बॉयलर (विद्युत उत्पादन): Difference between revisions
m (63 revisions imported from alpha:बॉयलर_(बिजली_उत्पादन)) |
No edit summary |
||
Line 130: | Line 130: | ||
* {{commonscat-inline|Steam boilers}} | * {{commonscat-inline|Steam boilers}} | ||
[[Category:All articles with unsourced statements]] | |||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Articles with short description]] | |||
[[Category:Articles with unsourced statements from May 2015]] | |||
[[Category:CS1]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:CS1 maint]] | |||
[[Category:CS1 Ελληνικά-language sources (el)]] | |||
[[Category:Citation Style 1 templates|W]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 13/12/2022]] | [[Category:Created On 13/12/2022]] | ||
[[Category: | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates based on the Citation/CS1 Lua module]] | |||
[[Category:Templates generating COinS|Cite web]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates used by AutoWikiBrowser|Cite web]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia fully protected templates|Cite web]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:स्टीम इंजन]] |
Revision as of 10:14, 6 January 2023
बॉयलर (भट्ठी) या भाप उत्पादन-यन्त्र (स्टीम जनरेटर) एक उपकरण है जिसका उपयोग पानी में ऊष्मा ऊर्जा को लागू करके भाप बनाने के लिए किया जाता है। हालाँकि परिभाषाएँ उपयुक्त नहीं हैं, यह कहा जा सकता है कि पुराने भाप उत्पादन-यन्त्र को सामान्यतः 'बॉयलर' कहा जाता था और मध्यम दबाव (7–2,000 kPa or 1–290 psi) में कम काम करता था, इससे ज्यादा दबाव में भाप उत्पादन-यन्त्र की बात करना अधिक सामान्य है।
भाप के स्रोत की आवश्यकता होने पर बॉयलर या भाप उत्पादन-यन्त्र का उपयोग किया जाता है। प्रपत्र और आकार आवेदन पर निर्भर करता है: गतिशील भाप इंजन जैसे कि भाप गतिविशिष्ट, वहनीय इंजन और भाप से चलने वाले सड़क वाहन सामान्यतः एक छोटे वाष्पित्र का उपयोग करते हैं जो वाहन का एक अभिन्न अंग होता है स्थिर भाप इंजन, औद्योगिक प्रतिष्ठानों और बिजली विभागों में सामान्यतः पाइपलाइन द्वारा उपयोग की स्थिति (पॉइंट-ऑफ-यूज) से जुड़े एक बड़े अलग-अलग भाप पैदा करने की सुविधा होती है। एक उल्लेखनीय अपवाद भाप से चलने वाला आग रहित स्वचालित यंत्र है, जहां अलग से उत्पन्न भाप को स्वचालित यंत्र पर एक रिसीवर (टैंक) में स्थानांतरित किया जाता है।
एक प्राइम मूवर के एक घटक के रूप में
भाप उत्पादन-यन्त्र (स्टीम जनरेटर) या वाष्प बॉयलर भाप इंजन का एक अभिन्न घटक है जब इसे मुख्य प्रस्तावक (लोकोमोटिव) माना जाता है। हालांकि इसे अलग से व्यवहार करने की आवश्यकता है क्योंकि कुछ हद तक विभिन्न प्रकार के उत्पादक को विभिन्न प्रकार की इंजन इकाइयों के साथ जोड़ा जा सकता है। बॉयलर ईंधन को जलाने और गर्मी उत्पन्न करने के लिए एक फायरबॉक्स (स्टीम इंजन) या औद्योगिक भट्ठी मौजूद होती है। उबलने की प्रक्रिया को भाप बनाने के लिए उत्पन्न ऊष्मा को पानी में स्थानांतरित किया जाता है। यह एक दर पर संतृप्त भाप पैदा करता है जो उबलते पानी के ऊपर दबाव के अनुसार भिन्न हो सकता है। भट्ठी का तापमान जितना अधिक होगा भाप का उत्पादन उतना ही तेज होगा। इस प्रकार उत्पन्न संतृप्त भाप या तो टरबाइन या आवर्तित्र के माध्यम से बिजली का उत्पादन करने के लिए तुरंत उपयोग किया जा सकता है या फिर उच्च तापमान पर अत्यधिक गरम किया जा सकता है यह विशेष रूप से निलंबित पानी की मात्रा को कम करता है, जिससे भाप की दी गई मात्रा अधिक काम करती है और अधिक तापमान ढाल बनाता है, जो संघनन बनाने की क्षमता को कम करने में मदद करता है। दहन गैसों में किसी भी बची गर्मी को तब या तो खाली किया जा सकता है या एक अर्थशास्त्री के माध्यम से पारित किया जा सकता है, जिसकी भूमिका बॉयलर तक पहुंचने से पहले फ़ीड पानी को गर्म करने के लिए है।
प्रकार
अधिक जानकारी: फायर-ट्यूब बॉयलर
हेकॉक और वैगन टॉप बॉयलर (भट्ठी)
1712 के पहले न्यूकमेन इंजन के लिए बॉयलर बिजली सिलेंडर के नीचे स्थापित बड़े ब्रेवर के केतली से थोड़ा अधिक था क्योंकि इंजन की शक्ति भाप के संक्षेपण द्वारा उत्पादित निर्वात से प्राप्त हुई थी, आवश्यकता 1 psi (6.9 kPa) से बहुत कम दबाव पर बड़ी मात्रा में भाप की थी। एक विशाल कोयले की आग को थोड़ा पके हुए (डेस पैन) के नीचे एक जाली पर जलाया गया था, जिसने बहुत कम गर्म सतह दी इसलिए चिमनी बर्बाद हो गई थी। बाद के मॉडलों में, विशेष रूप से जॉन स्मेटन द्वारा गैसों को बॉयलर के किनारों को गर्म करके एक जकड़न से गुजरते हुए गर्म सतह को काफी बढ़ा दिया गया था, स्मीटन ने बॉयलर के नीचे एक सर्पिल लाइब्रिंथ फ्लू के माध्यम से गैसों के मार्ग को और लंबा कर दिया। 18वीं शताब्दी के दौरान इन आग के तहत बॉयलरों का विभिन्न रूपों में उपयोग किया गया था, कुछ गोल खंड (हैकॉक) के थे। एक आयताकार योजना पर एक लंबा संस्करण 1775 के आसपास बोल्टन और वाट (वैगन टॉप बॉयलर) द्वारा विकसित किया गया था, यह वह है जो आज तीन-पास बॉयलर के रूप में जाना जाता है। आग नीचे की ओर गर्म होती है गैसें फिर एक केंद्रीय वर्ग-खंड नलीदार फ्लू से गुजरती है और अंत में बॉयलर पक्षों के आसपास होती है।
बेलनाकार अग्नि-ट्यूब बॉयलर
बेलनाकार रूप के एक शुरुआती प्रस्तावक ब्रिटिश इंजीनियर जॉन ब्लेकी थे, जिन्होंने 1774 में अपनी रचना का प्रस्ताव रखा था।[1][2] एक अन्य प्रारंभिक प्रस्तावक अमेरिकी इंजीनियर,ओलिवर इवांस थे जिन्होंने ठीक ही माना कि बेलनाकार रूप यांत्रिक प्रतिरोध के दृष्टिकोण से सबसे अच्छा था और 18 वीं शताब्दी के अंत की ओर इसे अपनी परियोजनाओं में प्रयोग करना शुरू कर दिया।[citation needed] ल्यूपोल्ड की उच्च दबाव ("हाई-प्रेशर") इंजन योजना पर लेखन से प्रेरित होकर 1725 से विश्वकोश कार्यों में दिखाई दिया, इवांस ने मजबूत भाप यानी गैर-संघनित इंजनों का समर्थन किया जिसमें भाप के दबाव ने अकेले ही पिस्टन को निकाल दिया और फिर वातावरण में समाप्त हो गया। मजबूत भाप का लाभ जैसा कि उन्होंने देखा कि भाप की कम मात्रा से अधिक काम किया जा सकता है इसने सभी घटकों को आकार में कम करने में सक्षम बनाया और इंजनों को परिवहन और छोटे प्रतिष्ठानों के लिए अनुकूलित किया जा सकता है।इसके लिए उन्होंने एक लंबा बेलनाकार लोहे का क्षैतिज बॉयलर विकसित किया जिसमें एकल अग्नि-ट्यूब को शामिल किया गया था, जिसमें एक सिरे पर अग्नि द्वार रखा गया था। गैस के प्रवाह को बॉयलर बैरल के नीचे एक मार्ग या फ्लू में उलट दिया गया था फिर चिमनी (कोलंबियन इंजन बॉयलर) में फिर से जुड़ने के लिए साइड फ्लूज़ के माध्यम से लौटने के लिए विभाजित किया गया था। इवांस ने स्थिर और गतिशील दोनों बेलनाकार बॉयलर को कई इंजनों में शामिल किया। अंतरिक्ष और वजन के विचारों के कारण बाद में अग्नि ट्यूब से चिमनी तक सीधे एक-पास समाप्त हो गए थे। उस समय "मजबूत भाप" का एक और अन्य प्रस्तावक कोर्निशमैन, रिचर्ड ट्रेविथिक था। उनके बॉयलर 40–50 psi (276–345 kPa) पर काम करते थे और पहले गोलार्द्ध के बाद बेलनाकार रूप में थे। 1804 के बाद से ट्रेविथिक ने अर्ध-पोर्टेबल और स्वचालित यंत्र इंजनों के लिए एक छोटे से दो-पास या रिटर्न फ्ल्यू बॉयलर का उत्पादन किया। रिचर्ड ट्रेविथिक द्वारा 1812 के आसपास विकसित कोर्निश बॉयलर साधारण बॉयलर की तुलना में अधिक मजबूत और कुशल था। इसमें लगभग 27 फीट (8.2 मीटर) लंबा और 7 फीट (2.1 मीटर) व्यास में एक बेलनाकार पानी की टंकी शामिल थी और लगभग तीन फीट चौड़ी एक बेलनाकार ट्यूब के एक छोर पर कोयले की आग की जाली थी जो टैंक के अंदर अनुदैर्ध्य रूप से पारित किया गया था। आग को एक छोर से नियंत्रित किया गया था और इससे निकलने वाली गर्म गैसें ट्यूब के साथ और दूसरे छोर से बाहर निकले ताकि चिमनी में बाहर निकलने से पहले बायलर बैरल के नीचे तीसरी बार बाहर की ओर चल रहे फ़्लूज़ के साथ परिचालित किया जा सके। बाद में एक अन्य 3-पास बॉयलर, लंकाशायर बॉयलर द्वारा सुधार किया गया जिसमें अलग-अलग ट्यूबों में अगल-बगल भट्टियों की एक जोड़ी थी। यह एक महत्वपूर्ण सुधार था क्योंकि प्रत्येक भट्ठी को अलग-अलग समय पर भरा जा सकता था, जिससे एक को साफ किया जा सकता था जब दूसरा काम कर रहा था।
रेलवे स्वचालित यंत्र बॉयलर सामान्यतः 1-पास प्रकार के होते थे हालांकि शुरुआती दिनों में 2-पास रिटर्न फ्ल्यू बॉयलर साधारण थे, विशेष रूप से टिमोथी हैकवर्थ द्वारा निर्मित स्वचालित यंत्र के साथ।
मल्टी-ट्यूब बॉयलर
1828 में फ्रांस में एक महत्वपूर्ण कदम आगे आया जब मार्क सेगुइन ने दो-पास बॉयलर को तैयार किया, जिसमें दूसरा पास कई ट्यूबों के एक गठरी द्वारा बनाया गया था। समुद्री प्रयोजनों के लिए उपयोग किए जाने वाले प्राकृतिक प्रेरण के साथ एक समान रचना लोकप्रिय स्कॉच मरीन बॉयलर था।
1829 के रेनहिल परीक्षणों से पहले, लिवरपूल और मैनचेस्टर रेलवे के कोषाध्यक्ष हेनरी बूथ ने जॉर्ज स्टीफेंसन को दो इकाइयों से बने एकाधिक-ट्यूब वन-पास क्षैतिज बॉयलर के लिए एक योजना का सुझाव दिया जो दो इकाइयों से बना: एक फायरबॉक्स (स्टीम इंजन) और एक बॉयलर बैरल जल स्थानों से घिरा हुआ है जिसमें दो दूरबीन के छल्ले होते हैं, जिनके अंदर 25 तांबे की ट्यूब लगी हुई थी। ट्यूब बंडल ने बैरल में पानी की जगह पर कब्जा कर लिया और गर्मी हस्तांतरण में काफी सुधार हुआ। ओल्ड जॉर्ज ने तुरंत अपने बेटे रॉबर्ट को योजना के बारे में बताया और यह स्टीफेंसन के रॉकेट पर उपयोग किया जाने वाला बॉयलर था, जो परीक्षण के एकमुश्त विजेता था। रचना ने बाद के सभी स्टीफेंसनियन-निर्मित स्वचालित यंत्र के लिए आधार बनाया जिसे तुरंत अन्य निर्माणकर्ताओं द्वारा लिया गया अग्नि-ट्यूब बॉयलर का यह स्वरूप तब से बनाया गया है।
संरचनात्मक प्रतिरोध
1712 बॉयलर को पहले उदाहरणों में सीसे से बना एक गुंबददार शीर्ष के साथ कीलक तांबे की प्लेटों से इकट्ठा किया गया था। बाद में बॉयलरों को आपस में छोटे गढ़े हुए लोहे की प्लेटों से बनाया गया। समस्या बड़ी प्लेटों का उत्पादन कर रही थी, जिससे कि लगभग 50 psi (344.7 kPa) का दबाव भी पूरी तरह से सुरक्षित नहीं था, न ही रिचर्ड ट्रेविथिक द्वारा शुरू में कच्चा लोहा गोलार्द्ध बॉयलर का उपयोग किया गया था। छोटी प्लेटों के साथ यह निर्माण 1820 के दशक तक बना रहा, जब बड़ी प्लेटें संभव हो गईं और एक बेलनाकार रूप में लुढ़का जा सकता था, जिसमें केवल एक बट-संयुक्त सीम के साथ गसेट प्लेट द्वारा प्रबलित किया गया था। 1849 के टिमोथी हैकवर्थ के सैंस पेरिल 11 में एक अनुदैर्ध्य वेल्डेड धीमा था।[3] स्वचालित यंत्र बॉयलर के लिए वेल्डेड निर्माण बहुत धीमी गति से हुआ।
डोबल, लामोंट और प्रिटचर्ड द्वारा उपयोग किए जाने वाले एक-थ्रू मोनोट्यूबुलर वॉटर ट्यूब बॉयलर काफी दबाव को समझने और विस्फोट के खतरे के बिना इसे जारी करने में सक्षम हैं।
दहन
बॉयलर के लिए गर्मी का स्रोत जैसे कि लकड़ी, कोयला, तेल या प्राकृतिक गैस जैसे कई ईंधनों में से किसी एक का दहन (combustion) है। परमाणु विखंडन का उपयोग भाप पैदा करने के लिए गर्मी स्रोत के रूप में भी किया जाता है। हीट रिकवरी स्टीम जेनरेटर (HRSGs) गैस टर्बाइन जैसी अन्य प्रक्रियाओं से निकलने वाली गर्मी का उपयोग करते हैं।
ठोस ईंधन फायरिंग
आग की इष्टतम ज्वलन विशेषताओं को बनाने के लिए हवा को भट्ठी और आग के ऊपर दोनों के माध्यम से आपूर्ति की आवश्यकता होती है। अधिकांश बॉयलर अब प्राकृतिक प्रारूप के बजाय यांत्रिक प्रारूप उपकरणों पर निर्भर करते हैं। इसका कारण यह है कि प्राकृतिक प्रारूप बाहरी हवा की स्थिति और भट्ठी से निकलने वाली ग्रिप गैसों के तापमान के साथ-साथ चिमनी की ऊंचाई के अधीन है। ये सभी कारक प्रभावी प्रारूप को प्राप्त करने के लिए कठिन बनाते हैं इसलिए यांत्रिक ड्राफ्ट उपकरण को और अधिक किफायती बनाते हैं। यांत्रिक ड्राफ्ट तीन प्रकार के होते हैं:
- प्रेरित ड्राफ्ट: यह तीन तरीकों में से एक प्राप्त किया जाता है, पहला एक गर्म चिमनी का "स्टैक इफेक्ट" होता है, जिसमें फ्ल्यू गैस बॉयलर के आसपास की परिवेशी हवा की तुलना में कम घनी होती है। परिवेशी वायु का सघन स्तंभ बॉयलर में और उसके माध्यम से हवा को दहन करता हैं, ग्रिप गैस प्रवाह की दिशा में उन्मुख स्टीम जेट या इजेक्टर स्टैक ग्रिप गैसों को प्रेरित करता है और भट्ठी में समग्र ड्राफ्ट को बढ़ाने के लिए अधिक फ्ल्यू गैस वेग की अनुमति देता है। यह विधि भाप चालित स्वचालित यंत्र पर साधारण थी जिसमें लम्बी चिमनियां नहीं हो सकती थी। तीसरी विधि केवल एक प्रेरित ड्राफ्ट फैन (ID Fan) का उपयोग करता है जो भट्ठी से निकलने वाली गैसों को चूसता है और स्टैक को ऊपर उठाता है। लगभग सभी प्रेरित ड्राफ्ट भट्टियों में नकारात्मक दबाव होता है।
- फोर्स्ड ड्राफ्ट: फोर्स्ड ड्राफ्ट फैन (FD fan) और डक्ट-वर्क के माध्यम से भट्ठी में हवा भरकर प्राप्त किया जाता है। हवा अक्सर एक हवा उष्मक से गुजरती है जैसा कि नाम से पता चलता है, बॉयलर की समग्र दक्षता को बढ़ाने के लिए भट्ठी में जाने वाली हवा को गर्म करता है। भट्ठी में प्रवेश करने वाली हवा की मात्रा को नियंत्रित करने के लिए डैम्पर्स का उपयोग किया जाता है। फोर्स्ड ड्राफ्ट भट्टियों में सामान्यतः एक सकारात्मक दबाव होता है।
- संतुलित ड्राफ्ट: प्रेरित और फोर्स्ड ड्राफ्ट दोनों के उपयोग के माध्यम से प्राप्त किया जाता है। यह सभी बॉयलरों से साधारण है जहां कई बॉयलर पासों के माध्यम से ग्रिप गैसों को लंबी दूरी तय करनी पड़ती है। प्रेरित ड्राफ्ट फैन फोर्स्ड ड्राफ्ट फैन के साथ मिलकर काम करता है, जिससे भट्ठी के दबाव को वायुमंडलीय से थोड़ा कम बनाए रखा जा सकता है।
फायरट्यूब बॉयलर
प्रक्रिया में अगला चरण पानी को उबालना और भाप बनाना है। इसका लक्ष्य गर्मी स्रोत से पानी तक जितना संभव हो सके गर्मी प्रवाह करना है। आग से गरम किए गए प्रतिबंधित स्थान में सीमित है। उत्पादित भाप का घनत्व पानी की तुलना में कम होता है इसलिए बर्तन में उच्चतम स्तर पर जमा होगा इसका तापमान उबलते बिंदु पर रहेगा और दबाव बढ़ाने पर ही बढ़ेगा। इस अवस्था में भाप (तरल पानी के साथ संतुलन में जो बॉयलर के भीतर वाष्पित हो रहा है) को "संतृप्त भाप" कहा जाता है। उदाहरण के लिए, वायुमंडलीय दबाव पर संतृप्त भाप 100 °C (212 °F)पर उबलता है। बॉयलर से ली गई संतृप्त भाप में पानी की बूंदें हो सकती हैं, हालांकि एक अच्छी तरह से रचना किया गया बॉयलर बहुत कम पानी के साथ "शुष्क" संतृप्त भाप की आपूर्ति करेगा। संतृप्त भाप का निरंतर ताप भाप को "अतितापित" अवस्था में लाएगा, जहां भाप को संतृप्ति तापमान से अधिक तापमान पर गर्म किया जाता है और इस स्थिति के तहत कोई तरल पानी मौजूद नहीं हो सकता है। 19 वीं शताब्दी के अधिकांश प्रत्यागामी भाप इंजनों ने संतृप्त भाप का उपयोग किया हालांकि आधुनिक स्टीम पावर प्लांट सार्वभौमिक रूप से अतितापित भाप का उपयोग करते हैं जो उच्च भाप चक्र दक्षता की अनुमति देता है।
सुपरहीटर्स
एल.डी. पोर्टा भाप स्वचालित यंत्र की दक्षता का निर्धारण करने के लिए निम्नलिखित समीकरण देता है, जो सभी प्रकार के भाप इंजनों पर लागू होता है:
शक्ति (kW) = भाप उत्पादन (kg h-1)/
विशिष्ट भाप की खपत (kg/kW h)
पानी की दी गई मात्रा को अत्यधिक गरम करके उससे अधिक मात्रा में भाप उत्पन्न की जा सकती है। चूंकि आग पैदा होने वाली संतृप्त भाप की तुलना में बहुत अधिक तापमान पर जल रही है एक बार बनने वाली भाप को अत्यधिक गरम करके उसमें निलंबित पानी की बूंदों को अधिक भाप में बदल कर और पानी की खपत को बहुत कम करके बहुत अधिक भाप को स्थानांतरित किया जा सकता है।
अत्यधिक गरम एक वातानुकूलन इकाई पर वक्र की तरह काम करता है, लेकिन एक अलग छोर पर भाप पाइपिंग (इसके माध्यम से बहने वाली भाप के साथ) को बॉयलर भट्ठी में फ़्लू गैस पथ के माध्यम से निर्देशित किया जाता है। यह क्षेत्र सामान्यतः 1,300–1,600 °C (2,372–2,912 °F)के बीच होता है। कुछ अत्यधिक गरम दीप्तिमान प्रकाश के होते हैं (थर्मल विकिरण द्वारा ऊष्मा को अवशोषित करते हैं), अन्य संवहन प्रकार (एक द्रव यानी गैस के माध्यम से ऊष्मा को अवशोषित करते हैं) और कुछ दोनों का संयोजन होते हैं तो क्या संवहन या विकिरण द्वारा बॉयलर भट्ठी/फ्ल्यू गैस पथ में अत्यधिक गर्मी सुपरहेटर स्टीम पाइपिंग और भाप को भी गर्म कर देगी। जबकि सुपरहेटर में भाप का तापमान बढ़ जाता है, भाप का दबाव नहीं होता है: टर्बाइन या गतिशील पिस्टन "निरंतर विस्तारित स्थान" प्रदान करते हैं और दबाव बॉयलर के समान ही रहता है।[4] अति तापकारी भाप की प्रक्रिया सबसे महत्वपूर्ण रूप से टरबाइन सम्मिश्रण और/या संबंधित पाइपिंग के नुकसान को रोकने के लिए भाप में प्रवेशित सभी बूंदों को हटाने के लिए रचना की गई है। भाप को अत्यधिक गरम करने से भाप की मात्रा विस्तार करती है, जिससे भाप की दी गई मात्रा (वजन के अनुसार) अधिक शक्ति पैदा कर पाती है।
जब बूंदों की समग्रता समाप्त हो जाती है, तो भाप को अतितापित (सुपरहिटेड) अवस्था कहा जाता है।
एक स्टीफेंसोनियन फायरट्यूब स्वचालित यंत्र बॉयलर में, यह बड़े व्यास के फायरट्यूब के अंदर निलंबित छोटे व्यास के पाइपों के माध्यम से संतृप्त भाप को फायरबॉक्स से बाहर निकलने वाली गर्म गैसों के संपर्क में रखता हैं संतृप्त भाप गीले प्रवेशिका से फायरबॉक्स के पीछे की ओर बहती है, फिर सूखे प्रवेशिका के लिए आगे बढ़ती है। सिलिंडर और स्टीम चेस्ट में चलने वाले पुर्जों की ओवरहीटिंग और स्नेहन की समस्याओं के कारण वर्ष 1900 के आसपास स्वचालित यंत्र के लिए सुपरहीटिंग को सामान्यतः अपनाया जाने लगा।
कई फायरट्यूब बॉयलर पानी को उबालने तक गर्म करते है और फिर भाप का उपयोग संतृप्ति तापमान पर किया जाता है, दूसरे शब्दों में किसी दिए गए दबाव (संतृप्त भाप) पर पानी के क्वथनांक का तापमान होता है, इसमें अभी भी निलंबन में पानी का एक बड़ा अनुपात है। संतृप्त भाप एक इंजन द्वारा सीधे उपयोग किया जा सकता है, लेकिन चूंकि कि निलंबित पानी का विस्तार नहीं हो सकता है पर काम कर सकता है और काम का तात्पर्य तापमान गिरने से होता है, इसका उत्पादन करने के लिए खर्च किए गए ईंधन के साथ-साथ काम करने वाले तरल पदार्थ का अधिकांश हिस्सा बर्बाद हो जाता है।
वाटर(जल) ट्यूब बॉयलर
तेजी से भाप उत्पन्न करने का एक और तरीका दहन गैसों से घिरी ट्यूब या ट्यूबों में दबाव में पानी डालना है। इसका सबसे पहला उदाहरण 1820 के दशक के उत्तरार्ध में गोल्ड्सवर्थी गर्न द्वारा भाप सड़क गाड़ी में उपयोग के लिए विकसित किया गया था। यह बॉयलर अल्ट्रा-कॉम्पैक्ट और वजन में हल्का था और यह व्यवस्था तब से समुद्री और स्थिर अनुप्रयोगों के लिए उपयोगी बन गई है।ट्यूबों में अक्सर सतह क्षेत्र को अधिकतम करने के लिए बड़ी संख्या में मोड़ और कभी-कभी फैन होते हैं। इस प्रकार के बॉयलर को सामान्यतः उच्च दबाव अनुप्रयोगों में पसंद किया जाता है क्योंकि उच्च दबाव वाला पानी/भाप संकीर्ण पाइपों के भीतर समाहित होता है जिसमें एक पतली दीवार के साथ दबाव हो सकता है हालाँकि, यह भूतल परिवहन उपकरणों में कंपन द्वारा क्षति के लिए अतिसंवेदनशील हो सकता है।एक कच्चा लोहा अनुभागीय बॉयलर जिसे कभी-कभी "पोर्क चॉप बॉयलर" कहा जाता है। पानी, कच्चा लोहा अनुभागीय के अंदर समाहित होता है। पूर्ण बॉयलर बनाने के लिए इन वर्गों को यांत्रिक रूप से स्थल पर इकट्ठा किया जाता है।
सुपरक्रिटिकल भाप उत्पादन-यन्त्र
सुपरक्रिटिकल भाप उत्पादक का उपयोग अक्सर विद्युत शक्ति के उत्पादन के लिए किया जाता है। वे सुपर तरल दबाव (सुपरक्रिटिकल प्रेशर) संचालन करते हैं।एक "सबक्रिटिकल बॉयलर" के विपरीत, एक सुपरक्रिटिकल भाप उत्पादक इतने उच्च दबाव (3,200 psi or 22.06 MPa) से अधिक पर संचालित होता है कि वास्तविक उबलते हुए बॉयलर में कोई तरल पानी नहीं होता है - भाप पृथक्करण। पानी के भीतर भाप के बुलबुले का निर्माण नहीं होता है क्योंकि दबाव महत्वपूर्ण तापमान और दबाव से ऊपर है जिस पर भाप के बुलबुले बन सकते हैं। यह महत्वपूर्ण बिंदु के नीचे से गुजरता है क्योंकि यह उच्च दबाव वाले टरबाइन में काम करता है और उत्पादक के कंडेनसर (हीट ट्रांसफर) में प्रवेश करता है। इसके परिणामस्वरूप थोड़ा कम ईंधन का उपयोग होता है इसलिए ग्रीनहाउस गैस उत्पादन कम होता है। "बॉयलर" शब्द का उपयोग सुपरक्रिटिकल प्रेशर भाप उत्पादक के लिए नहीं किया जाना चाहिए क्योंकि इस उपकरण में "उबलना" नहीं होता है।
जल उपचार
बॉयलरों के लिए फ़ीड पानी को कम से कम निलंबित ठोस और घुलित अशुद्धियों के साथ जितना संभव हो उतना शुद्ध होना चाहिए जो जंग, झाग और पानी के बहाव का कारण बनता है। बॉयलर फ़ीड पानी के विखनिजीकरण (डिमिनरलाइजेशन) के लिए सबसे साधारण विकल्प विपरीत परासरण (रिवर्स ऑस्मोसिस)(RO) और आयन विनिमय (IX) हैं।[6]
सुरक्षा
जब पानी को भाप में परिवर्तित किया जाता है तो यह 1,600 गुना मात्रा में फैलता है और 25 मीटर/सेकेंड से अधिक पर भाप पाइपों की यात्रा करता है। इस वजह से, भाप एक केंद्रीय बॉयलर हाउस से एक स्थल के चारों ओर ऊर्जा और गर्मी को आगे बढ़ाने का एक अच्छा तरीका है जहां इसकी आवश्यकता होती है लेकिन सही बॉयलर फ़ीड जल उपचार के बिना को भाप-बढ़ाने वाला संयंत्र पैमाने के गठन और जंग से पीड़ित होगा। सर्वोत्तम रूप से, यह ऊर्जा की लागत को बढ़ाता है और खराब गुणवत्ता वाली भाप, कम दक्षता, कम संयंत्र जीवन और अविश्वसनीय संचालन का कारण बन सकता है। सबसे बुरी स्थिति में, यह विनाशकारी विफलता और जीवन की हानि का कारण बन सकता है। विभिन्न देशों में मानकों में भिन्नता हो सकती है, ऐसी घटनाओं को कम करने या रोकने के लिए कड़े कानूनी, परीक्षण, प्रशिक्षण और प्रमाणन लागू किया जाता है। विफलता मोड में शामिल हैं:
- बॉयलर का अत्यधिक दबाव
- बॉयलर में अपर्याप्त पानी ओवरहीटिंग और पोत की विफलता का कारण बनता है
- अपर्याप्त निर्माण या रखरखाव के कारण बॉयलर की दबाव पोत विफलता।
डबल बॉयलर
डबल भाप कार एक बार-थ्रू टाइप विपरीत प्रवाह उत्पादक का उपयोग करती है, जिसमें एक निरंतर ट्यूब होता है। यहाँ आग नीचे के बजाय कॉइल के ऊपर लगती है। पानी को ट्यूब में सबसे नीचे पंप किया जाता है और भाप को ऊपर से निकाला जाता है। इसका मतलब यह है कि पानी और भाप के प्रत्येक कण को आवश्यक रूप से उत्पादक के प्रत्येक हिस्से से गुजरना चाहिए, जो एक तीव्र परिसंचरण का कारण बनता है जो ट्यूब के अंदर किसी भी तलछट या पैमाने को बनने से रोकता है। पानी इस ट्यूब के निचले हिस्से में 600 feet (183 m) प्रति सेकंड की प्रवाह दर से प्रवेश करता है और किसी भी समय ट्यूब में दो चौथाई से कम पानी हो सकता है।
जैसे ही गर्म गैसें कॉइल के बीच से गुजरती हैं वे धीरे-धीरे ठंडी हो जाती हैं क्योंकि भाप के पानी द्वारा अवशोषित की जा रही है। उत्पादक का अंतिम भाग जिसके साथ गैसें संपर्क में आती हैं तो आने वाला पानी ठंडा रहता है।
जब दबाव पूर्व-निर्धारित बिंदु पर पहुंचता है, तो आग सकारात्मक रूप से कट जाती है, सामान्यतः 750 psi (5.2 MPa) ठंडे पानी के दबाव 1,200 lb (544 kg) पर संग्रह किया जाता है। सुरक्षा वाल्व अतिरिक्त सुरक्षा प्रदान करता है। आग स्वचालित रूप से तापमान के साथ-साथ दबाव से भी कट जाती है इसलिए यदि बॉयलर पूरी तरह से सूख जाता है तो कॉइल को नुकसान पहुंचाना असंभव होगा क्योंकि आग स्वचालित रूप से तापमान से कट जाएगी।
इसी तरह के मजबूत परिसंचरण उत्पादक, जैसे कि प्रिटचर्ड और लैमोंट और वेलॉक्स बॉयलर एक जैसे फायदे प्रस्तुत करते हैं।
अनुप्रयोग
भाप बॉयलरों का उपयोग वहां किया जाता है जहां भाप और गर्म भाप की आवश्यकता होती है इसलिए ऊर्जा व्यवसाय में बिजली का उत्पादन करने के लिए भाप बॉयलरों को उत्पादक के रूप में उपयोग किया जाता है। इसका उपयोग चावल मिलों में हल्का उबालने और सुखाने के लिए भी किया जाता है। उदाहरण - उष्मन तंत्र में या सीमेंट उत्पादन के लिए उद्योग में कई अलग-अलग अनुप्रयोग क्षेत्रों के अलावा भाप बॉयलर का उपयोग कृषि के साथ-साथ मिट्टी की भाप के लिए भी किया जाता है।[8]
परीक्षण
यूएसए में भाप उत्पादक के परीक्षण के लिए प्रमुख कोड अमेरिकन सोसायटी ऑफ मैकेनिकल इंजीनियर्स (ASME) प्रदर्शन परीक्षण कोड, PTC 4 हैं। एक संबंधित घटक पुनर्योजी हवा उष्मक है। हवा उष्मक के लिए प्रदर्शन परीक्षण कोड में प्रमुख संशोधन 2013 में प्रकाशित किया जाएगा। ड्राफ्ट की प्रतियां समीक्षा के लिए उपलब्ध हैं।[9][10] भाप बॉयलरों की स्वीकृति परीक्षण के लिए यूरोपीय मानक एन 12952-15 [11] और एन 12953-11 है।[12] ब्रिटिश मानक बीएस 845-1 और बीएस 845-2 भी यूके में उपयोग में हैं।[13][14]
यह भी देखें
संदर्भ
- ↑ Simmonds, Peter Lund. "सिममंड्स की औपनिवेशिक पत्रिका और विदेशी विविधता". Simmonds and Ward – via Google Books.
- ↑ TREDGOLD, Thomas (1 January 1827). स्टीम इंजन, जिसमें इसके आविष्कार और प्रगतिशील सुधार का एक खाता शामिल है;अपने सिद्धांतों की जांच के साथ ... नेविगेशन, खनन, आवेग मशीनों, और सी के लिए इसके आवेदन का भी विस्तार करना।... द्वारा सचित्र ... प्लेट, और ... लकड़ी की कटौती. J. Taylor. p. 42 – via Internet Archive.
ब्लेकी बेलनाकार बॉयलर।
- ↑ Young, Robert: "Timothy Hackworth and the Locomotive"; the Book guild Ltd, Lewes, U.K. (2000) (reprint of 1923 ed.) p.326
- ↑ Bell, A.M. (1952) Locomotives p 46. Virtue and Company Ltd, London
- ↑ Mischissin, Stephen G. (7 February 2012). "रोचेस्टर विश्वविद्यालय - स्टीम टरबाइन निष्कर्षण लाइन विफलताओं की जांच" (PDF). Arlington, VA. pp. 25–26. Archived from the original (PDF) on 2015-09-23. Retrieved 23 February 2015.
- ↑ राल आयन एक्सचेंज या रिवर्स ऑस्मोसिस का चयन करने के लिए दिशानिर्देश फ़ीड वाटर डिमिनरलाइजेशन के लिए (PDF). Purolite International. November 2003. Retrieved 23 February 2015.
- ↑ Walton J.N. (1965-74) Doble Steam Cars, Buses, Lorries, and Railcars. "Light Steam Power" Isle of Man, UK
- ↑ "बॉयलर जल उपचार सेवाएं".
- ↑ PTC 4-2008
- ↑ PTC 4.3-1968
- ↑ BS EN 12952-15: "Water-tube boilers and auxiliary installations. Acceptance tests." (2003)
- ↑ BS EN 12953-11: "Shell boilers. Acceptance tests." (2003)
- ↑ BS 845-1: "Methods for assessing thermal performance of boilers for steam, hot water and high temperature heat transfer fluids. Concise procedure" (1987)
- ↑ BS 845-2: "Methods for assessing thermal performance of boilers for steam, hot water and high temperature heat transfer fluids. Comprehensive procedure. (1987)
बाहरी संबंध
- Media related to Steam boilers at Wikimedia Commons