गन डायोड: Difference between revisions
Line 35: | Line 35: | ||
[[Image:Radar speed gun internal works.jpg|thumb|upright=1.8| [[ रडार स्पीड गन ]] डिस्सैबर्ड।तांबे के रंग के [[ हॉर्न एंटीना ]] के अंत से जुड़ी ग्रे असेंबली गन डायोड ऑसिलेटर है जो माइक्रोवेव उत्पन्न करती है।]] | [[Image:Radar speed gun internal works.jpg|thumb|upright=1.8| [[ रडार स्पीड गन ]] डिस्सैबर्ड।तांबे के रंग के [[ हॉर्न एंटीना ]] के अंत से जुड़ी ग्रे असेंबली गन डायोड ऑसिलेटर है जो माइक्रोवेव उत्पन्न करती है।]] | ||
उनकी उच्च आवृत्ति क्षमता के कारण, गन डायोड का उपयोग मुख्य रूप से माइक्रोवेव आवृत्तियों और उससे ऊपर की आवृत्तियों में किया जाता है। वे इन आवृत्तियों पर किसी भी अर्धचालक उपकरणों की उच्चतम आउटपुट पावर का उत्पादन कर सकते हैं। उनका सबसे आम उपयोग [[ इलेक्ट्रॉनिक ऑसिलेटर |ऑसिलेटर]] में है, लेकिन साथ ही साथ उनका उपयोग माइक्रोवेव[[ एम्पलीफायर | एम्पलीफायर]] में भी संकेतों को बढ़ाने के लिए भी किया जाता है। क्योंकि डायोड [[ एक-पोर्ट |एक-पोर्ट]] (दो टर्मिनल) | उनकी उच्च आवृत्ति क्षमता के कारण, गन डायोड का उपयोग मुख्य रूप से माइक्रोवेव आवृत्तियों और उससे ऊपर की आवृत्तियों में किया जाता है। वे इन आवृत्तियों पर किसी भी अर्धचालक उपकरणों की उच्चतम आउटपुट पावर का उत्पादन कर सकते हैं। उनका सबसे आम उपयोग [[ इलेक्ट्रॉनिक ऑसिलेटर |ऑसिलेटर]] में है, लेकिन साथ ही साथ उनका उपयोग माइक्रोवेव[[ एम्पलीफायर | एम्पलीफायर]] में भी संकेतों को बढ़ाने के लिए भी किया जाता है। क्योंकि डायोड [[ एक-पोर्ट |एक-पोर्ट]] (दो टर्मिनल) उपकरण है, इसलिए एम्पलीफायर सर्किट को युग्मन से रोकने के लिए आने वाले इनपुट सिग्नल से आउटगोइंग प्रवर्धित सिग्नल को अलग करना होगा। एक सामान्य सर्किट एक प्रतिबिंब एम्पलीफायर होता है जो संकेतों को अलग करने के लिए [[ सर्कुलेटर |सर्कुलेटर]] का उपयोग करता है। उच्च आवृत्ति दोलनों से बायस धारा को अलग करने के लिए बायस टी (bias tee) की आवश्यकता होती है। | ||
=== सेंसर और माप उपकरण === | === सेंसर और माप उपकरण === |
Revision as of 23:54, 21 July 2022
डायोड का ही एक रूप गन डायोड भी होता है, इसे इलेक्ट्रॉन हस्तांतरित यन्त्र (TED, टेड) भी कहा जाता हैl यह दो-टर्मिनलों से युक्त सेमीकंडक्टर इलेक्ट्रॉनिक घटक होता है जो नकारात्मक प्रतिरोध के साथ, उच्च-आवृत्ति में उपयोग किया जाता है। यह 1962 में भौतिक विज्ञानी जे.बी. गन द्वारा खोजे गए गन प्रभाव पर आधारित है। इसका सबसे बड़ा उपयोग इलेक्ट्रॉनिक ऑसिलेटर में माइक्रोवेव उत्पन्न करने के लिए होता हैl इसका अनुप्रयोग रडार स्पीड गन, माइक्रोवेव रिले डेटा लिंक ट्रांसमीटर, और स्वचालित डोर ओपनर में होता हैं।
इसका आंतरिक निर्माण अन्य डायोडों के विपरीत होता है, जिसमें की एन-डोपेड (N-doped) अर्धचालक (सेमीकंडक्टर) सामग्री होती है, जबकि सामान्य डायोड में पी और एन-डोपेड (P and N-doped) दोनों क्षेत्र होते हैं। इसलिए, यह दोनों दिशाओं में आचरण करता है और अन्य डायोड की तरह वैकल्पिक करंट को ठीक नहीं कर सकता हैl यही कारण है कि कुछ स्रोत डायोड शब्द का उपयोग नहीं करते हैं, और टेड शब्द को पसंद करते हैं। गन डायोड में, तीन क्षेत्र मौजूद होते हैं, उनमें से दो प्रत्येक टर्मिनल पर बहुत अधिक रूप से एन-डोप किए गए हैं, और उनके बीच हल्के एन-डोप सामग्री की एक पतली परत होती है। जब उपकरण (डिवाइस) पर वोल्टेज लागू किया जाता है, तो पतली मध्य परत में विद्युत ढाल सबसे बड़ा हो जाता है। यदि वोल्टेज बढ़ता है, तो परत के माध्यम से वर्तमान में वृद्धि होगी, लेकिन अंततः, उच्च क्षेत्र मूल्यों पर, मध्य परत के प्रवाहकीय गुणों में बदलाव हो जाता है, जिसके कारण प्रतिरोधकता बढ़ जाती है, और वर्तमान मूल्यों के लोप का कारण बनती है। इसका मतलब यह है कि गन डायोड में नकारात्मक अंतर प्रतिरोध का एक क्षेत्र होता है, जो वर्तमान -वोल्टेज की विशेषता के विपरीत होता है, जिसमें लागू वोल्टेज की वृद्धि, वर्तमान में कमी का कारण बनती है। यह प्रकृति इसे रेडियो फ्रीक्वेंसी एम्पलीफायर के रूप में इसको बढ़ाने की अनुमति देती है, या डीसी (DC) वोल्टेज के साथ अभिनत होने पर अस्थिर और दोलन को उत्तपन कर देती है।
गन डायोड ऑसिलेटर
मध्यवर्ती परत के समकालन गुणों के साथ संयुक्त नकारात्मक विभेदक प्रतिरोध, इलेक्ट्रॉनिक ऑसिलेटर में माइक्रोवेव आवृत्तियों और उसके ऊपर के अनुप्रयोग, डायोड के लिए सबसे ज्यादा उपयोगी हैं। एक माइक्रोवेव ऑसिलेटर को केवल डीसी वोल्टेज को अपने नकारात्मक प्रतिरोध क्षेत्र में अभिनत करके बनाया जा सकता है। वास्तव में, डायोड का नकारात्मक अंतर प्रतिरोध लोड सर्किट के सकारात्मक प्रतिरोध को रद्द कर देता है, इस प्रकार शून्य अंतर प्रतिरोध के साथ एक परिपथ बनाता है, जो सहज दोलनों से युक्त होता है। दोलन आवृत्ति आंशिक रूप से मध्य डायोड की अस्तरीया गुणों द्वारा निर्धारित किया जाता है, साथ ही साथ यह बाहरी कारकों द्वारा मिलाया जा सकता है। व्यावहारिक ऑसिलेटर्स में, वेवगाइड, माइक्रोवेव गुहिका या वाईआईजी (YIG) क्षेत्र के रूप में इलेक्ट्रॉनिक गुंजयमान आवृत्ति को नियंत्रित करने के लिए जोड़ा जाता है। डायोड आमतौर पर गुहिका के अंदर लगाया जाता है। डायोड गुंजन के नुकसान के रूप में उत्तपन प्रतिरोध को नस्ट कर देता है, इसलिए यह गुंजयमान आवृत्ति पर दोलनों का उत्पादन करता है। वाईआईजी क्षेत्रों के मामले में गुहिका के आकार को समायोजित करके, या चुंबकीय क्षेत्र को बदलकर आवृत्ति को यंत्रवत् रूप से मिलाया जा सकता है। गन डायोड का उपयोग 10 गीगाहर्ट्ज (GHz.) में उच्च (THz.) आवृत्ति सीमा में ऑसिलेटर बनाने के लिए किया जाता हैl
गैलियम आर्सेनाइड गन डायोड 200 तक की आवृत्तियों के लिए बनाए जाते हैं; GHz; गैलियम नाइट्राइड सामग्री 3 टेरा हेर्त्ज़ (यूनिट) तक पहुंच सकती है[1][2]
इतिहास
गन डायोड, गन प्रभाव पर आधारित होता है, और दोनों को भौतिक विज्ञानी जे.बी.गन के नाम पर रखा गया है।1962 में आईबीएम में, उन्होंने इसके प्रभावों की खोज की क्योंकि उन्होंने गैलियम आर्सेनाइड में असंगत प्रयोगात्मक परिणामों को "कोलाहल" के रूप में स्वीकार करने से इनकार कर दिया और इसके कारण को निर्धारित किया।
बेल टेलीफोन लेबोरेटरीज के एलन चिनोवेथ ने जून 1965 में दिखाया कि केवल एक हस्तांतरित-इलेक्ट्रॉन तंत्र प्रयोगात्मक परिणामों की व्याख्या कर सकता है।Cite error: Invalid <ref>
tag; invalid names, e.g. too many जो 1961 में वैज्ञानिक पत्रों में दिखाते थे कि नकारात्मक प्रतिरोध विस्तृत अर्धचालकों द्वारा प्रदर्शित हो सकते थे, जिसका अर्थ है कि लागू वोल्टेज को बढ़ाने से करंट कम होने का कारण बन सकता है।
1970 के दशक की शुरुआत में गन प्रभाव, और वाटकिंस-रिडले-हाइल्सम प्रभाव से इसका संबंध इलेक्ट्रॉनिक्स साहित्य में हुआ, उदहारण के तौर पर पुस्तकों में [3]हस्तांतरित इलेक्ट्रॉन यन्त्र के बारे में और, हाल ही में चार्ज ट्रांसपोर्ट के लिए नॉनलाइनर वेव विधियों पर इसका उल्लेख्य मिलता है।[4]
यह कैसे काम करता है
गैलियम आर्सेनाइड (GaAs) सहित कुछ अर्धचालक पदार्थों की (सेमीकंडक्टर) की इलेक्ट्रॉनिक बैंड संरचना में वैलेंस और चालन बैंड के अलावा एक और ऊर्जा बैंड या उप-बैंड होता है जो आमतौर पर अर्धचालक उपकरणों में उपयोग किया जाता है। यह तीसरा बैंड सामान्य चालन बैंड की तुलना में अधिक ऊर्जा पर होता है और तब तक खाली रहता है जब तक इसे इलेक्ट्रॉनों को बढ़ावा देने के लिए ऊर्जा की आपूर्ति नहीं की जाती है। ऊर्जा बैलिस्टिक इलेक्ट्रॉनों की गतिज ऊर्जा से आती है,अर्थात् चालन बैंड में इलेक्ट्रॉन लेकिन पर्याप्त गतिज ऊर्जा के साथ गतिमान होते हैं जैसे कि वे तीसरे बैंड तक पहुंचने में सक्षम होते हैं।
ये इलेक्ट्रॉन या तो फर्मी स्तर से नीचे प्रारंभ होते हैं और उन्हें एक मजबूत विद्युत क्षेत्र को लागू करके आवश्यक ऊर्जा प्राप्त करने के लिए पर्याप्त रूप से लंबे समय से मुक्त पथ दिया जाता है, या उन्हें सही ऊर्जा के साथ एक कैथोड द्वारा इंजेक्ट किया जाता है। अग्रिम वोल्टेज के साथ, कैथोड में फर्मी स्तर तीसरे बैंड में चलता है, और फर्मी स्तर के आसपास शुरू होने वाले बैलिस्टिक इलेक्ट्रॉनों के प्रतिबिंबों को घनत्व की अवस्था से मेल खाने और अतिरिक्त इंटरफ़ेस परतों का उपयोग करके कम से कम किया जाता है ताकि परावर्तित तरंगों को विनाशकारी रूप से बाधित किया जा सके।
GaAs में तीसरे बैंड में इलेक्ट्रॉनों का प्रभावी द्रव्यमान सामान्य चालन बैंड की तुलना में अधिक होता है, इसलिए उस बैंड में इलेक्ट्रॉनों की गतिशीलता या बहाव वेग कम होता है। अग्रिम वोल्टेज बढ़ने पर अधिकांश इलेक्ट्रॉन तीसरे बैंड तक पहुंच सकते हैं, जिससे उनकी गति धीमी हो जाती है, और डिवाइस के माध्यम से करंट कम हो जाता है। यह वोल्टेज/वर्तमान संबंध में नकारात्मक अंतर प्रतिरोध का क्षेत्र बनाता है।
जब डायोड पर पर्याप्त उच्च क्षमता लागू की जाती है, तो कैथोड के साथ आवेश वाहक घनत्व अस्थिर हो जाने के कारण कम चालकता के छोटे खंड विकसित करने लगता है, जबकि बाकी कैथोड में उच्च चालकता होती है। अधिकांश कैथोड वोल्टेज ड्रॉप पूरे खंड में लागु होगा, इसलिए इसमें एक उच्च विद्युत क्षेत्र उत्तपन होगा। इस विद्युत क्षेत्र के कारण यह कैथोड के साथ-साथ एनोड की ओर गति करेगा। दोनों बैंडों में जन संख्या को संतुलित करना संभव नहीं है, इसलिए उच्च क्षेत्र की तीव्रता वाली पतली परतें निम्नन क्षेत्र तीव्रता की सामान्य पृष्ठभूमि में हमेशा होंगीं। व्यहारिक रूप से अग्रिम वोल्टेज में थोड़ी वृद्धि के साथ, कैथोड पर एक निम्नन चालकता खंड बनाया जाता है, जिसके कारण प्रतिरोध बढ़ता है, यह सम्पूर्ण अनुभाग बार के साथ एनोड तक जाता है, और जब यह एनोड तक पहुंचता है तो यह अवशोषित हो जाता है और कैथोड पर कुल वोल्टेज स्थिर रखने के लिए एक नया अनुभाग बनाया जाता है। यदि वोल्टेज कम किया जाता है, तो कोई भी मौजूदा परत ठंडी हो जाती है और प्रतिरोध फिर से कम हो जाता है।
गन डायोड के निर्माण के लिए सामग्री का चयन करने के लिए उपयोग की जाने वाली प्रयोगशाला विधियों में कोण-हल किए गए फोटोइमिशन स्पेक्ट्रोस्कोपी शामिल हैं।
अनुप्रयोग
उनकी उच्च आवृत्ति क्षमता के कारण, गन डायोड का उपयोग मुख्य रूप से माइक्रोवेव आवृत्तियों और उससे ऊपर की आवृत्तियों में किया जाता है। वे इन आवृत्तियों पर किसी भी अर्धचालक उपकरणों की उच्चतम आउटपुट पावर का उत्पादन कर सकते हैं। उनका सबसे आम उपयोग ऑसिलेटर में है, लेकिन साथ ही साथ उनका उपयोग माइक्रोवेव एम्पलीफायर में भी संकेतों को बढ़ाने के लिए भी किया जाता है। क्योंकि डायोड एक-पोर्ट (दो टर्मिनल) उपकरण है, इसलिए एम्पलीफायर सर्किट को युग्मन से रोकने के लिए आने वाले इनपुट सिग्नल से आउटगोइंग प्रवर्धित सिग्नल को अलग करना होगा। एक सामान्य सर्किट एक प्रतिबिंब एम्पलीफायर होता है जो संकेतों को अलग करने के लिए सर्कुलेटर का उपयोग करता है। उच्च आवृत्ति दोलनों से बायस धारा को अलग करने के लिए बायस टी (bias tee) की आवश्यकता होती है।
सेंसर और माप उपकरण
गन डायोड ऑसिलेटर का उपयोग माइक्रोवेव पावर उत्पन्न करके अग्रलिखित यंत्रों में किया जाता है,[5]जैसे हवाई टक्कर से बचाव रडार, एंटी-लॉक ब्रेक, ट्रैफ़िक प्रवाह की निगरानी के लिए सेंसर, कार रडार डिटेक्टर, पैदल यात्री सुरक्षा प्रणाली, यात्रा दूरी रिकॉर्डर, मोशन डिटेक्टर, स्लो-स्पीड सेंसर (पैदल यात्री और ट्रैफिक मूवमेंट का पता लगाने के लिए 85 किमी/घंटा (50 मील प्रति घंटे)), ट्रैफ़िक सिग्नल कंट्रोलर, ऑटोमैटिक डोर ओपनर, ऑटोमैटिक ट्रैफ़िक गेट्स, प्रोसेस कंट्रोल इक्विपमेंट थ्रूपुट, बर्गलर अलार्म और मॉनिटर करने के लिए प्रोसेस कंट्रोल इक्विपमेंटट्रेनों, ट्रेनों के पटरी से उतरने से बचने के लिए सेंसर, रिमोट वाइब्रेशन डिटेक्टर, रोटेशनल स्पीड टैकोमीटर, नमी सामग्री मॉनिटर।
रेडियो का शौकिया उपयोग
गन डायोड कम वोल्टेज संचालन के आधार पर, बहुत कम शक्ति (कुछ-मिलीवाट) के साथ माइक्रोवेव ट्रांसीवर के लिए माइक्रोवेव आवृत्ति जनरेटर के रूप में काम कर सकते हैं जिन्हें गनप्लेक्सर्स कहा जाता है। 1970 के दशक के अंत में पहली बार उनका उपयोग ब्रिटिश रेडियो द्वारा किया गया था, और कई गनप्लेक्सर डिजाइन पत्रिकाओं में प्रकाशित हो चुके हैं। इनमें आमतौर पर लगभग 3 इंच का वेवगाइड होता है जिसमें डायोड लगा होता है। एक कम वोल्टेज (12 वोल्ट से कम) की प्रत्यक्ष वर्तमान बिजली की आपूर्ति, जिसे उचित रूप से संशोधित कर डायोड को चलाने के लिए किया जाता है। एक गुंजयमान घटिका बनाने के लिए वेवगाइड को एक छोर पर अवरुद्ध कर देने पर आमतौर पर दूसरा छोर एक हॉर्न एंटीना का संभरण करता है। एक अतिरिक्त "मिक्सर डायोड" वेवगाइड में डाला जाता है, और यह अक्सर अन्य शौकिया स्टेशनों को सुनने में सक्षम करने के लिए एक संशोधित एफएम प्रसारण रिसीवर से जुड़ा होता है। गनप्लेक्सर्स का उपयोग आमतौर पर 10 गीगाहर्ट्ज और 24 गीगाहर्ट्ज हैम बैंड में किया जाता है और कभी-कभी 22 गीगाहर्ट्ज सुरक्षा अलार्म को डायोड के रूप में संशोधित किया जाता है। क्योंकि डायोड को विपरीत किनारों पर तांबे या एल्यूमीनियम पन्नी की परतों के साथ थोड़ा अलग कैविटी में लाइसेंस प्राप्त शौकिया बैंड के लिए रखा जा सकता है। आमतौर पर, मिक्सर डायोड अगर बरकरार है तो इसका मौजूदा वेवगाइड में पुन: उपयोग किया जाता है और ये हिस्से बेहद स्थिर संवेदनशील होने के लिए जाने जाते हैं। अधिकांश व्यावसायिक इकाइयों में इस भाग को एक समानांतर रोकनेवाला और अन्य घटकों के साथ संरक्षित किया जाता है और कुछ आरबी परमाणु घड़ियों में इसका एक प्रकार से उपयोग किया जाता है। भले ही गन डायोड उपयोग में कमजोर हो पर मिक्सर डायोड कम आवृत्ति अनुप्रयोगों के लिए उपयोगी है, और कुछ रेडियो उत्साहियों ने बाहरी ऑसीलेटर या एन/2 (n/2) तरंगदैर्ध्य गन डायोड के संयोजन के साथ उपग्रह खोज और अन्य अनुप्रयोगों के लिए इनका उपयोग किया है।
रेडियो खगोल विज्ञान
गन ऑसिलेटर्स का उपयोग मिलीमीटर-वेव और सबमिलिमीटर-वेव रेडियो एस्ट्रोनॉमी रिसीवर्स के लिए स्थानीय ऑसिलेटर्स के रूप में किया जाता है। गन डायोड को एक कैविटी में लगाया जाता है जो डायोड की मौलिक आवृत्ति से दुगुनी प्रतिध्वनित होती है। घटिका की लंबाई एक माइक्रोमीटर समायोजन द्वारा बदल दी जाती है। गन ऑसिलेटर 50 मेगावाट के साथ 50% ट्यूनिंग रेंज (समस्वरण सीमा) पर अधिक उत्पादन करने में सक्षम और उपलब्ध हैं।
सबमिलीमीटर-तरंग अनुप्रयोग (सबमिलीमीटर-वेव एप्लिकेशन) के लिए गन ऑसिलेटर फ़्रीक्वेंसी को डायोड फ़्रीक्वेंसी मल्टीप्लायर से गुणा किया जाता है।
संदर्भ
- ↑ वी। ग्रुज़िंस्किस, जे.एच.झाओ, O.Shiktorov और E. Starikov, गन इफेक्ट और THZ फ़्रीक्वेंसी पावर जनरेशन इन n (+)-N-N (+) GAN स्ट्रक्चर्स , मटेरियल साइंस फोरम, 297--298, 34--344, 1999।
- ↑ ग्रिब्निकोव, जेड.एस., बशीरोव, आर। आर।, और मिटिन, वी। वी। (2001)।नकारात्मक विभेदक बहाव वेग और टेराहर्ट्ज़ पीढ़ी के नकारात्मक प्रभावी द्रव्यमान तंत्र।क्वांटम इलेक्ट्रॉनिक्स में चयनित विषयों के IEEE जर्नल, 7 (4), 630-640
- ↑ पी। जे। बुलमैन, जी.एस. होब्सन और बी। सी। टेलर। ट्रांसफर किए गए इलेक्ट्रॉन डिवाइस , अकादमिक प्रेस, न्यूयॉर्क, 197
- ↑ लुइस एल। बोनिला और स्टीफन डब्ल्यू। टिट्सवर्थ, चार्ज ट्रांसपोर्ट के लिए नॉनलाइनियर वेव मेथड्स ', विली-वीसीएच, 2010
- ↑ द गन इफ़ेक्ट , ओक्लाहोमा विश्वविद्यालय, भौतिकी और खगोल विज्ञान विभाग, पाठ्यक्रम नोट।