
यदि कोई सम्बन्ध स्वतुल्य, अस्वतुल्य, सममित, अंतिसममित, असममित, सकर्मक, संयुक्त, त्रिभाजनीय (ट्राईकोटोमोस), आंशिक अनुक्रम, कुल अनुक्रम, पूर्णतः असमर्थ अनुक्रम, कुल पूर्व अनुक्रम (असमर्थ अनुक्रम), या तुल्यता सम्बन्ध है, तो इसका प्रतिलोम भी होता है।
व्युत्क्रम
यदि तत्समक सम्बन्ध को प्रदर्शित करता है, तो सम्बन्ध का प्रतिलोम इस प्रकार हो सकता है: कहलाता है
- दायाँ प्रतीप्य
- यदि कोई सम्बन्ध उपस्थित है, जिसे का दायाँ प्रतिलोम कहा जाता है, जो को संतुष्ट करता है।
- बाँया प्रतीप्य
- यदि कोई सम्बन्ध उपस्थित है, जिसे का बाँया प्रतिलोम कहा जाता है, जो को संतुष्ट करता है।
- प्रतीप्य
- यदि यह दायाँ-प्रतीप्य और बाँया-प्रतीप्य दोनों है।
व्युत्क्रमणीय समरूप सम्बन्ध के लिए, सभी दाएँ और बाएँ व्युत्क्रम संपाती हैं; इस अनूठे समुच्चय को इसका व्युत्क्रम कहा जाता है और इसे द्वारा दर्शाया जाता है, इस स्थिति में, स्थायी रखता है। [1]: 79
किसी फलन का प्रतिलोम-सम्बन्ध
एक फलन व्युत्क्रमणीय होता है यदि और केवल यदि इसका प्रतिलोम-सम्बन्ध एक फलन हो, तो इस स्थिति में प्रतिलोम-सम्बन्ध प्रतिलोम फलन होता है।
किसी फलन का प्रतिलोम-सम्बन्ध द्वारा परिभाषित सम्बन्ध है।
यह आवश्यक रूप से एक फलन नहीं है: एक आवश्यक शर्त यह है कि अंतःक्षेपी हो, क्योंकि बहु-मूल्यवान है। यह स्थिति के लिए एक आंशिक फलन होने के लिए पर्याप्त है, और यह स्पष्ट है कि तब एक (कुल) फलन है यदि और केवल यदि विशेषण है। उस स्थिति में, यदि एक विशेषण है, तो को का प्रतिलोम फलन कहा जा सकता है।
उदाहरण के लिए, फलन में व्युत्क्रम फलन है।
हालांकि, फलन का व्युत्क्रम सम्बन्ध है जो कि बहुमान होने के कारण फलन नहीं है।
सम्बन्ध के साथ रचना
सम्बन्धों के संघटन का प्रयोग करते हुए, प्रतिलोम को मूल सम्बन्ध से बनाया जा सकता है। उदाहरण के लिए, इसके प्रतिलोम से बना उपसमुच्चय सम्बन्ध हमेशा सार्वभौमिक सम्बन्ध है:
- ∀A ∀B ∅ ⊂ A ∩B ⇔ A ⊃ ∅ ⊂ B ⇔ A ⊃ ⊂ B इसी प्रकार,
- U = समष्टि के लिए, A ∪ B ⊂ U ⇔ A ⊂ U ⊃ B ⇔ A ⊂ ⊃ B
अब समुच्चय सदस्यता सम्बन्ध और इसके प्रतिलोम पर विचार करें।
इस प्रकार विपरीत रचना सार्वभौम सम्बन्ध है।
रचनाओं का उपयोग सम्बन्धों को प्रकार के अनुसार वर्गीकृत करने के लिए किया जाता है: एक सम्बन्ध Q के लिए, जब Q की सीमा पर तत्समक सम्बन्ध में QTQ होता है, तो Q को एकसंयोजी कहलाता है। जब Q के प्रांत पर तत्समक सम्बन्ध Q QT में निहित होता है, तो Q को पूर्ण कहा जाता है। जब Q एकसंयोजक और पूर्ण दोनों हो तो यह एक फलन होता है। जब QT एकसंयोजी होता है, तो Q को अंत:क्षेपक कहलाता है। जब QT पूर्ण होता है, तो Q को विशेषण कहलाता है।[9]
यदि Q एकसंयोजक है, तो Q QT, Q के प्रांत पर तुल्यता सम्बन्ध है, देखें सकर्मक सम्बन्ध#सम्बन्धित गुण।
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 Gunther Schmidt; Thomas Ströhlein (1993). संबंध और रेखांकन: कंप्यूटर वैज्ञानिकों के लिए असतत गणित. Springer Berlin Heidelberg. pp. 9–10. ISBN 978-3-642-77970-1.
- ↑ Celestina Cotti Ferrero; Giovanni Ferrero (2002). नियरिंग्स: सेमीग्रुप्स और ग्रुप्स से जुड़े कुछ विकास. Kluwer Academic Publishers. p. 3. ISBN 978-1-4613-0267-4.
- ↑ Daniel J. Velleman (2006). इसे कैसे साबित करें: एक संरचित दृष्टिकोण. Cambridge University Press. p. 173. ISBN 978-1-139-45097-3.
- ↑ Shlomo Sternberg; Lynn Loomis (2014). उन्नत कैलकुलस. World Scientific Publishing Company. p. 9. ISBN 978-9814583930.
- ↑ Rosen, Kenneth H. (2017). असतत और संयोजी गणित की पुस्तिका. Rosen, Kenneth H., Shier, Douglas R., Goddard, Wayne. (Second ed.). Boca Raton, FL. p. 43. ISBN 978-1-315-15648-4. OCLC 994604351.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Peter J. Freyd & Andre Scedrov (1990) Categories, Allegories, page 79, North Holland ISBN 0-444-70368-3
- ↑ Joachim Lambek (2001). "Relations Old and New". In Ewa Orłowska; Andrzej Szalas (eds.). कंप्यूटर विज्ञान अनुप्रयोगों के लिए संबंधपरक तरीके. Springer Science & Business Media. pp. 135–146. ISBN 978-3-7908-1365-4.
- ↑ 8.0 8.1 Joachim Lambek (2001). "Relations Old and New". In Ewa Orłowska; Andrzej Szalas (eds.). कंप्यूटर विज्ञान अनुप्रयोगों के लिए संबंधपरक तरीके. Springer Science & Business Media. pp. 135–146. ISBN 978-3-7908-1365-4.
- ↑ Gunther Schmidt & Michael Winter (2018) Relational Topology, Springer Lecture Notes in Mathematics #2208, page 8, ISBN 978-3-319-74450-6
- Halmos, Paul R. (1974), Naive Set Theory, p. 40, ISBN 978-0-387-90092-6