स्पर्शोन्मुख विस्तार: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 33: Line 33:
== उदाहरण ==
== उदाहरण ==


[[File:AsymptoticExpansionExample.svg|thumb|गामा फलन (बाएं) के स्पर्शोन्मुख विस्तार में भिन्नात्मक त्रुटि के निरपेक्ष मान के प्लॉट। क्षैतिज अक्ष स्पर्शोन्मुख विस्तार में शब्दों की संख्या है। नीले बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}} और लाल बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;3}}. यह देखा जा सकता है कि कम से कम त्रुटि तब सामने आती है जब के लिए 14 शब्द होते हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}}, और 20 शर्तों के लिए {{nowrap|1=''x''&thinsp;=&thinsp;3}}, जिसके परे त्रुटि विचलन करती है।]]* [[गामा समारोह]] (स्टर्लिंग का सन्निकटन)<math display="block"> \frac{e^x}{x^x\sqrt{2\pi x}} \Gamma(x+1) \sim 1+\frac{1}{12x}+\frac{1}{288x^2}-\frac{139}{51840x^3}-\cdots\ (x \to \infty)</math>
[[File:AsymptoticExpansionExample.svg|thumb|गामा फलन (बाएं) के स्पर्शोन्मुख विस्तार में भिन्नात्मक त्रुटि के निरपेक्ष मान के प्लॉट। क्षैतिज अक्ष स्पर्शोन्मुख विस्तार में शब्दों की संख्या है। नीले बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}} और लाल बिंदु के लिए हैं {{nowrap|1=''x''&thinsp;=&thinsp;3}}. यह देखा जा सकता है कि कम से कम त्रुटि तब सामने आती है जब के लिए 14 शब्द होते हैं {{nowrap|1=''x''&thinsp;=&thinsp;2}}, और 20 शर्तों के लिए {{nowrap|1=''x''&thinsp;=&thinsp;3}}, जिसके परे त्रुटि विचलन करती है।]]* [[गामा फलन]] (स्टर्लिंग का सन्निकटन)<math display="block"> \frac{e^x}{x^x\sqrt{2\pi x}} \Gamma(x+1) \sim 1+\frac{1}{12x}+\frac{1}{288x^2}-\frac{139}{51840x^3}-\cdots\ (x \to \infty)</math>
* [[घातीय अभिन्न]]<math display="block">x e^x E_1(x) \sim \sum_{n=0}^\infty \frac{(-1)^nn!}{x^n} \ (x \to \infty) </math>
* [[घातीय अभिन्न]]<math display="block">x e^x E_1(x) \sim \sum_{n=0}^\infty \frac{(-1)^nn!}{x^n} \ (x \to \infty) </math>
* [[लॉगरिदमिक इंटीग्रल]]<math display="block">\operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^{\infty} \frac{k!}{(\ln x)^k}</math>
* [[लॉगरिदमिक इंटीग्रल]]<math display="block">\operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^{\infty} \frac{k!}{(\ln x)^k}</math>
* [[रीमैन जीटा फ़ंक्शन|रीमैन जीटा फलन]]<math display="block">\zeta(s) \sim \sum_{n=1}^{N}n^{-s} - \frac{N^{1-s}}{s-1} - \frac{N^{-s}}{2} + N^{-s} \sum_{m=1}^\infty \frac{B_{2m} s^{\overline{2m-1}}}{(2m)! N^{2m-1}}</math>कहाँ पे <math>B_{2m}</math> [[बर्नौली नंबर]] हैं और <math>s^{\overline{2m-1}}</math> एक उभरता हुआ भाज्य है। यह विस्तार सभी जटिल एस के लिए मान्य है और प्रायः एन के बड़े पर्याप्त मूल्य का उपयोग करके जीटा फलन की गणना करने के लिए प्रयोग किया जाता है, उदाहरण के लिए <math>N > |s|</math>.
* [[रीमैन जीटा फ़ंक्शन|रीमैन जीप फलन]]<math display="block">\zeta(s) \sim \sum_{n=1}^{N}n^{-s} - \frac{N^{1-s}}{s-1} - \frac{N^{-s}}{2} + N^{-s} \sum_{m=1}^\infty \frac{B_{2m} s^{\overline{2m-1}}}{(2m)! N^{2m-1}}</math>जहाँ पर <math>B_{2m}</math> [[बर्नौली नंबर]] हैं और <math>s^{\overline{2m-1}}</math> एक उभरता हुआ भाज्य है। यह विस्तार सभी जटिल S के लिए मान्य है और प्रायः N के बड़े पर्याप्त मूल्य का उपयोग करके जीटा फलन की गणना करने के लिए प्रयोग किया जाता है, उदाहरण के लिए <math>N > |s|</math>.
* [[त्रुटि समारोह]]<math display="block"> \sqrt{\pi}x e^{x^2}{\rm erfc}(x) \sim 1+\sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{(2x^2)^n} \ (x \to \infty)</math> कहाँ पे {{math|(2''n''&thinsp;−&thinsp;1)!!}} [[डबल फैक्टोरियल]] है।
* [[त्रुटि फलन]]<math display="block"> \sqrt{\pi}x e^{x^2}{\rm erfc}(x) \sim 1+\sum_{n=1}^\infty (-1)^n \frac{(2n-1)!!}{(2x^2)^n} \ (x \to \infty)</math> जहाँ पर {{math|(2''n''&thinsp;−&thinsp;1)!!}} [[दोगुना भाज्य]] है।


== काम किया उदाहरण ==
== काम किया उदाहरण ==

Revision as of 12:49, 27 December 2022

गणित में, स्पर्शोन्मुख विस्तार, स्पर्शोन्मुख श्रृंखला या पॉइंकेयर विस्तार (हेनरी पॉइनकेयर के बाद) कार्यों की एक औपचारिक श्रृंखला है, जिसमें वह गुण है जो शब्दों की सीमित संख्या के बाद श्रृंखला को छोटा करता है, किसी दिए गए फलन के लिए एक सन्निकटन प्रदान करता है क्योंकि फलन का तर्क किसी विशेष की ओर जाता है। डिंगल (1973) द्वारा की गयी जांच से पता चला है कि स्पर्शोन्मुख विस्तार का भिन्न भाग हाल ही में अर्थपूर्ण है, अर्थात इसमें विस्तारित फलन के सटीक मूल्य के बारे में जानकारी समिलित है।

स्पर्शोन्मुख विस्तार का सबसे आम प्रकार सकारात्मक या नकारात्मक घातांकों में एक घातांक श्रृंखला है। इस तरह के विस्तार को उत्पन्न करने के तरीके में यूलर-मैकलॉरिन योग सूत्र और लाप्लास रूपांतरण और मेलिन रूपांतरण समिलित हैं। भागों द्वारा बार-बार एकीकरण प्रायः एक स्पर्शोन्मुख विस्तार को जन्म देता है।

चूंकि एक अभिसरण टेलर श्रृंखला स्पर्शोन्मुख विस्तार की परिभाषा के लिए ठीक बैठती है, इसलिए स्पर्शोन्मुख श्रृंखला का वाक्यांश समान्यतः एक गैर-अभिसरण श्रृंखला का अर्थ है। गैर-अभिसरण के बावजूद, स्पर्शोन्मुख विस्तार तब उपयोगी होता है जब शब्दों को एक सीमित संख्या में काट दिया जाता है। सन्निकटन विस्तारित किए जा रहे फलन की तुलना में अधिक गणितीय रूप से ट्रैक्टेबल होने या विस्तारित फलन की गणना की गति में वृद्धि के द्वारा लाभ प्रदान कर सकता है। समान्यतः, सबसे अच्छा सन्निकटन तब दिया जाता है जब श्रृंखला को सबसे छोटे पद पर छोटा किया जाता है। एक स्पर्शोन्मुख विस्तार को इष्टतम रूप से छोटा करने के इस तरीका को 'सुपरएसिम्प्टोटिक्स' के रूप में जाना जाता है।[1] जब त्रुटि समान्यतः ~ exp(−c/ε) के रूप में होती है जहाँ ε विस्तार पैरामीटर है। त्रुटि इस प्रकार विस्तार पैरामीटर में सभी आदेशों से परे है। सुपरएसिम्प्टोटिक त्रुटि में सुधार संभव है, जैसे, डायवर्जेंट टेल के लिए बोरेल पुनर्जीवन जैसे रिज्यूमेशन तरीकों

को नियोजित करके। इस तरह के तरीकों को प्रायः हाइपरएसिम्प्टोटिक सन्निकटन के रूप में जाना जाता है।

इस आलेख में प्रयुक्त अंकन के लिए स्पर्शोन्मुख विश्लेषण और बिग ओ नोटेशन देखें।

औपचारिक परिभाषा

पहले हम एक स्पर्शोन्मुख पैमाने को परिभाषित करते हैं, और फिर एक स्पर्शोन्मुख विस्तार की औपचारिक परिभाषा देते हैं।

यदि किसी कार्यक्षेत्र पर निरंतर कार्यों का अनुक्रम है, और यदि कार्यक्षेत्र का एक सीमा बिंदु है, तो अनुक्रम एक स्पर्शोन्मुख पैमाने का गठन करता है। यदि प्रत्येक n के लिए,

( को अनंत के रूप में लिया जा सकता है।) दूसरे शब्दों में, कार्यों का एक क्रम स्पर्शोन्मुख पैमाना है यदि अनुक्रम में प्रत्येक कार्य सख्ती से धीमा हो जाता है (सीमा में) ) पिछले समारोह की तुलना में।

यदिस्पर्शोन्मुख पैमाने के कार्यक्षेत्र पर एक निरंतर कार्य है, तब f के पास एक औपचारिक श्रृंखला के रूप में पैमाने के संबंध में, क्रम का स्पर्शोन्मुख विस्तार है

यदि

या

अगर एक या अन्य सभी के लिए लागू होता है, तो हम लिखते हैं[citation needed]

के एक अभिसरण श्रृंखला के विपरीत, जिसमें श्रृंखला सीमा में किसी निश्चित के लिए एक सीमा में अभिसरित करती है , कोई स्पर्शोन्मुख श्रृंखला के बारे में सोच सकता है कि सीमा में (साथ में संभवतः अनंत)।

उदाहरण

गामा फलन (बाएं) के स्पर्शोन्मुख विस्तार में भिन्नात्मक त्रुटि के निरपेक्ष मान के प्लॉट। क्षैतिज अक्ष स्पर्शोन्मुख विस्तार में शब्दों की संख्या है। नीले बिंदु के लिए हैं x = 2 और लाल बिंदु के लिए हैं x = 3. यह देखा जा सकता है कि कम से कम त्रुटि तब सामने आती है जब के लिए 14 शब्द होते हैं x = 2, और 20 शर्तों के लिए x = 3, जिसके परे त्रुटि विचलन करती है।

* गामा फलन (स्टर्लिंग का सन्निकटन)

  • घातीय अभिन्न
  • लॉगरिदमिक इंटीग्रल
  • रीमैन जीप फलन
    जहाँ पर बर्नौली नंबर हैं और एक उभरता हुआ भाज्य है। यह विस्तार सभी जटिल S के लिए मान्य है और प्रायः N के बड़े पर्याप्त मूल्य का उपयोग करके जीटा फलन की गणना करने के लिए प्रयोग किया जाता है, उदाहरण के लिए .
  • त्रुटि फलन
    जहाँ पर (2n − 1)!! दोगुना भाज्य है।

काम किया उदाहरण

स्पर्शोन्मुख विस्तार प्रायः तब होता है जब एक औपचारिक अभिव्यक्ति में एक साधारण श्रृंखला का उपयोग किया जाता है जो अभिसरण के अपने कार्यक्षेत्र के बाहर मूल्यों को लेने के लिए मजबूर करता है। इस प्रकार, उदाहरण के लिए, कोई साधारण श्रृंखला से शुरू कर सकता है

बाईं ओर की अभिव्यक्ति पूरे जटिल तल पर मान्य है , जबकि दाहिनी ओर केवल के लिए अभिसरित होता है . से गुणा करना और दोनों पक्षों को एकीकृत करने से प्रतिफल प्राप्त होता है

प्रतिस्थापन के बाद दाहिने हाथ की ओर। बायीं ओर समाकल, जिसे कौशी प्रमुख मूल्य के रूप में समझा जाता है, को चरघातांकी समाकलन के रूप में व्यक्त किया जा सकता है। दाहिनी ओर के समाकल को गामा फलन के रूप में पहचाना जा सकता है। दोनों का मूल्यांकन करने पर, व्यक्ति स्पर्शोन्मुख विस्तार प्राप्त करता है

यहाँ, t के किसी भी गैर-शून्य मान के लिए दाहिनी ओर स्पष्ट रूप से अभिसारी नहीं है। हालाँकि, शृंखला को शब्दों की एक सीमित संख्या के दाईं ओर छोटा करके, एक व्यक्ति के मूल्य के लिए काफी अच्छा सन्निकटन प्राप्त कर सकता है पर्याप्त छोटे टी के लिए। स्थानापन्न और यह ध्यान में रखते हुए परिणाम इस लेख में पहले दिए गए स्पर्शोन्मुख विस्तार में हैं।

गुण

किसी दिए गए स्पर्शोन्मुख पैमाने के लिए विशिष्टता

किसी दिए गए स्पर्शोन्मुख पैमाने के लिए समारोह का स्पर्शोन्मुख विस्तार अनोखा है।[2] वह गुणांक है निम्नलिखित तरीके से विशिष्ट रूप से निर्धारित हैं:

कहाँ पे इस स्पर्शोन्मुख विस्तार का सीमा बिंदु है (हो सकता है ).

किसी दिए गए फलन के लिए गैर-विशिष्टता

एक दिया गया कार्य कई स्पर्शोन्मुख विस्तार हो सकते हैं (प्रत्येक एक अलग स्पर्शोन्मुख पैमाने के साथ)।[2]


अधीनता

एक स्पर्शोन्मुख विस्तार एक से अधिक कार्यों के लिए स्पर्शोन्मुख विस्तार हो सकता है।[2]


यह भी देखें

संबंधित क्षेत्र

स्पर्शोन्मुख तरीके

टिप्पणियाँ

  1. Boyd, John P. (1999), "The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series" (PDF), Acta Applicandae Mathematicae, 56 (1): 1–98, doi:10.1023/A:1006145903624, hdl:2027.42/41670.
  2. 2.0 2.1 2.2 S.J.A. Malham, "An introduction to asymptotic analysis", Heriot-Watt University.


संदर्भ

बाहरी संबंध