गणितीय भ्रांति: Difference between revisions
No edit summary |
No edit summary |
||
Line 31: | Line 31: | ||
== शून्य से भाग == | == शून्य से भाग == | ||
शून्य द्वारा विभाजन | शून्य द्वारा विभाजन-दर-शून्य भ्रम के कई रूप हैं। निम्न उदाहरण 2 = 1 को प्रमाण करने के लिए शून्य से छिपे हुए विभाजन का उपयोग करता है, लेकिन यह प्रमाण करने के लिए संशोधित किया जा सकता है कि कोई भी संख्या किसी अन्य संख्या के बराबर है। | ||
# मान लीजिए a और b बराबर, अशून्य मात्राएँ हैं | # मान लीजिए a और b बराबर, अशून्य मात्राएँ हैं | ||
Line 63: | Line 63: | ||
{{Main article |बहुविकल्पी समारोह | {{Main article |बहुविकल्पी समारोह | ||
}} | }} | ||
कई कार्यों में एक अद्वितीय व्युत्क्रम नहीं होता है। उदाहरण के लिए, जबकि किसी संख्या का वर्ग करना एक विशिष्ट मान देता है, एक धनात्मक संख्या के दो संभावित [[वर्गमूल]] होते हैं। वर्गमूल बहुमूल्यवान फलन है। एक मूल्य को परिपाटी द्वारा [[प्रमुख मूल्य]] के रूप में चुना जा सकता है; वर्गमूल के स्थितियों में गैर-ऋणात्मक मान मुख्य मान होता है, लेकिन इस बात की कोई गारंटी नहीं है कि किसी संख्या के वर्ग के मूल मान के रूप में दिया गया वर्गमूल मूल संख्या के बराबर होगा (उदाहरण के लिए मुख्य वर्गमूल | कई कार्यों में एक अद्वितीय व्युत्क्रम नहीं होता है। उदाहरण के लिए, जबकि किसी संख्या का वर्ग करना एक विशिष्ट मान देता है, एक धनात्मक संख्या के दो संभावित [[वर्गमूल]] होते हैं। वर्गमूल बहुमूल्यवान फलन है। एक मूल्य को परिपाटी द्वारा [[प्रमुख मूल्य]] के रूप में चुना जा सकता है; वर्गमूल के स्थितियों में गैर-ऋणात्मक मान मुख्य मान होता है, लेकिन इस बात की कोई गारंटी नहीं है कि किसी संख्या के वर्ग के मूल मान के रूप में दिया गया वर्गमूल मूल संख्या के बराबर होगा (उदाहरण के लिए मुख्य वर्गमूल-2 का वर्ग 2 है)। यह nवें मूल के लिए सत्य रहता है। | ||
=== सकारात्मक और नकारात्मक जड़ें === | === सकारात्मक और नकारात्मक जड़ें === | ||
Line 92: | Line 92: | ||
जिसे जोड़कर {{sfrac|9|2}} दोनों ओर , सही ढंग से 5 = 5 तक कम हो जाता है। | जिसे जोड़कर {{sfrac|9|2}} दोनों ओर , सही ढंग से 5 = 5 तक कम हो जाता है। | ||
समीकरण के दोनों पक्षों के वर्गमूल को लेने के खतरे को दर्शाने वाला एक अन्य उदाहरण निम्नलिखित प्राथमिक पहचान को सम्मलित करता है<ref>{{harvnb|Maxwell|1959|loc=Chapter VI, §I.1}}</ref> | समीकरण के दोनों पक्षों के वर्गमूल को लेने के खतरे को दर्शाने वाला एक अन्य उदाहरण निम्नलिखित प्राथमिक पहचान को सम्मलित करता है-<ref>{{harvnb|Maxwell|1959|loc=Chapter VI, §I.1}}</ref> | ||
:<math>\cos^2x=1-\sin^2x</math> | :<math>\cos^2x=1-\sin^2x</math> | ||
जो पायथागॉरियन प्रमेय के परिणाम के रूप में है। फिर, एक वर्गमूल लेकर, | जो पायथागॉरियन प्रमेय के परिणाम के रूप में है। फिर, एक वर्गमूल लेकर, | ||
Line 128: | Line 128: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
यहां त्रुटि यह है कि तीसरी पंक्ति में जाने पर घातांकों को गुणा करने का नियम जटिल घातांकों के साथ असंशोधित रूप से लागू नहीं होता है, भले ही दोनों पक्षों को घात i पर रखने पर केवल मुख्य मान चुना जाता है। जब बहु-मूल्यवान कार्यों के रूप में व्यवहार किया जाता है, तो दोनों पक्ष होने के | यहां त्रुटि यह है कि तीसरी पंक्ति में जाने पर घातांकों को गुणा करने का नियम जटिल घातांकों के साथ असंशोधित रूप से लागू नहीं होता है, भले ही दोनों पक्षों को घात i पर रखने पर केवल मुख्य मान चुना जाता है। जब बहु-मूल्यवान कार्यों के रूप में व्यवहार किया जाता है, तो दोनों पक्ष होने के संबंध मूल्यों का एक ही समुच्चय उत्पन्न करते हैं {{nowrap|1={''e''<sup>2{{pi}}''n''</sup> {{!}} ''n'' ∈ ℤ<nowiki>}</nowiki>}} | ||
== [[ज्यामिति]] == | == [[ज्यामिति]] == | ||
ज्यामिति में कई गणितीय भ्रम एक वैध पहचान के लिए उन्मुख मात्राओं (जैसे किसी दी गई रेखा के साथ वैक्टर जोड़ना या तल में उन्मुख कोण जोड़ना) से जुड़े योगात्मक समानता का उपयोग करने से उत्पन्न होता है, लेकिन जो इन मात्राओं में से केवल | ज्यामिति में कई गणितीय भ्रम एक वैध पहचान के लिए उन्मुख मात्राओं (जैसे किसी दी गई रेखा के साथ वैक्टर जोड़ना या तल में उन्मुख कोण जोड़ना) से जुड़े योगात्मक समानता का उपयोग करने से उत्पन्न होता है, लेकिन जो इन मात्राओं में से केवल के पूर्ण मूल्य को ठीक करता हैI इस मात्रा को तब गलत अभिविन्यास के साथ समीकरण में सम्मलित किया जाता है, जिससे एक अव्यवस्थित निष्कर्ष निकाला जा सके। यह गलत अभिविन्यास सामान्यतः स्थिति के एक अनिश्चित आरेख की आपूर्ति करके निहित रूप से सुझाया जाता है, जहां बिंदुओं या रेखाओं के सापेक्ष पदों को इस प्रकार से चुना जाता है जो वास्तव में तर्क की परिकल्पना के अंतर्गत असंभव है, लेकिन गैर-स्पष्ट रूप से ऐसा है। | ||
सामान्य तौर पर, स्थिति की एक सटीक तस्वीर खींचकर इस प्रकार की भ्रांति को उजागर करना आसान होता है, जिसमें कुछ सापेक्ष स्थिति प्रदान किए गए आरेख से भिन्न होंगी। इस प्रकार की भ्रांतियों से बचने के लिए, दूरियों या कोणों के जोड़ या घटाव का उपयोग करते हुए एक सही ज्यामितीय तर्क को हमेशा यह प्रमाणित करना चाहिए कि मात्राओं को उनके सही अभिविन्यास के साथ सम्मलित किया जा रहा है। | सामान्य तौर पर, स्थिति की एक सटीक तस्वीर खींचकर इस प्रकार की भ्रांति को उजागर करना आसान होता है, जिसमें कुछ सापेक्ष स्थिति प्रदान किए गए आरेख से भिन्न होंगी। इस प्रकार की भ्रांतियों से बचने के लिए, दूरियों या कोणों के जोड़ या घटाव का उपयोग करते हुए एक सही ज्यामितीय तर्क को हमेशा यह प्रमाणित करना चाहिए कि मात्राओं को उनके सही अभिविन्यास के साथ सम्मलित किया जा रहा है। |
Revision as of 21:21, 24 December 2022
गणित में, कुछ प्रकार के गलत प्रमाण प्रायः प्रदर्शित किए जाते हैं, और कभी-कभी एकत्र किए जाते हैं, गणितीय भ्रम नामक अवधारणा के चित्रण के रूप में। प्रमाण में एक साधारण गलती और एक गणितीय त्रुटि के बीच अंतर है, जिसमें प्रमाण में एक गलती अमान्य प्रमाण की ओर ले जाती है, जबकि गणितीय भ्रम के सबसे प्रसिद्ध उदाहरणों में प्रस्तुति में छिपाने या धोखे का कुछ तत्व होता है प्रमाण।
उदाहरण के लिए, वैधता विफल होने का कारण शून्य से विभाजन को उत्तरदायी ठहराया जा सकता है जो बीजगणितीय संकेतन द्वारा छिपा हुआ है। गणितीय भ्रांति का एक निश्चित गुण है: जैसा कि सामान्यतः प्रस्तुत किया जाता है, यह न केवल एक गलत परिणाम की ओर ले जाता है, बल्कि एक चालाक उपाय से ऐसा लगता है।[1] इसलिए, ये भ्रांतियां, शैक्षणिक कारणों से, सामान्यतः स्पष्ट विरोधाभासों के मिथ्या गणितीय प्रमाण का रूप ले लेती हैं। चूँकि प्रमाण त्रुटिपूर्ण हैं, त्रुटियां, सामान्यतः चित्र द्वारा, तुलनात्मक रूप से सूक्ष्म होती हैं, या यह दिखाने के लिए चित्र की जाती हैं कि कुछ चरण सशर्त हैं, और उन स्थितियों में लागू नहीं होते हैं जो नियमों के अपवाद हैं।
गणितीय भ्रांति को प्रस्तुत करने का पारंपरिक उपाय वैध चरणों के साथ मिश्रित कटौती का एक अमान्य चरण देना है, जिससे भ्रांति का अर्थ यहाँ तार्किक भ्रांति से थोड़ा भिन्न हो। उत्तरार्द्ध सामान्यतः तर्क के एक रूप पर लागू होता है जो तर्क के वैध निष्कर्ष नियमों का पालन नहीं करता है, जबकि समस्याग्रस्त गणितीय चरण सामान्यतः एक गलत धारणा के साथ लागू एक सही नियम है। अध्यापन से परे,भ्रम के संकल्प से एक विषय में गहरी अंतर्दृष्टि हो सकती है (उदाहरण के लिए, यूक्लिडियन ज्यामिति के पास्च के स्वयंसिद्ध का परिचय,[2] ग्राफ सिद्धांत के पांच रंग प्रमेय। स्यूडरिया, झूठे प्रमाण की एक प्राचीन खोई हुई किताब है, जिसका श्रेय यूक्लिड को दिया जाता है।[3] गणित की कई शाखाओं में गणितीय भ्रांतियां उपस्तिथ हैं। प्रारंभिक बीजगणित में, विशिष्ट उदाहरणों में एक चरण सम्मलित हो सकता है जहां शून्य से विभाजन किया जाता है, जहां फलन की जड़ गलत उपाय से निकाली जाती है या अधिक सामान्यतः जहां एक से अधिक मूल्यवान फलन के विभिन्न मान समान होते हैं। प्रारंभिक यूक्लिडियन ज्यामिति और गणना में प्रसिद्ध भ्रम भी सम्मलित हैं।[4][5]
हाउलर्स
तर्क की गलत पंक्तियों द्वारा व्युत्पन्न गणितीय रूप से सही परिणामों के उदाहरण उपस्तिथ हैं। इस प्रकार का एक तर्क, चूंकि निष्कर्ष सत्य प्रतीत होता है, गणितीय रूप से वैधता है और इसे सामान्यतः हाउलर के रूप में जाना जाता है। निम्नलिखित असंगत निरस्तीकरण से जुड़े हाउलर का एक उदाहरण है:
गलत तर्क या संचालन के अतिरिक्त सही परिणाम उत्पन्न करने के लिए बनाए गए गलत प्रमाण, गणना या व्युत्पत्ति को मैक्सवेल द्वारा हाउलर का उदाहरण दिया गया था।[2]गणित क्षेत्र के बाहर हाउलर शब्द के विभिन्न अर्थ हैं, सामान्यतः कम विशिष्ट।
शून्य से भाग
शून्य द्वारा विभाजन-दर-शून्य भ्रम के कई रूप हैं। निम्न उदाहरण 2 = 1 को प्रमाण करने के लिए शून्य से छिपे हुए विभाजन का उपयोग करता है, लेकिन यह प्रमाण करने के लिए संशोधित किया जा सकता है कि कोई भी संख्या किसी अन्य संख्या के बराबर है।
- मान लीजिए a और b बराबर, अशून्य मात्राएँ हैं
- a से गुणा करें
- b2 घटाएं :दोनों पक्षों का गुणनखंडन:
- दोनों पक्षों का गुणनखंड करें: वर्गों के अंतर के रूप में बायां गुणनखंड, दोनों पदों से b निकालने के द्वारा दायां गुणनखंड किया जाता है
- विभाजित करें (a - b)
- इस तथ्य का प्रयोग करें कि a = b
- बाईं ओर समान पदों को संयोजित करें
- अशून्य ख से विभाजित करें
- Q.E.D.[6]
भ्रम पंक्ति 5 में है: पंक्ति 4 से पंक्ति 5 तक की प्रगति में a − b द्वारा विभाजन सम्मलित है, जो a = b के बाद से शून्य है। चूंकि शून्य से विभाजन अपरिभाषित है, तर्क अमान्य है।
विश्लेषण
परिवर्तन और सीमाओं के गणितीय अध्ययन के रूप में गणितीय विश्लेषण गणितीय भ्रांतियों को जन्म दे सकता है - यदि अभिन्न और अंतर के गुणों को अनदेखा किया जाता है। उदाहरण के लिए,0 = 1 का झूठा प्रमाण देने के लिए भागों द्वारा एकीकरण का एक सरल उपयोग किया जा सकता है। u =1/log x और dv =dx/x, हम लिख सकते हैं: [7]
जिसके बाद एंटीडेरिवेटिव्स को 0 = 1 उत्पन्न करने के लिए निरस्त किया जा सकता है। समस्या यह है कि एंटीडेरिवेटिव्स को केवल एक लगातार कार्य तक परिभाषित किया जाता है और उन्हें 1 या वास्तव में किसी भी संख्या में स्थानांतरित करने की अनुमति है। त्रुटि वास्तव में तब सामने आती है जब हम मनमाना एकीकरण सीमा a और b स्वागत करते हैं।
चूँकि एक नियत फलन के दो मानों के बीच का अंतर लुप्त हो जाता है, समीकरण के दोनों ओर एक ही निश्चित समाकल प्रकट होता है
बहुविकल्पीय कार्य
कई कार्यों में एक अद्वितीय व्युत्क्रम नहीं होता है। उदाहरण के लिए, जबकि किसी संख्या का वर्ग करना एक विशिष्ट मान देता है, एक धनात्मक संख्या के दो संभावित वर्गमूल होते हैं। वर्गमूल बहुमूल्यवान फलन है। एक मूल्य को परिपाटी द्वारा प्रमुख मूल्य के रूप में चुना जा सकता है; वर्गमूल के स्थितियों में गैर-ऋणात्मक मान मुख्य मान होता है, लेकिन इस बात की कोई गारंटी नहीं है कि किसी संख्या के वर्ग के मूल मान के रूप में दिया गया वर्गमूल मूल संख्या के बराबर होगा (उदाहरण के लिए मुख्य वर्गमूल-2 का वर्ग 2 है)। यह nवें मूल के लिए सत्य रहता है।
सकारात्मक और नकारात्मक जड़ें
समानता के दोनों पक्षों का वर्गमूल सावधानीपूर्वक होनी चाहिए। ऐसा करने में विफल होने के परिणामस्वरूप इसका प्रमाण मिलता है[8] 5 = 4।
प्रमाण:
- से शुरु करें
- इसे ऐसे लिखें
- के रूप में फिर से लिखें
- जोड़ें 81/4 दोनों ओर:
- ये पूर्ण वर्ग हैं:
- दोनों पक्षों का वर्गमूल निकालें:
- जोड़ें 9/2 दोनों ओर:
- Q.E.D.
भ्रम दूसरी से अंतिम पंक्ति में है, जहाँ दोनों पक्षों का वर्गमूल लिया जाता है: a2 = b2 का अर्थ केवल a = b होता है यदि a और b का चिह्न समान है, जो कि यहाँ नहीं है। इस स्तिथि में, इसका अर्थ है कि a=–b, इसलिए समीकरण को पढ़ना चाहिए
जिसे जोड़कर 9/2 दोनों ओर , सही ढंग से 5 = 5 तक कम हो जाता है।
समीकरण के दोनों पक्षों के वर्गमूल को लेने के खतरे को दर्शाने वाला एक अन्य उदाहरण निम्नलिखित प्राथमिक पहचान को सम्मलित करता है-[9]
जो पायथागॉरियन प्रमेय के परिणाम के रूप में है। फिर, एक वर्गमूल लेकर,
इसका मूल्यांकन जब x =π , हमें वह मिलता है
या
जो गलत है।
इन उदाहरणों में से प्रत्येक में त्रुटि मूल रूप से इस तथ्य में निहित है कि फॉर्म का कोई भी समीकरण
जहाँ पर , के दो समाधान हैं:
और यह जांचना आवश्यक है कि इनमें से कौन सा समाधान वर्तमान समस्या के लिए प्रासंगिक है।[10] उपरोक्त भ्रम में, वर्गमूल जिसने दूसरे समीकरण को पहले समीकरण से निकालने की अनुमति दी है, केवल तभी मान्य है जब cos x धनात्मक हो। विशेष रूप से, जब x को समुच्चय किया जाता है π, दूसरा समीकरण अमान्य हो गया है।
ऋणात्मक संख्याओं का वर्गमूल
शक्तियों और जड़ों का उपयोग करने वाले अमान्य प्रमाण प्रायः निम्न प्रकार के होते हैं:
भ्रम यह है कि नियम सामान्यतः केवल तभी मान्य होता है जब कम से कम एक तथा गैर-ऋणात्मक है (वास्तविक संख्याओं के साथ काम करते समय), जो यहाँ स्थिति नहीं है।[11] वैकल्पिक रूप से, काल्पनिक जड़ें निम्नलिखित में उलझी हुई हैं:
यहाँ त्रुटि तीसरी समानता में निहित है, नियम के अनुसार केवल सकारात्मक वास्तविक a और वास्तविक b, c के लिए है।
जटिल घातांक
जब किसी संख्या को जटिल शक्ति तक बढ़ाया जाता है, तो परिणाम विशिष्ट रूप से परिभाषित नहीं होता है (देखें घातांक § शक्ति और लघुगणक पहचान की विफलता)। यदि यह गुण पहचाना नहीं गया है, तो निम्न जैसी त्रुटियाँ हो सकती हैं:
यहां त्रुटि यह है कि तीसरी पंक्ति में जाने पर घातांकों को गुणा करने का नियम जटिल घातांकों के साथ असंशोधित रूप से लागू नहीं होता है, भले ही दोनों पक्षों को घात i पर रखने पर केवल मुख्य मान चुना जाता है। जब बहु-मूल्यवान कार्यों के रूप में व्यवहार किया जाता है, तो दोनों पक्ष होने के संबंध मूल्यों का एक ही समुच्चय उत्पन्न करते हैं {e2πn | n ∈ ℤ}
ज्यामिति
ज्यामिति में कई गणितीय भ्रम एक वैध पहचान के लिए उन्मुख मात्राओं (जैसे किसी दी गई रेखा के साथ वैक्टर जोड़ना या तल में उन्मुख कोण जोड़ना) से जुड़े योगात्मक समानता का उपयोग करने से उत्पन्न होता है, लेकिन जो इन मात्राओं में से केवल के पूर्ण मूल्य को ठीक करता हैI इस मात्रा को तब गलत अभिविन्यास के साथ समीकरण में सम्मलित किया जाता है, जिससे एक अव्यवस्थित निष्कर्ष निकाला जा सके। यह गलत अभिविन्यास सामान्यतः स्थिति के एक अनिश्चित आरेख की आपूर्ति करके निहित रूप से सुझाया जाता है, जहां बिंदुओं या रेखाओं के सापेक्ष पदों को इस प्रकार से चुना जाता है जो वास्तव में तर्क की परिकल्पना के अंतर्गत असंभव है, लेकिन गैर-स्पष्ट रूप से ऐसा है।
सामान्य तौर पर, स्थिति की एक सटीक तस्वीर खींचकर इस प्रकार की भ्रांति को उजागर करना आसान होता है, जिसमें कुछ सापेक्ष स्थिति प्रदान किए गए आरेख से भिन्न होंगी। इस प्रकार की भ्रांतियों से बचने के लिए, दूरियों या कोणों के जोड़ या घटाव का उपयोग करते हुए एक सही ज्यामितीय तर्क को हमेशा यह प्रमाणित करना चाहिए कि मात्राओं को उनके सही अभिविन्यास के साथ सम्मलित किया जा रहा है।
समद्विबाहु त्रिभुज का भ्रम
(मैक्सवेल 1959, अध्याय पहला, दूसरा) से समद्विबाहु त्रिभुज का भ्रम यह दर्शाता है कि प्रत्येक त्रिभुज समद्विबाहु है, जिसका अर्थ है कि त्रिभुज की दो भुजाएँ सर्वांगसमता (ज्यामिति) हैं। यह भ्रम लुईस कैरोल को पता था और हो सकता है कि उन्होंने ही इसकी खोज की हो। यह 1899 में प्रकाशित हुआ था। [12][13]
एक त्रिभुज △ABC दिया है, सिद्ध कीजिए कि AB = AC:
- एक रेखा समद्विभाजक ∠A खींचिए।
- खंड BC का लम्ब समद्विभाजक खींचिए, जो BC को बिंदु D पर समद्विभाजित करता है।
- माना कि ये दोनों रेखाएं एक बिंदु O पर मिलती हैं।
- AB पर रेखा OR लंब खींचिए, AC पर लंब OQ रेखा खींचिए।
- रेखाएँ OB और OC खींचिए।
- त्रिभुजों के समाधान से, △RAO ≅ △QAO (∠ORA = ∠OQA = 90°; ∠RAO = ∠QAO; AO = AO (उभयनिष्ठ भुजा))।
- सर्वांगसमता (ज्यामिति) द्वारा,[note 2] △ROB ≅ △QOC (∠BRO = ∠CQO = 90°; BO = OC (कर्ण); RO = OQ (पैर))।
- इस प्रकार, AR = AQ, RB = QC, और AB = AR + RB = AQ + QC = AC।
Q.E.D.
उपप्रमेय के रूप में, AB = BC और AC = BC को समान रूप से दिखा कर कोई भी यह दिखा सकता है कि सभी त्रिभुज समबाहु हैं।
उपपत्ति में त्रुटि आरेख में यह मान्यता है कि बिंदु O त्रिभुज के अंदर है। वास्तव में, O हमेशा △ABC के परिवृत्त पर स्थित होता है (समद्विबाहु और समबाहु त्रिभुजों को छोड़कर जहाँ AO और OD संपाती होते हैं)। इसके अतिरिक्त, यह दिखाया जा सकता है कि, यदि AB, AC से अधिक लंबा है, तो R AB के भीतर स्थित होगा, जबकि Q AC के बाहर स्थित होगा, और इसके विपरीत (वास्तव में, पर्याप्त सटीक उपकरणों के साथ खींचा गया कोई भी आरेख उपरोक्त दो तथ्यों को सत्यापित करेगा ). इस कारण से, AB अभी भी AR + RB है, लेकिन AC वास्तव में AQ - QC है; और इस प्रकार लंबाई आवश्यक रूप से समान नहीं है।
प्रेरण द्वारा प्रमाणित
प्रवेश द्वारा कई झूठे प्रमाण सम्मलित हैं जिनमें से एक घटक, आधार स्तिथि या अधिष्ठापन का चरण गलत है। सहज रूप से, प्रेरण कार्य द्वारा प्रमाण यह तर्क देकर कार्य करता है कि यदि एक स्तिथि में एक कथन सत्य है, तो यह अगले स्तिथि में सत्य है, और इसलिए इसे बार-बार लागू करके, इसे सभी स्तिथि के लिए सत्य दिखाया जा सकता है। निम्नलिखित "प्रमाण" से पता चलता है कि सभी घोड़े एक ही रंग के हैं।।[14][note 3]
- मान लें कि N घोड़ों का कोई भी समूह एक ही रंग का है।
- अगर हम किसी घोड़े को समूह से हटाते हैं, तो हमारे पास उसी रंग के N − 1 घोड़ों का समूह होता है। यदि हम एक और घोड़ा जोड़ते हैं, तो हमारे पास N घोड़ों का एक और समूह होता है। हमारी पिछली धारणा से, इस नए समूह में सभी घोड़े एक ही रंग के हैं, क्योंकि यह N घोड़ों का एक समूह है।
- इस प्रकार हमने N घोड़ों के दो समूहों का निर्माण किया है, सभी एक ही रंग के हैं, जिनमें N − 1 घोड़े समान हैं। चूंकि इन दो समूहों में कुछ घोड़े समान हैं, इसलिए दोनों समूहों को एक दूसरे के समान रंग का होना चाहिए।
- इसलिए, इस्तेमाल किए गए सभी घोड़ों को मिलाकर, हमारे पास एक ही रंग के N + 1 घोड़ों का एक समूह है।
- इस प्रकार यदि कोई N घोड़े सभी एक ही रंग के हैं, तो कोई भी N + 1 घोड़े समान रंग के हैं।
- यह N = 1 के लिए स्पष्ट रूप से सच है (यानी एक घोड़ा एक समूह है जहां सभी घोड़े एक ही रंग के होते हैं)। इस प्रकार, प्रेरण द्वारा, एन घोड़े किसी भी सकारात्मक पूर्णांक एन के लिए समान रंग होते हैं, अर्थात सभी घोड़े एक ही रंग के होते हैं।
इस प्रमाण में त्रुटि पंक्ति 3 में उत्पन्न होती है। N = 1 के लिए, घोड़ों के दो समूहों में N − 1 = 0 घोड़े सामान्य हैं, और इस प्रकार जरूरी नहीं कि वे एक दूसरे के समान रंग के हों, इसलिए N + 1 = 2 का समूह जरूरी नहीं कि 2 घोड़े एक ही रंग के हों। निहितार्थ प्रत्येक N घोड़े एक ही रंग के होते हैं, फिर N + 1 घोड़े एक ही रंग के होते हैं किसी भी N > 1 के लिए काम करते हैं, लेकिन N = 1 होने पर सत्य होने में विफल रहता है। आधार स्थितिया सही है, लेकिन प्रेरण चरण में एक मौलिक दोष है ।
यह भी देखें
- विषम रद्दीकरण
- शून्य से विभाजन – Class of mathematical expression
- अधूरे प्रमाणों की सूची
- गणितीय संयोग
- विरोधाभास
- डरा धमकाकर प्रमाणित
टिप्पणियाँ
संदर्भ
- ↑ Maxwell 1959, p. 9
- ↑ 2.0 2.1 Maxwell 1959
- ↑ Heath & Heiberg 1908, Chapter II, §I
- ↑ Barbeau, Ed (1991). "भ्रम, खामियां, और Flimflam" (PDF). The College Mathematics Journal. 22 (5). ISSN 0746-8342.
- ↑ "सॉफ्ट क्वेश्चन - बेस्ट फेक प्रूफ? (एक M.SE अप्रैल फूल डे संग्रह)". Mathematics Stack Exchange. Retrieved 2019-10-24.
- ↑ Heuser, Harro (1989), Lehrbuch der Analysis – Teil 1 (6th ed.), Teubner, p. 51, ISBN 978-3-8351-0131-9
- ↑ Barbeau, Ed (1990), "Fallacies, Flaws and Flimflam #19: Dolt's Theorem", The College Mathematics Journal, 21 (3): 216–218, doi:10.1080/07468342.1990.11973308
- ↑ Frohlichstein, Jack (1967). गणितीय मज़ा, खेल और पहेलियाँ (illustrated ed.). Courier Corporation. p. 207. ISBN 0-486-20789-7. Extract of page 207
- ↑ Maxwell 1959, Chapter VI, §I.1
- ↑ Maxwell 1959, Chapter VI, §II
- ↑ Nahin, Paul J. (2010). एक काल्पनिक कहानी: "i की कहानी. Princeton University Press. p. 12. ISBN 978-1-4008-3029-9. Extract of page 12
- ↑ S.D.Collingwood, ed. (1899), The Lewis Carroll Picture Book, Collins, pp. 190–191
- ↑ Robin Wilson (2008), Lewis Carroll in Numberland, Penguin Books, pp. 169–170, ISBN 978-0-14-101610-8
- ↑ Pólya, George (1954). गणित में प्रेरण और सादृश्य. Mathematics and plausible reasoning. Vol. 1. Princeton. p. 120.
- Barbeau, Edward J. (2000), Mathematical fallacies, flaws, and flimflam, MAA Spectrum, Mathematical Association of America, ISBN 978-0-88385-529-4, MR 1725831.
- Bunch, Bryan (1997), Mathematical fallacies and paradoxes, New York: Dover Publications, ISBN 978-0-486-29664-7, MR 1461270.
- Heath, Sir Thomas Little; Heiberg, Johan Ludvig (1908), The thirteen books of Euclid's Elements, Volume 1, The University Press.
- Maxwell, E. A. (1959), Fallacies in mathematics, Cambridge University Press, ISBN 0-521-05700-0, MR 0099907.
इस पेज में लापता आंतरिक लिंक की सूची
- अंक शास्त्र
- अनौपचारिक भ्रम
- अंतर्विरोध
- हेत्वाभास
- एकाधिक मूल्यवान समारोह
- एक समारोह की जड़
- प्राथमिक बीजगणित
- विषम रद्दीकरण
- चौकों का अंतर
- अंतर (गणित)
- एक समारोह की सीमा
- n वीं जड़
- बहुविकल्पी समारोह
- उलटा काम करना
- पाइथागोरस प्रमेय
- त्रिकोण
- समद्विबाहु त्रिकोण
- त्रिभुजों का हल
- द्विविभाजितता
- सभी घोड़े एक ही रंग के होते हैं
- प्रेरण द्वारा प्रमाण
बाहरी संबंध
- Invalid proofs at Cut-the-knot (including literature references)
- Classic fallacies with some discussion
- More invalid proofs from AhaJokes.com
- Math jokes including an invalid proof
Template:Formal fallacies
Cite error: <ref>
tags exist for a group named "note", but no corresponding <references group="note"/>
tag was found