डेसीमल प्रतिनिधित्व: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{More citations needed|date=January 2022}} | {{More citations needed|date=January 2022}} | ||
{{about|वास्तविक संख्याओं का दशमलव विस्तार|परिमित दशमलव प्रतिनिधित्व|दशमलव}} | {{about|वास्तविक संख्याओं का दशमलव विस्तार|परिमित दशमलव प्रतिनिधित्व|दशमलव}} | ||
एक गैर-ऋणात्मक वास्तविक संख्या | एक गैर-ऋणात्मक वास्तविक संख्या {{mvar|r}} का एक दशमलव प्रतिनिधित्व इसकी अभिव्यक्ति है जो परंपरागत रूप से एकल विभाजक के साथ लिखे गए दशमलव अंकों वाले प्रतीकों के अनुक्रम के रूप में है: | ||
<math display="block">r = b_k b_{k-1}\ldots b_0.a_1a_2\ldots</math> | |||
यहां {{char|.}} दशमलव विभाजक है, {{mvar|k}} एक गैर-ऋणात्मक पूर्णांक है, और <math>b_0, \ldots, b_k, a_1, a_2,\ldots</math> अंक हैं, जो 0, ..., 9 की श्रेणी में पूर्णांकों का प्रतिनिधित्व करने वाले प्रतीक हैं। | यहां {{char|.}} दशमलव विभाजक है, {{mvar|k}} एक गैर-ऋणात्मक पूर्णांक है, और <math>b_0, \ldots, b_k, a_1, a_2,\ldots</math> अंक हैं, जो 0, ..., 9 की श्रेणी में पूर्णांकों का प्रतिनिधित्व करने वाले प्रतीक हैं। | ||
सामान्यतः, <math>b_k\neq 0</math> यदि <math>k > 1.</math> का क्रम <math>a_i</math>—बिंदु के बाद के अंक—सामान्यतः परिमित अनुक्रम होते हैं। यदि यह परिमित है, तो लापता अंकों को 0 माना जाता है। यदि सभी <math>a_i</math> {{char|0}} हैं विभाजक भी छोड़ दिया जाता है, जिसके परिणामस्वरूप अंकों का एक परिमित अनुक्रम होता है, जो एक प्राकृतिक संख्या का प्रतिनिधित्व करता है। | |||
दशमलव प्रतिनिधित्व | दशमलव प्रतिनिधित्व अनंत योग का प्रतिनिधित्व करता है: | ||
<math display="block"> r=\sum_{i=0}^k b_i 10^i + \sum_{i=1}^\infty \frac{a_i}{10^i}.</math> | <math display="block"> r=\sum_{i=0}^k b_i 10^i + \sum_{i=1}^\infty \frac{a_i}{10^i}.</math> | ||
प्रत्येक | प्रत्येक गैर ऋणात्मक वास्तविक संख्या में कम से कम एक ऐसा निरूपण होता है; इसमें इस तरह के दो प्रतिनिधित्व हैं ( <math>b_k\neq 0</math> यदि <math>k>0</math> के साथ) यदि और केवल अगर किसी के पास अनुगामी अनंत है अनुक्रम {{char|0}} है, और दूसरे में {{char|9}} का अनुगामी अनंत क्रम है। गैर-नकारात्मक वास्तविक संख्याओं और दशमलव निरूपण के बीच एक-से-एक पत्राचार होने के लिए, {{char|9}} के अनुगामी अनंत अनुक्रम वाले दशमलव निरूपण को कभी-कभी बाहर रखा जाता है।<ref name="Knuth_1973"/> | ||
== पूर्णांक और भिन्नात्मक भाग == | == पूर्णांक और भिन्नात्मक भाग == | ||
प्राकृतिक संख्या <math display="inline">\sum_{i=0}^k b_i 10^i</math>, | प्राकृतिक संख्या <math display="inline">\sum_{i=0}^k b_i 10^i</math>, को {{mvar|r}} का पूर्णांक भाग कहा जाता है, और इस लेख के शेष भाग में {{math|''a''<sub>0</sub>}} द्वारा निरूपित किया जाता है। जो <math>a_i</math> का क्रम संख्या को दर्शाता है | ||
<math display="block">0.a_1a_2\ldots = \sum_{i=1}^\infty \frac{a_i}{10^i},</math> | |||
जो अंतराल (गणित) | जो अंतराल (गणित) <math>[0,1),</math>से संबंधित है और इसे {{mvar|r}} का भिन्नात्मक भाग कहा जाता है (जब सभी <math>a_i</math> {{char|9}} हों). | ||
== परिमित दशमलव सन्निकटन == | == परिमित दशमलव सन्निकटन == | ||
परिमित दशमलव निरूपण के साथ परिमेय संख्याओं द्वारा किसी भी वास्तविक संख्या को | परिमित दशमलव निरूपण के साथ परिमेय संख्याओं द्वारा किसी भी वास्तविक संख्या को यथार्थता की किसी भी वांछित घात तक अनुमानित किया जा सकता है। | ||
<math>x \geq 0</math> मान लेना. फिर प्रत्येक पूर्णांक <math>n\geq 1</math> के लिए एक परिमित दशमलव <math>r_n=a_0.a_1a_2\cdots a_n</math> ऐसा है कि: | |||
<math display="block">r_n\leq x < r_n+\frac{1}{10^n}.</math> | <math display="block">r_n\leq x < r_n+\frac{1}{10^n}.</math> | ||
प्रमाण: | |||
फिर <math>p \leq 10^nx < p+1</math>, और परिणाम सभी पक्षों को द्वारा विभाजित करने के बाद | माना <math>r_n = \textstyle\frac{p}{10^n}</math>, जहाँ <math>p = \lfloor 10^n x\rfloor</math>. | ||
फिर <math>p \leq 10^nx < p+1</math>, और परिणाम सभी पक्षों को द्वारा विभाजित करने के बाद <math>10^n</math>आता है. ASHIF | |||
(यह तथ्य कि <math>r_n</math> एक परिमित दशमलव प्रतिनिधित्व आसानी से स्थापित होता है।) | (यह तथ्य कि <math>r_n</math> एक परिमित दशमलव प्रतिनिधित्व आसानी से स्थापित होता है।) | ||
Revision as of 09:52, 13 December 2022
This article needs additional citations for verification. (January 2022) (Learn how and when to remove this template message) |
एक गैर-ऋणात्मक वास्तविक संख्या r का एक दशमलव प्रतिनिधित्व इसकी अभिव्यक्ति है जो परंपरागत रूप से एकल विभाजक के साथ लिखे गए दशमलव अंकों वाले प्रतीकों के अनुक्रम के रूप में है:
सामान्यतः, यदि का क्रम —बिंदु के बाद के अंक—सामान्यतः परिमित अनुक्रम होते हैं। यदि यह परिमित है, तो लापता अंकों को 0 माना जाता है। यदि सभी 0 हैं विभाजक भी छोड़ दिया जाता है, जिसके परिणामस्वरूप अंकों का एक परिमित अनुक्रम होता है, जो एक प्राकृतिक संख्या का प्रतिनिधित्व करता है।
दशमलव प्रतिनिधित्व अनंत योग का प्रतिनिधित्व करता है:
पूर्णांक और भिन्नात्मक भाग
प्राकृतिक संख्या , को r का पूर्णांक भाग कहा जाता है, और इस लेख के शेष भाग में a0 द्वारा निरूपित किया जाता है। जो का क्रम संख्या को दर्शाता है
परिमित दशमलव सन्निकटन
परिमित दशमलव निरूपण के साथ परिमेय संख्याओं द्वारा किसी भी वास्तविक संख्या को यथार्थता की किसी भी वांछित घात तक अनुमानित किया जा सकता है।
मान लेना. फिर प्रत्येक पूर्णांक के लिए एक परिमित दशमलव ऐसा है कि:
माना , जहाँ .
फिर , और परिणाम सभी पक्षों को द्वारा विभाजित करने के बाद आता है. ASHIF
(यह तथ्य कि एक परिमित दशमलव प्रतिनिधित्व आसानी से स्थापित होता है।)
दशमलव प्रतिनिधित्व और नोटेशनल कन्वेंशन की गैर-विशिष्टता
कुछ वास्तविक संख्याएँ दो अनंत दशमलव निरूपण हैं। उदाहरण के लिए, संख्या 1 को 1.000... द्वारा समान रूप से प्रदर्शित किया जा सकता है, जैसा कि 0.999... (जहां अनुगामी 0 या 9 के अनंत अनुक्रमों को क्रमशः ... द्वारा दर्शाया जाता है)। परंपरागत रूप से, 9 के बाद के बिना दशमलव प्रतिनिधित्व को प्राथमिकता दी जाती है। इसके अलावा, के मानक दशमलव प्रतिनिधित्व में , दशमलव चिह्न को छोड़े जाने के बाद आने वाले 0 के पीछे का एक अनंत अनुक्रम, दशमलव बिंदु के साथ ही यदि एक पूर्णांक है।
के दशमलव विस्तार के निर्माण के लिए कुछ प्रक्रियाएँ 9 के अनुगामी होने की समस्या से बचेंगे। उदाहरण के लिए, निम्नलिखित एल्गोरिथम प्रक्रिया मानक दशमलव प्रतिनिधित्व देगी: दिया गया , हम पहले परिभाषित करते हैं (पूर्णांक भाग ) ऐसा सबसे बड़ा पूर्णांक होना (अर्थात।, ). यदि प्रक्रिया समाप्त हो जाती है। अन्यथा, के लिए पहले ही मिल चुका है, हम परिभाषित करते हैं आगमनात्मक रूप से सबसे बड़ा पूर्णांक होना जैसे कि:
|
(*) |
प्रक्रिया जब भी समाप्त होती है ऐसा पाया जाता है कि समानता धारण करती है (*); अन्यथा, यह दशमलव अंकों का अनंत क्रम देने के लिए अनिश्चित काल तक जारी रहता है। यह दिखाया जा सकता है [2](पारंपरिक रूप से लिखा गया है ), कहाँ पे और अऋणात्मक पूर्णांक दशमलव संकेतन में दर्शाया गया है। इस निर्माण का विस्तार किया गया है उपरोक्त प्रक्रिया को लागू करके और इसके द्वारा परिणामी दशमलव प्रसार को निरूपित करते हैं .
प्रकार
परिमित
गैर-ऋणात्मक वास्तविक संख्या x का दशमलव विस्तार शून्य (या नाइन) में समाप्त होगा यदि, और केवल यदि, x एक परिमेय संख्या है जिसका हर 2 के रूप का हैएन5m, जहाँ m और n गैर-ऋणात्मक पूर्णांक हैं।
'सबूत':
यदि x का दशमलव विस्तार शून्य में समाप्त हो जाएगा, या किसी n के लिए, तो x का हर 10 के रूप का होता हैएन </सुप> = 2एन5एन.
इसके विपरीत, यदि x का हर 2 के रूप का हैएन5मी, कुछ पी के लिए जबकि x रूप का है , कुछ एन के लिए द्वारा , x शून्य में समाप्त होगा।
अनंत
दोहराए जाने वाले दशमलव अभ्यावेदन
कुछ वास्तविक संख्याओं में दशमलव विस्तार होते हैं जो अंततः एक या अधिक अंकों के अनुक्रम को दोहराते हुए लूप में आते हैं:
- 1/3 = 0.33333...
- 1/7 = 0.142857142857...
- 1318/185 = 7.1243243243...
हर बार ऐसा होने पर संख्या अभी भी एक परिमेय संख्या होती है (अर्थात वैकल्पिक रूप से पूर्णांक और धनात्मक पूर्णांक के अनुपात के रूप में प्रदर्शित की जा सकती है)। इसका विलोम भी सत्य है: एक परिमेय संख्या का दशमलव प्रसार या तो परिमित होता है, या अंतहीन रूप से आवर्ती होता है।
अंश में रूपांतरण
एक परिमेय संख्या के प्रत्येक दशमलव निरूपण को पूर्णांक, गैर-दोहराए जाने वाले और दोहराए जाने वाले भागों के योग में परिवर्तित करके और फिर उस योग को एक सामान्य भाजक के साथ एकल अंश में परिवर्तित करके एक अंश में परिवर्तित किया जा सकता है।
उदाहरण के लिए कनवर्ट करना एक अंश के लिए लेम्मा नोट करता है:
उदाहरण के लिए:
यह भी देखें
- दशमलव
- श्रृंखला (गणित)
- आईईईई 754
- साइमन स्टीविन#दशमलव अंश
संदर्भ
- ↑ Knuth, Donald Ervin (1973). The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley. p. 21.
- ↑ Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. p. 11. ISBN 0-07-054235-X.
इस पेज में लापता आंतरिक लिंक की सूची
अग्रिम पठन
- Apostol, Tom (1974). Mathematical analysis (Second ed.). Addison-Wesley.
- Savard, John J. G. (2018) [2006]. "Decimal Representations". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16.