अतिशयोक्तिपूर्ण स्थान: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Non-Euclidean geometry}} | {{Short description|Non-Euclidean geometry}} | ||
[[File:Hyperbolic orthogonal dodecahedral honeycomb.png|thumb|हाइपरबोलिक 3-मैनिफ़ोल्ड|H में एक हाइपरबोलिक छोटे डोडेकाहेड्रल मधुकोश का एक परिप्रेक्ष्य प्रक्षेपण<sup>3</sup>।<BR>चार द्वादशफलक प्रत्येक किनारे पर मिलते हैं, और आठ प्रत्येक शीर्ष पर मिलते हैं, जैसे ''यूक्लिडियन स्पेस|ई'' में घन छत्ते के घन।<sup>3</उप>]]गणित में, n आयाम का अतिपरवलयिक स्थान, -1 के बराबर निरंतर [[अनुभागीय वक्रता]] का अद्वितीय, सरल रूप से जुड़ा हुआ, n-आयामी रीमैनियन मैनिफोल्ड है। यह [[सजातीय स्थान]] है, और एक [[सममित स्थान]] होने की पूर्ण सम्भावना को संतुष्ट करता है। इसे <math>\mathbb R^n</math>के खुले उपसमुच्चय के रूप में, एक स्पष्ट रूप से लिखित रीमैनियन मीट्रिक के साथ, बनाने के अनेक तरीके हैं ; ऐसे निर्माणों को मॉडल कहा जाता है। हाइपरबोलिक 2- | [[File:Hyperbolic orthogonal dodecahedral honeycomb.png|thumb|हाइपरबोलिक 3-मैनिफ़ोल्ड|H में एक हाइपरबोलिक छोटे डोडेकाहेड्रल मधुकोश का एक परिप्रेक्ष्य प्रक्षेपण<sup>3</sup>।<BR>चार द्वादशफलक प्रत्येक किनारे पर मिलते हैं, और आठ प्रत्येक शीर्ष पर मिलते हैं, जैसे ''यूक्लिडियन स्पेस|ई'' में घन छत्ते के घन।<sup>3</उप>]]गणित में, n आयाम का अतिपरवलयिक स्थान, -1 के बराबर निरंतर [[अनुभागीय वक्रता]] का अद्वितीय, सरल रूप से जुड़ा हुआ, n-आयामी रीमैनियन मैनिफोल्ड है। यह [[सजातीय स्थान]] है, और एक [[सममित स्थान]] होने की पूर्ण सम्भावना को संतुष्ट करता है। इसे <math>\mathbb R^n</math>के खुले उपसमुच्चय के रूप में, एक स्पष्ट रूप से लिखित रीमैनियन मीट्रिक के साथ, बनाने के अनेक तरीके हैं ; ऐसे निर्माणों को मॉडल कहा जाता है। हाइपरबोलिक 2-क्षेत्र, '''H'''<sup>2</sup>, जो पहली बार अध्ययन किया गया था, उसे अतिपरवलयिक तल भी कहा जाता है। | ||
इसे कभी-कभी लोबचेवस्की क्षेत्र या बोल्याई-लोबचेव्स्की क्षेत्र,लेखक के नाम के बाद जिन्होंने हाइपरबोलिक ज्यामिति के विषय पर पहली बार प्रकाशन करवाया था, के रूप में भी जाना जाता है। कभी-कभी गुणात्मक वास्तविक को जटिल | इसे कभी-कभी लोबचेवस्की क्षेत्र या बोल्याई-लोबचेव्स्की क्षेत्र,लेखक के नाम के बाद जिन्होंने हाइपरबोलिक ज्यामिति के विषय पर पहली बार प्रकाशन करवाया था, के रूप में भी जाना जाता है। कभी-कभी गुणात्मक वास्तविक को जटिल अतिपरवलयिक रिक्त स्थान, चतुष्कोणीय अतिपरवलयिक स्थान और ऑक्टोनिक अतिपरवलयिक तल से अलग करने के लिए जोड़ा जाता है जो ऋणात्मक वक्रता के अन्य सममित स्थान हैं। | ||
[[अतिशयोक्तिपूर्ण विमान]] [[ग्रोमोव हाइपरबोलिक स्पेस]] के प्रोटोटाइप के रूप में कार्य करता है जो ऋणात्मक वक्रता के सिंथेटिक दृष्टिकोण के माध्यम से अंतर-ज्यामितीय के साथ-साथ अधिक संयोजी रिक्त स्थान सहित एक दूरगामी धारणा है। एक अन्य सामान्यीकरण CAT | [[अतिशयोक्तिपूर्ण विमान|अतिपरवलयिक विमान]] [[ग्रोमोव हाइपरबोलिक स्पेस|ग्रोमोव हाइपरबोलिक क्षेत्र]] के प्रोटोटाइप के रूप में कार्य करता है जो ऋणात्मक वक्रता के सिंथेटिक दृष्टिकोण के माध्यम से अंतर-ज्यामितीय के साथ-साथ अधिक संयोजी रिक्त स्थान सहित एक दूरगामी धारणा है। एक अन्य सामान्यीकरण CAT क्षेत्र | CAT(-1[[कैट स्पेस|कैट क्षेत्र]] की धारणा है। | ||
== औपचारिक परिभाषा और मॉडल == | == औपचारिक परिभाषा और मॉडल == | ||
<math>n</math> आयाम का अतिपरवलयिक स्थान या | <math>n</math> आयाम का अतिपरवलयिक स्थान या अतिपरवलयिक <math>n</math>-क्षेत्र, जिसे सामान्यतः <math>\mathbb H^n</math> द्वारा निरूपित किया जाता है, सरल अद्वितीय रूप से जुड़ा हुआ, निरंतर ऋणात्मक अनुभागीय वक्रता -1 के बराबर, <math>n</math>-आयामी रीमैनियन मैनिफोल्ड है। युनिसिटी का अर्थ है कि इन गुणों को संतुष्ट करने वाले किसी भी दो रीमैनियन मैनिफोल्ड एक दूसरे के लिए सममितीय हैं। यह किलिंग-हॉफ प्रमेय का परिणाम है। | ||
=== | === अतिपरवलयिक क्षेत्र के मॉडल === | ||
ऊपर वर्णित इस तरह के स्थान के अस्तित्व को | ऊपर वर्णित इस तरह के स्थान के अस्तित्व को सिद्ध करने के लिए स्पष्ट रूप से इसका निर्माण किया जा सकता है, उदाहरण के लिए एक साधारण सूत्र द्वारा दिया गया रिमेंनियन मीट्रिक के साथ <math>\mathbb R^n</math> का एक खुला उपसमुच्चय। अतिपरवलयिक क्षेत्र के ऐसे अनेक निर्माण या मॉडल हैं, जिनमें से प्रत्येक इसके अध्ययन के विभिन्न पहलुओं के अनुकूल है। वे पिछले पैराग्राफ के अनुसार एक दूसरे के लिए सममितीय हैं, और प्रत्येक स्थिति में एक स्पष्ट आइसोमेट्री स्पष्ट रूप से दी जा सकती है। यहाँ अच्छे ज्ञात मॉडलों की एक सूची दी गई है, जिनका वर्णन उनके नाम वाले लेखों में अधिक विस्तार से किया गया है: | ||
* पोंकारे | * पोंकारे अर्ध-तल मॉडल : यह मीट्रिक <math>\tfrac{dx_1^2+\cdots + dx_n^2}{x_n^2}</math> के साथ ऊपरी-आधा स्थान <math>\{(x_1, \ldots, x_n) \in \mathbb R^n : x_n > 0\}</math> है। | ||
* पॉइनकेयर डिस्क मॉडल: यह | * पॉइनकेयर डिस्क मॉडल: यह मीट्रिक <math>4\tfrac{dx_1^2+\cdots + dx_n^2}{(1 - (x_1^2 + \cdots + x_n^2))^2}</math> के साथ <math>\mathbb R^n</math> की यूनिट बॉल है। अर्ध-क्षेत्र मॉडल के लिए आइसोमेट्री को एक [[होमोग्राफी]] द्वारा इकाई क्षेत्र के एक बिंदु को अनंत तक भेजकर महसूस किया जा सकता है। | ||
* [[हाइपरबोलाइड मॉडल]]: पिछले दो मॉडलों के विपरीत यह हाइपरबॉलिक का एहसास करता है <math>n</math>-अंतरिक्ष के अंदर सममित रूप से सन्निहित है <math>(n+1)</math>-डायमेंशनल [[मिन्कोवस्की अंतरिक्ष]] (जो रिमैनियन नहीं है, बल्कि [[लोरेंट्ज़ियन कई गुना|लोरेंट्ज़ियन अनेक गुना]] है)। अधिक सटीक रूप से, द्विघात रूप को देखते हुए <math>q(x) = x_1^2 + \cdots + x_n^2 - x_{n+1}^2</math> पर <math>\mathbb R^{n+1}</math>, इसके द्वारा दिए गए [[hyperboloid]] की ऊपरी शीट के स्पर्शरेखा स्थानों पर इसका प्रतिबंध <math>q(x) = -1</math> निश्चित रूप से सकारात्मक हैं, इसलिए वे इसे एक रिमेंनियन मीट्रिक के साथ संपन्न करते हैं जो निरंतर वक्रता -1 के रूप में निकलता है। पिछले मॉडल की आइसोमेट्री को हाइपरबोलॉइड से प्लेन तक [[त्रिविम प्रक्षेपण]] द्वारा महसूस किया जा सकता है <math>\{x_{n+1} = 0\}</math>, उस शीर्ष को लेना जिससे प्रोजेक्ट होना है <math>(0, \ldots, 0, 1)</math> गेंद के लिए और शंकु में अनंत पर एक बिंदु <math>q(x)=0</math> आधी जगह के लिए प्रक्षेपी अंतरिक्ष के अंदर। | * [[हाइपरबोलाइड मॉडल|अतिपरवलय मॉडल]] : पिछले दो मॉडलों के विपरीत यह हाइपरबॉलिक का एहसास करता है <math>n</math>-अंतरिक्ष के अंदर सममित रूप से सन्निहित है <math>(n+1)</math>-डायमेंशनल [[मिन्कोवस्की अंतरिक्ष]] (जो रिमैनियन नहीं है, बल्कि [[लोरेंट्ज़ियन कई गुना|लोरेंट्ज़ियन अनेक गुना]] है)। अधिक सटीक रूप से, द्विघात रूप को देखते हुए <math>q(x) = x_1^2 + \cdots + x_n^2 - x_{n+1}^2</math> पर <math>\mathbb R^{n+1}</math>, इसके द्वारा दिए गए [[hyperboloid]] की ऊपरी शीट के स्पर्शरेखा स्थानों पर इसका प्रतिबंध <math>q(x) = -1</math> निश्चित रूप से सकारात्मक हैं, इसलिए वे इसे एक रिमेंनियन मीट्रिक के साथ संपन्न करते हैं जो निरंतर वक्रता -1 के रूप में निकलता है। पिछले मॉडल की आइसोमेट्री को हाइपरबोलॉइड से प्लेन तक [[त्रिविम प्रक्षेपण]] द्वारा महसूस किया जा सकता है <math>\{x_{n+1} = 0\}</math>, उस शीर्ष को लेना जिससे प्रोजेक्ट होना है <math>(0, \ldots, 0, 1)</math> गेंद के लिए और शंकु में अनंत पर एक बिंदु <math>q(x)=0</math> आधी जगह के लिए प्रक्षेपी अंतरिक्ष के अंदर। | ||
* [[छोटा मॉडल]]: यह एक और मॉडल है जिसे | * [[छोटा मॉडल|क्लेन मॉडल]]: यह एक और मॉडल है जिसे <math>\mathbb R^n</math> की यूनिट बॉल पर महसूस किया गया है ; एक स्पष्ट मीट्रिक के रूप में दिए जाने के अतिरिक्त इसे सामान्यतः मिंकोस्की अंतरिक्ष में हाइपरबोलॉइड मॉडल से क्षैतिज स्पर्शरेखा तल (मतलब, <math>x_{n+1}=1</math>) मूलबिंदु <math>(0, \ldots, 0)</math>से | ||
* सममित स्थान: | * सममित स्थान: अतिपरवलयिक <math>n</math>-क्षेत्र को साधारण लाई समूह <math>\mathrm{SO}(n, 1)</math>(द्विघात रूप के आइसोमेट्री का समूह <math>q</math> सकारात्मक निर्धारक के साथ) के सममित स्थान के रूप में महसूस किया जा सकता है; एक सेट के रूप में बाद वाला [[कोसेट स्पेस|कोसेट क्षेत्र]] <math>\mathrm{SO}(n, 1)/\mathrm{O}(n)</math> है। अतिपरवलयिक मॉडल की आइसोमेट्री अतिपरवलय पर <math>\mathrm{SO}(n, 1)</math>के जुड़े घटक की कार्रवाई के माध्यम से तुरंत होती है। | ||
== ज्यामितीय गुण == | == ज्यामितीय गुण == | ||
=== समानांतर रेखाएँ === | === समानांतर रेखाएँ === | ||
हाइपरबॉलिक | हाइपरबॉलिक क्षेत्र, [[निकोलाई लोबचेव्स्की]], जानोस बोल्याई और [[कार्ल फ्रेडरिक गॉस]] द्वारा स्वतंत्र रूप से विकसित, [[यूक्लिडियन अंतरिक्ष]] के अनुरूप एक ज्यामितीय स्थान है, लेकिन ऐसा है कि समानांतर पोस्टुलेट | यूक्लिड के समानांतर पोस्टुलेट को अब धारण नहीं किया जाता है। इसके अतिरिक्त, समानांतर सिद्धांत को निम्नलिखित विकल्प (दो आयामों में) से बदल दिया गया है: | ||
* दी गई कोई रेखा L और बिंदु P, जो L पर नहीं है, P से होकर जाने वाली कम से कम दो अलग-अलग रेखाएँ हैं जो L को प्रतिच्छेद नहीं करती हैं। | * दी गई कोई रेखा L और बिंदु P, जो L पर नहीं है, P से होकर जाने वाली कम से कम दो अलग-अलग रेखाएँ हैं जो L को प्रतिच्छेद नहीं करती हैं। | ||
यह तब एक प्रमेय है कि पी के माध्यम से असीम रूप से अनेक ऐसी रेखाएँ हैं। यह अभिगृहीत अभी भी [[आइसोमेट्री]] तक | यह तब एक प्रमेय है कि पी के माध्यम से असीम रूप से अनेक ऐसी रेखाएँ हैं। यह अभिगृहीत अभी भी [[आइसोमेट्री]] तक अतिपरवलयिक तल की विशिष्ट विशेषता नहीं है; एक अतिरिक्त स्थिरांक है, वक्रता {{nowrap|''K'' < 0}}, जिसे निर्दिष्ट किया जाना चाहिए। हालाँकि, यह विशिष्ट रूप से [[होमोथेटिक परिवर्तन]] तक इसे चित्रित करता है, जिसका अर्थ है कि आपत्तियाँ जो केवल एक समग्र स्थिरांक द्वारा दूरी की धारणा को बदलती हैं। एक उचित लंबाई के पैमाने का चयन करके, इस प्रकार, सामान्यता के नुकसान के बिना, यह मान सकते हैं {{nowrap|1=''K'' = −1}}. | ||
=== यूक्लिडियन एम्बेडिंग === | === यूक्लिडियन एम्बेडिंग === | ||
हिल्बर्ट के प्रमेय (डिफरेंशियल ज्योमेट्री) | हिल्बर्ट के प्रमेय द्वारा हाइपरबोलिक प्लेन को | हिल्बर्ट के प्रमेय (डिफरेंशियल ज्योमेट्री) | हिल्बर्ट के प्रमेय द्वारा हाइपरबोलिक प्लेन को सममितीय रूप से यूक्लिडियन 3-क्षेत्र में एम्बेड नहीं किया जा सकता है। दूसरी ओर [[नैश एम्बेडिंग प्रमेय]] का तात्पर्य है कि हाइपरबोलिक एन-क्षेत्र को सममितीय रूप से बड़े आयाम के कुछ यूक्लिडियन क्षेत्र (हाइपरबोलिक प्लेन के लिए 4) में एम्बेड किया जा सकता है। | ||
जब एक यूक्लिडियन अंतरिक्ष में | जब एक यूक्लिडियन अंतरिक्ष में सममितीय रूप से एम्बेडेड होता है, तो अतिपरवलयिक स्थान का प्रत्येक बिंदु एक काठी बिंदु होता है। | ||
=== आयतन वृद्धि और समपरिमितीय असमानता === | === आयतन वृद्धि और समपरिमितीय असमानता === | ||
हाइपरबॉलिक | हाइपरबॉलिक क्षेत्र में गेंदों की मात्रा यूक्लिडियन क्षेत्र की तरह [[बहुपद]] के अतिरिक्त गेंद की त्रिज्या के संबंध में [[घातीय वृद्धि]] को बढ़ाती है। अर्थात्, अगर <math>B(r)</math> त्रिज्या की कोई भी गेंद है <math>r</math> में <math>\mathbb H^n</math> फिर:<math display=block> \mathrm{Vol}(B(r)) = \mathrm{Vol}(S^{n-1}) \int_0^r \sinh^{n-1}(t) dt</math> | ||
कहाँ पे <math>S^{n-1}</math> यूक्लिडियन n-क्षेत्र का कुल आयतन है<math>(n-1)</math>-त्रिज्या 1 का क्षेत्र। | कहाँ पे <math>S^{n-1}</math> यूक्लिडियन n-क्षेत्र का कुल आयतन है<math>(n-1)</math>-त्रिज्या 1 का क्षेत्र। | ||
Line 43: | Line 43: | ||
{{main|Gromov hyperbolic space}} | {{main|Gromov hyperbolic space}} | ||
{{main|CAT space}} | {{main|CAT space}} | ||
अतिपरवलयिक स्थान के अनेक और मीट्रिक गुण हैं जो इसे यूक्लिडियन स्थान से अलग करते हैं। कुछ को ग्रोमोव-हाइपरबॉलिक रिक्त स्थान की सेटिंग के लिए सामान्यीकृत किया जा सकता है जो केवल बड़े पैमाने पर गुणों का उपयोग करके सामान्य मीट्रिक रिक्त स्थान के लिए ऋणात्मक वक्रता की धारणा का सामान्यीकरण है। एक महीन धारणा CAT(-1)-क्षेत्र की है। | |||
== हाइपरबोलिक मैनिफोल्ड्स == | == हाइपरबोलिक मैनिफोल्ड्स == | ||
Line 50: | Line 50: | ||
=== [[रीमैन सतह|रीमैन सतहें]] === | === [[रीमैन सतह|रीमैन सतहें]] === | ||
द्वि-आयामी अतिपरवलयिक सतहों को रीमैन सतहों की भाषा के अनुसार भी समझा जा सकता है। [[एकरूपता प्रमेय]] के अनुसार, प्रत्येक रीमैन सतह या तो अण्डाकार, परवलयिक या | द्वि-आयामी अतिपरवलयिक सतहों को रीमैन सतहों की भाषा के अनुसार भी समझा जा सकता है। [[एकरूपता प्रमेय]] के अनुसार, प्रत्येक रीमैन सतह या तो अण्डाकार, परवलयिक या अतिपरवलयिक है। अधिकांश अतिपरवलयिक सतहों में एक गैर-तुच्छ [[मौलिक समूह]] π<sub>1</sub>=Γ होता है; इस तरह से उत्पन्न होने वाले समूहों को फ्यूचियन समूह के रूप में जाना जाता है। [[भागफल स्थान (टोपोलॉजी)|भागफल स्थान]] H²/Γ ऊपरी अर्ध-तल आदर्श (रिंग थ्योरी) मौलिक समूह को हाइपरबोलिक सतह के [[फुकियान मॉडल]] के रूप में जाना जाता है। पोंकारे आधा तल भी अतिपरवलयिक है, लेकिन बस जुड़ा हुआ है और गैर-कॉम्पैक्ट है। यह अन्य अतिपरवलयिक सतहों का सार्वभौमिक आवरण है। | ||
त्रि-आयामी अतिपरवलयिक सतहों के लिए समान निर्माण [[क्लेनियन मॉडल]] है। | त्रि-आयामी अतिपरवलयिक सतहों के लिए समान निर्माण [[क्लेनियन मॉडल]] है। | ||
Line 56: | Line 56: | ||
== यह भी देखें == | == यह भी देखें == | ||
* दीनी की सतह | * दीनी की सतह | ||
* [[अतिशयोक्तिपूर्ण 3-कई गुना| | * [[अतिशयोक्तिपूर्ण 3-कई गुना|अतिपरवलयिक 3-अनेक गुना]] | ||
* आदर्श बहुफलक | * आदर्श बहुफलक | ||
* मोस्टो कठोरता प्रमेय | * मोस्टो कठोरता प्रमेय |
Revision as of 10:04, 15 December 2022
गणित में, n आयाम का अतिपरवलयिक स्थान, -1 के बराबर निरंतर अनुभागीय वक्रता का अद्वितीय, सरल रूप से जुड़ा हुआ, n-आयामी रीमैनियन मैनिफोल्ड है। यह सजातीय स्थान है, और एक सममित स्थान होने की पूर्ण सम्भावना को संतुष्ट करता है। इसे के खुले उपसमुच्चय के रूप में, एक स्पष्ट रूप से लिखित रीमैनियन मीट्रिक के साथ, बनाने के अनेक तरीके हैं ; ऐसे निर्माणों को मॉडल कहा जाता है। हाइपरबोलिक 2-क्षेत्र, H2, जो पहली बार अध्ययन किया गया था, उसे अतिपरवलयिक तल भी कहा जाता है।
इसे कभी-कभी लोबचेवस्की क्षेत्र या बोल्याई-लोबचेव्स्की क्षेत्र,लेखक के नाम के बाद जिन्होंने हाइपरबोलिक ज्यामिति के विषय पर पहली बार प्रकाशन करवाया था, के रूप में भी जाना जाता है। कभी-कभी गुणात्मक वास्तविक को जटिल अतिपरवलयिक रिक्त स्थान, चतुष्कोणीय अतिपरवलयिक स्थान और ऑक्टोनिक अतिपरवलयिक तल से अलग करने के लिए जोड़ा जाता है जो ऋणात्मक वक्रता के अन्य सममित स्थान हैं।
अतिपरवलयिक विमान ग्रोमोव हाइपरबोलिक क्षेत्र के प्रोटोटाइप के रूप में कार्य करता है जो ऋणात्मक वक्रता के सिंथेटिक दृष्टिकोण के माध्यम से अंतर-ज्यामितीय के साथ-साथ अधिक संयोजी रिक्त स्थान सहित एक दूरगामी धारणा है। एक अन्य सामान्यीकरण CAT क्षेत्र | CAT(-1कैट क्षेत्र की धारणा है।
औपचारिक परिभाषा और मॉडल
आयाम का अतिपरवलयिक स्थान या अतिपरवलयिक -क्षेत्र, जिसे सामान्यतः द्वारा निरूपित किया जाता है, सरल अद्वितीय रूप से जुड़ा हुआ, निरंतर ऋणात्मक अनुभागीय वक्रता -1 के बराबर, -आयामी रीमैनियन मैनिफोल्ड है। युनिसिटी का अर्थ है कि इन गुणों को संतुष्ट करने वाले किसी भी दो रीमैनियन मैनिफोल्ड एक दूसरे के लिए सममितीय हैं। यह किलिंग-हॉफ प्रमेय का परिणाम है।
अतिपरवलयिक क्षेत्र के मॉडल
ऊपर वर्णित इस तरह के स्थान के अस्तित्व को सिद्ध करने के लिए स्पष्ट रूप से इसका निर्माण किया जा सकता है, उदाहरण के लिए एक साधारण सूत्र द्वारा दिया गया रिमेंनियन मीट्रिक के साथ का एक खुला उपसमुच्चय। अतिपरवलयिक क्षेत्र के ऐसे अनेक निर्माण या मॉडल हैं, जिनमें से प्रत्येक इसके अध्ययन के विभिन्न पहलुओं के अनुकूल है। वे पिछले पैराग्राफ के अनुसार एक दूसरे के लिए सममितीय हैं, और प्रत्येक स्थिति में एक स्पष्ट आइसोमेट्री स्पष्ट रूप से दी जा सकती है। यहाँ अच्छे ज्ञात मॉडलों की एक सूची दी गई है, जिनका वर्णन उनके नाम वाले लेखों में अधिक विस्तार से किया गया है:
- पोंकारे अर्ध-तल मॉडल : यह मीट्रिक के साथ ऊपरी-आधा स्थान है।
- पॉइनकेयर डिस्क मॉडल: यह मीट्रिक के साथ की यूनिट बॉल है। अर्ध-क्षेत्र मॉडल के लिए आइसोमेट्री को एक होमोग्राफी द्वारा इकाई क्षेत्र के एक बिंदु को अनंत तक भेजकर महसूस किया जा सकता है।
- अतिपरवलय मॉडल : पिछले दो मॉडलों के विपरीत यह हाइपरबॉलिक का एहसास करता है -अंतरिक्ष के अंदर सममित रूप से सन्निहित है -डायमेंशनल मिन्कोवस्की अंतरिक्ष (जो रिमैनियन नहीं है, बल्कि लोरेंट्ज़ियन अनेक गुना है)। अधिक सटीक रूप से, द्विघात रूप को देखते हुए पर , इसके द्वारा दिए गए hyperboloid की ऊपरी शीट के स्पर्शरेखा स्थानों पर इसका प्रतिबंध निश्चित रूप से सकारात्मक हैं, इसलिए वे इसे एक रिमेंनियन मीट्रिक के साथ संपन्न करते हैं जो निरंतर वक्रता -1 के रूप में निकलता है। पिछले मॉडल की आइसोमेट्री को हाइपरबोलॉइड से प्लेन तक त्रिविम प्रक्षेपण द्वारा महसूस किया जा सकता है , उस शीर्ष को लेना जिससे प्रोजेक्ट होना है गेंद के लिए और शंकु में अनंत पर एक बिंदु आधी जगह के लिए प्रक्षेपी अंतरिक्ष के अंदर।
- क्लेन मॉडल: यह एक और मॉडल है जिसे की यूनिट बॉल पर महसूस किया गया है ; एक स्पष्ट मीट्रिक के रूप में दिए जाने के अतिरिक्त इसे सामान्यतः मिंकोस्की अंतरिक्ष में हाइपरबोलॉइड मॉडल से क्षैतिज स्पर्शरेखा तल (मतलब, ) मूलबिंदु से
- सममित स्थान: अतिपरवलयिक -क्षेत्र को साधारण लाई समूह (द्विघात रूप के आइसोमेट्री का समूह सकारात्मक निर्धारक के साथ) के सममित स्थान के रूप में महसूस किया जा सकता है; एक सेट के रूप में बाद वाला कोसेट क्षेत्र है। अतिपरवलयिक मॉडल की आइसोमेट्री अतिपरवलय पर के जुड़े घटक की कार्रवाई के माध्यम से तुरंत होती है।
ज्यामितीय गुण
समानांतर रेखाएँ
हाइपरबॉलिक क्षेत्र, निकोलाई लोबचेव्स्की, जानोस बोल्याई और कार्ल फ्रेडरिक गॉस द्वारा स्वतंत्र रूप से विकसित, यूक्लिडियन अंतरिक्ष के अनुरूप एक ज्यामितीय स्थान है, लेकिन ऐसा है कि समानांतर पोस्टुलेट | यूक्लिड के समानांतर पोस्टुलेट को अब धारण नहीं किया जाता है। इसके अतिरिक्त, समानांतर सिद्धांत को निम्नलिखित विकल्प (दो आयामों में) से बदल दिया गया है:
- दी गई कोई रेखा L और बिंदु P, जो L पर नहीं है, P से होकर जाने वाली कम से कम दो अलग-अलग रेखाएँ हैं जो L को प्रतिच्छेद नहीं करती हैं।
यह तब एक प्रमेय है कि पी के माध्यम से असीम रूप से अनेक ऐसी रेखाएँ हैं। यह अभिगृहीत अभी भी आइसोमेट्री तक अतिपरवलयिक तल की विशिष्ट विशेषता नहीं है; एक अतिरिक्त स्थिरांक है, वक्रता K < 0, जिसे निर्दिष्ट किया जाना चाहिए। हालाँकि, यह विशिष्ट रूप से होमोथेटिक परिवर्तन तक इसे चित्रित करता है, जिसका अर्थ है कि आपत्तियाँ जो केवल एक समग्र स्थिरांक द्वारा दूरी की धारणा को बदलती हैं। एक उचित लंबाई के पैमाने का चयन करके, इस प्रकार, सामान्यता के नुकसान के बिना, यह मान सकते हैं K = −1.
यूक्लिडियन एम्बेडिंग
हिल्बर्ट के प्रमेय (डिफरेंशियल ज्योमेट्री) | हिल्बर्ट के प्रमेय द्वारा हाइपरबोलिक प्लेन को सममितीय रूप से यूक्लिडियन 3-क्षेत्र में एम्बेड नहीं किया जा सकता है। दूसरी ओर नैश एम्बेडिंग प्रमेय का तात्पर्य है कि हाइपरबोलिक एन-क्षेत्र को सममितीय रूप से बड़े आयाम के कुछ यूक्लिडियन क्षेत्र (हाइपरबोलिक प्लेन के लिए 4) में एम्बेड किया जा सकता है।
जब एक यूक्लिडियन अंतरिक्ष में सममितीय रूप से एम्बेडेड होता है, तो अतिपरवलयिक स्थान का प्रत्येक बिंदु एक काठी बिंदु होता है।
आयतन वृद्धि और समपरिमितीय असमानता
हाइपरबॉलिक क्षेत्र में गेंदों की मात्रा यूक्लिडियन क्षेत्र की तरह बहुपद के अतिरिक्त गेंद की त्रिज्या के संबंध में घातीय वृद्धि को बढ़ाती है। अर्थात्, अगर त्रिज्या की कोई भी गेंद है में फिर:
अतिपरवलयिक स्थान एक रेखीय समपरिमितीय असमानता को भी संतुष्ट करता है, अर्थात वहां एक स्थिरांक मौजूद होता है जैसे कोई एम्बेडेड डिस्क जिसकी सीमा लंबाई है सबसे अधिक क्षेत्रफल है . यह यूक्लिडियन अंतरिक्ष के विपरीत होना है जहाँ समपरिमितीय असमानता द्विघात है।
अन्य मीट्रिक गुण
अतिपरवलयिक स्थान के अनेक और मीट्रिक गुण हैं जो इसे यूक्लिडियन स्थान से अलग करते हैं। कुछ को ग्रोमोव-हाइपरबॉलिक रिक्त स्थान की सेटिंग के लिए सामान्यीकृत किया जा सकता है जो केवल बड़े पैमाने पर गुणों का उपयोग करके सामान्य मीट्रिक रिक्त स्थान के लिए ऋणात्मक वक्रता की धारणा का सामान्यीकरण है। एक महीन धारणा CAT(-1)-क्षेत्र की है।
हाइपरबोलिक मैनिफोल्ड्स
प्रत्येक पूर्ण, जुड़े हुए, सरलता से जुड़े स्थिर ऋणात्मक वक्रता -1 के मेनिफोल्ड, वास्तविक अतिपरवलयिक स्थान Hn के लिए सममितीय है। परिणाम स्वरुप, स्थिर ऋणात्मक वक्रता -1 के किसी भी बंद मेनिफोल्ड M का सार्वभौमिक आवरण, जो कहना है, एक अतिपरवलयिक मेनिफोल्ड Hn है, इस प्रकार, ऐसे प्रत्येक M को Hn/Γ लिखा जा सकता है।जहाँ Γ एक मरोड़ रहित असतत समूह है| 'H' पर आइसोमेट्री का मरोड़-मुक्त असतत समूहएन. अर्थात्, Γ अनिश्चितकालीन ऑर्थोगोनल समूह में एक जाली (असतत उपसमूह) है। SO+(एन,1).
रीमैन सतहें
द्वि-आयामी अतिपरवलयिक सतहों को रीमैन सतहों की भाषा के अनुसार भी समझा जा सकता है। एकरूपता प्रमेय के अनुसार, प्रत्येक रीमैन सतह या तो अण्डाकार, परवलयिक या अतिपरवलयिक है। अधिकांश अतिपरवलयिक सतहों में एक गैर-तुच्छ मौलिक समूह π1=Γ होता है; इस तरह से उत्पन्न होने वाले समूहों को फ्यूचियन समूह के रूप में जाना जाता है। भागफल स्थान H²/Γ ऊपरी अर्ध-तल आदर्श (रिंग थ्योरी) मौलिक समूह को हाइपरबोलिक सतह के फुकियान मॉडल के रूप में जाना जाता है। पोंकारे आधा तल भी अतिपरवलयिक है, लेकिन बस जुड़ा हुआ है और गैर-कॉम्पैक्ट है। यह अन्य अतिपरवलयिक सतहों का सार्वभौमिक आवरण है।
त्रि-आयामी अतिपरवलयिक सतहों के लिए समान निर्माण क्लेनियन मॉडल है।
यह भी देखें
- दीनी की सतह
- अतिपरवलयिक 3-अनेक गुना
- आदर्श बहुफलक
- मोस्टो कठोरता प्रमेय
- मुराकामी-यानो सूत्र
- स्यूडोस्फीयर
संदर्भ
- Ratcliffe, John G., Foundations of hyperbolic manifolds, New York, Berlin. Springer-Verlag, 1994.
- Reynolds, William F. (1993) "Hyperbolic Geometry on a Hyperboloid", American Mathematical Monthly 100:442–455.
- Wolf, Joseph A. Spaces of constant curvature, 1967. See page 67.