पंक्ति और स्तंभ सदिश: Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
:<math>\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}^{\rm T} = \begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix} \,.</math> | :<math>\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}^{\rm T} = \begin{bmatrix} x_1 \; x_2 \; \dots \; x_m \end{bmatrix} \,.</math> | ||
n | किसी दिए गए क्षेत्र (जैसे वास्तविक संख्या) में n आव्यूहों के साथ सभी पंक्ति सदिशों का सेट एक n-आयामी सदिश स्पेस बनाता है; इसी प्रकार, m आव्यूहों वाले सभी स्तम्भ सदिश का सेट एक m-आयामी सदिश स्पेस बनाता है। | ||
n प्रविष्टियों के साथ पंक्ति सदिश के स्थान को n प्रविष्टियों वाले स्तंभ सदिश के स्थान के दोहरे स्थान के रूप में माना जा सकता है, क्योंकि स्तंभ सदिश के स्थान पर किसी भी रैखिक कार्यात्मक को एक अद्वितीय पंक्ति सदिश के बाएं-गुणन के रूप में दर्शाया जा सकता है। | n प्रविष्टियों के साथ पंक्ति सदिश के स्थान को n प्रविष्टियों वाले स्तंभ सदिश के स्थान के दोहरे स्थान के रूप में माना जा सकता है, क्योंकि स्तंभ सदिश के स्थान पर किसी भी रैखिक कार्यात्मक को एक अद्वितीय पंक्ति सदिश के बाएं-गुणन के रूप में दर्शाया जा सकता है। |
Revision as of 08:55, 8 December 2022
This article relies largely or entirely on a single source. (May 2021) |
रैखिक बीजगणित में, m तत्वों वाला एक स्तंभ सदिश एक m x 1 आव्यूह होता है, जिसमे m आव्यूह का एक एकल स्तंभ होता है, उदाहरण के लिए,
इसी तरह, एक पंक्ति सदिश कुछ n के लिये एक 1 x n आव्यूह है जिसमे n आव्यूह की एक पंक्ति सम्मिलित है,[1]
- (इस पूरे लेख में, बोल्डफेस का उपयोग पंक्ति और स्तंभ वैक्टर दोनों के लिए किया जाता है।)
किसी भी पंक्ति सदिश का स्थानांतरण (T द्वारा दर्शाया गया है) एक स्तंभ सदिश है, और किसी भी स्तंभ सदिश का स्थानान्तरण एक पंक्ति सदिश होता है:
और
किसी दिए गए क्षेत्र (जैसे वास्तविक संख्या) में n आव्यूहों के साथ सभी पंक्ति सदिशों का सेट एक n-आयामी सदिश स्पेस बनाता है; इसी प्रकार, m आव्यूहों वाले सभी स्तम्भ सदिश का सेट एक m-आयामी सदिश स्पेस बनाता है।
n प्रविष्टियों के साथ पंक्ति सदिश के स्थान को n प्रविष्टियों वाले स्तंभ सदिश के स्थान के दोहरे स्थान के रूप में माना जा सकता है, क्योंकि स्तंभ सदिश के स्थान पर किसी भी रैखिक कार्यात्मक को एक अद्वितीय पंक्ति सदिश के बाएं-गुणन के रूप में दर्शाया जा सकता है।
संकेत चिन्ह
स्तंभ सदिश को अन्य पाठ के साथ इन-लाइन लिखने को आसान बनाने के लिए, कभी-कभी उन्हें पंक्ति सदिश के रूप में लिखा जाता है, जिसमें जगह बदलना संचालन लागू होता है।
या
कुछ लेखक स्तंभ सदिश और पंक्ति सदिश दोनों को पंक्तियों के रूप में लिखने की परंपरा का भी उपयोग करते हैं, लेकिन पंक्ति सदिश तत्वों को अल्पविराम से और स्तंभ सदिश तत्वों को अर्धविराम से अलग करते हैं (नीचे दी गई तालिका में वैकल्पिक संकेत चिन्ह 2 देखें)।[citation needed]
पंक्ति सदिश | स्तम्भ सदिश | |
---|---|---|
मानक आव्यूह अंकन
(सरणी रिक्त स्थान, कोई अल्पविराम नहीं, संकेतों को स्थानांतरित करें) |
||
वैकल्पिक अंकन 1
(अल्पविराम, संकेतों को स्थानांतरित करें) |
||
वैकल्पिक अंकन 2
(अल्पविराम और अर्धविराम, कोई स्थानान्तरण संकेत नहीं) |
संचालन
आव्यूह गुणन में एक आव्यूह के प्रत्येक पंक्ति सदिश को दूसरे आव्यूह के प्रत्येक स्तंभ सदिश से गुणा करने की क्रिया सम्मालित है।
दो स्तंभ सदिश a और b का गुणन उत्पाद b के साथ a के स्थानान्तरण के आव्यूह उत्पाद के बराबर है,
गुणन उत्पाद की समरूपता से, दो स्तंभ सदिश a और b का गुणन उत्पाद भी a के साथ b के पक्षांतरित के आव्यूह उत्पाद के बराबर है,
स्तंभ और पंक्ति सदिश का आव्यूह उत्पाद दो सदिश a और b का बाहरी उत्पाद देता है, जो अधिक सामान्य टेंसर उत्पाद का एक उदाहरण है। a के स्तंभ सदिश प्रतिनिधित्व और b के पंक्ति वे सदिश प्रतिनिधित्व का आव्यूह उत्पाद उनके युग्मकीय उत्पाद के घटक देता है,
जो b के स्तंभ सदिश प्रतिनिधित्व के आव्यूह उत्पाद का स्थानान्तरण है और a की पंक्ति सदिश प्रतिनिधित्व है,
आव्यूह परिवर्तन
एक n × n आव्यूह M एक रेखीय मैप का प्रतिनिधित्व कर सकता है और रैखिक मैप के परिवर्तन आव्यूह के रूप में पंक्ति और स्तंभ सदिश पर कार्य कर सकता है। एक पंक्ति सदिश v के लिए, गुणनफल vM एक अन्य पंक्ति सदिश p है:
अन्य n × n आव्यूह Q, p पर कार्य कर सकता है,
फिर कोई t = p Q = v MQ लिख सकता है, इसलिए आव्यूह उत्पाद परिवर्तन MQ मैप v को सीधे t तक ले जाता है। पंक्ति सदिश के साथ जारी रखते हुए, आव्यूह रूपांतरणों को आगे पुन: कॉन्फ़िगर करते हुए n-स्पेस को पिछले आउटपुट के दाईं ओर लागू किया जा सकता है।
जब एक स्तंभ सदिश को n × n आव्यूह क्रिया के अनुसार दूसरे स्तंभ सदिश में बदल दिया जाता है, तो ऑपरेशन बाईं ओर होता है,
- ,
vT इनपुट से रचित आउटपुट के लिए बीजगणितीय व्यंजक vT के लिए अग्रणी QM होता है vT के लिए अग्रणी। मैट्रिक्स ट्रांसफ़ॉर्मेशन के इनपुट के लिए स्तम्भ सदिश के इस उपयोग में आव्यूह रूपांतरणों बाईं ओर आयोजित होता है
यह भी देखें
- सहप्रसरण और सदिशों का अंतर्विपंक्तिध
- सूचकांक संकेतन
- लोगों का सदिश
- सिंगल-एंट्री सदिश
- मानक इकाई सदिश
- इकाई सदिश
- ↑ Meyer (2000) , p. 8