डेसीमल प्रतिनिधित्व: Difference between revisions
m (Abhishek moved page दशमलव प्रतिनिधित्व to डेसीमल प्रतिनिधित्व without leaving a redirect) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 141: | Line 141: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 29/11/2022]] | [[Category:Created On 29/11/2022]] | ||
[[Category:Vigyan Ready]] |
Revision as of 21:37, 24 December 2022
गैर-ऋणात्मक वास्तविक संख्या r का एक डेसीमल प्रतिनिधित्व इसकी अभिव्यक्ति है जो परंपरागत रूप से एकल विभाजक के साथ लिखे गए डेसीमल अंकों वाले प्रतीकों के अनुक्रम के रूप में है:
सामान्यतः, यदि का क्रम —बिंदु के बाद के अंक—सामान्यतः परिमित अनुक्रम होते हैं। यदि यह परिमित है, तो लापता अंकों को 0 माना जाता है। यदि सभी 0 हैं विभाजक भी छोड़ दिया जाता है, जिसके परिणामस्वरूप अंकों का एक परिमित अनुक्रम होता है, जो एक प्राकृतिक संख्या का प्रतिनिधित्व करता है।
डेसीमल प्रतिनिधित्व अनंत योग का प्रतिनिधित्व करता है:
पूर्णांक और भिन्नात्मक भाग
प्राकृतिक संख्या , को r का पूर्णांक भाग कहा जाता है, और इस लेख के शेष भाग में a0 द्वारा निरूपित किया जाता है। जो का क्रम संख्या को दर्शाता है
परिमित डेसीमल सन्निकटन
परिमित डेसीमल निरूपण के साथ परिमेय संख्याओं द्वारा किसी भी वास्तविक संख्या को यथार्थता की किसी भी वांछित घात तक अनुमानित किया जा सकता है।
मान लेना. फिर प्रत्येक पूर्णांक के लिए एक परिमित डेसीमल ऐसा है कि:
माना , जहाँ .
फिर , और परिणाम सभी पक्षों को द्वारा विभाजित करने के बाद आता है.
(तथ्य यह है कि का एक परिमित डेसीमल प्रतिनिधित्व आसानी से स्थापित हो जाता है।)
डेसीमल प्रतिनिधित्व और नोटेशनल कन्वेंशन की गैर-विशिष्टता
कुछ वास्तविक संख्याएँ में दो अनंत डेसीमल निरूपण हैं। उदाहरण के लिए, संख्या 1 को समान रूप से 1.000... के रूप में 0.999... द्वारा दर्शाया जा सकता है (जहां अनुगामी 0 या 9 के अनंत क्रम क्रमशः "..." द्वारा दर्शाए जाते हैं)। परंपरागत रूप से, 9 के बाद के बिना डेसीमल प्रतिनिधित्व को प्राथमिकता दी जाती है। इसके अतिरिक्त, के मानक डेसीमल निरूपण में, डेसीमल बिंदु को छोड़े जाने के बाद पीछे आने वाले 0 का एक अनंत अनुक्रम, डेसीमल बिंदु के साथ ही यदि एक पूर्णांक है।
के डेसीमल विस्तार के निर्माण के लिए कुछ प्रक्रियाएँ 9 के अनुगामी होने की समस्या से बच जाएँगी। उदाहरण के लिए, निम्नलिखित कलां विधि प्रक्रिया मानक डेसीमल प्रतिनिधित्व देगी: दिया हुआ , हम ( का पूर्णांक भाग) को सबसे बड़ा पूर्णांक इस तरह परिभाषित करते हैं कि (अर्थात।, ). यदि प्रक्रिया समाप्त हो जाती है। अन्यथा, के लिए पहले ही मिल चुका है, हम को विवेचनात्मक रूप से सबसे बड़े पूर्णांक के रूप में परिभाषित करते हैं जैसे कि:
|
(*) |
जब भी इस तरह पाया जाता है कि समानता (*); अन्यथा, अन्यथा, यह डेसीमल अंकों का अनंत क्रम देने के लिए अनिश्चित काल तक जारी रहता है यह दिखाया जा सकता है कि [2](पारंपरिक रूप से ) लिखा गया है, जहाँ और अऋणात्मक पूर्णांक डेसीमल संकेतन में दर्शाया गया है। उपरोक्त प्रक्रिया को पर लागू करके और परिणामी डेसीमल प्रसार को और इसके द्वारा परिणामी डेसीमल प्रसार को निरूपित करते हैं.
प्रकार
परिमित
गैर-ऋणात्मक वास्तविक संख्या x का डेसीमल विस्तार शून्य (या नाइन) में समाप्त होगा यदि, और केवल यदि, x एक परिमेय संख्या है जिसका हर 2n5m,के रूप का है जहाँ m और n गैर-ऋणात्मक पूर्णांक हैं।
'प्रमाण':
यदि x का डेसीमल विस्तार शून्य में समाप्त हो होगा, या
किसी n के लिए, तो x का हर 10n = 2n5n के रूप का होता है.
इसके विपरीत, यदि x का हर 2n5m,
कुछ p के लिए
जबकि x रूप का है ,
कुछ n के लिए
द्वारा , x शून्य में समाप्त होगा।
अनंत
दोहराए जाने वाले डेसीमल अभ्यावेदन
कुछ वास्तविक संख्याओं में डेसीमल विस्तार होते हैं जो अंततः एक या अधिक अंकों के अनुक्रम को दोहराते हुए लूप में आते हैं:
- 1/3 = 0.33333...
- 1/7 = 0.142857142857...
- 1318/185 = 7.1243243243...
हर बार ऐसा होने पर संख्या अभी भी एक परिमेय संख्या होती है (अर्थात वैकल्पिक रूप से पूर्णांक और धनात्मक पूर्णांक के अनुपात के रूप में प्रदर्शित की जा सकती है)। इसका विलोम भी सत्य है: एक परिमेय संख्या का डेसीमल प्रसार या तो परिमित होता है, या अंतहीन रूप से आवर्ती होता है।
अंश में रूपांतरण
एक परिमेय संख्या के प्रत्येक डेसीमल निरूपण को पूर्णांक, गैर-दोहराए जाने वाले और दोहराए जाने वाले भागों के योग में परिवर्तित करके और फिर उस योग को एक सामान्य भाजक के साथ एकल अंश में परिवर्तित करके एक अंश में परिवर्तित किया जा सकता है।
उदाहरण के लिए को भिन्न में बदलने के लिए लेम्मा टिप्पणियाँ करता है:
उदाहरण के लिए:
यह भी देखें
- डेसीमल
- श्रृंखला (गणित)
- आईईईई 754
- साइमन स्टीविन#डेसीमल अंश
संदर्भ
- ↑ Knuth, Donald Ervin (1973). The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-Wesley. p. 21.
- ↑ Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw-Hill. p. 11. ISBN 0-07-054235-X.
इस पेज में लापता आंतरिक लिंक की सूची
अग्रिम पठन
- Apostol, Tom (1974). Mathematical analysis (Second ed.). Addison-Wesley.
- Savard, John J. G. (2018) [2006]. "Decimal Representations". quadibloc. Archived from the original on 2018-07-16. Retrieved 2018-07-16.