प्रमात्रा रसायनिकी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:


{{Short description|Chemistry based on quantum physics}}{{multiple issues|
{{Short description|Chemistry based on quantum physics}}'''प्रमात्रा रसायन विज्ञान''', जिसे आणविक [[क्वांटम यांत्रिकी|प्रमात्रा यांत्रिकी]] भी कहा जाता है, रासायनिक प्रणालियों के लिए प्रमात्रा यांत्रिकी के अनुप्रयोग पर केंद्रित [[भौतिक रसायन]] विज्ञान की एक शाखा है, विशेष रूप से [[अणु|अणुओं]], [[सामग्री|सामग्रियों]]  और समाधानों के भौतिक और रासायनिक गुणों में वैद्युतकशास्त्र योगदान की प्रमात्रा-यांत्रिक गणना की ओर परमाणु स्तर। इन गणनाओं में व्यवस्थित रूप से लागू किए गए सन्निकटन सम्मलित हैं, जिनका उद्देश्य गणनाओं को  कम्प्यूटेशनल रूप से व्यवहार्य बनाने के  साथ-साथ गणना किए गए [[तरंग क्रिया]] के साथ-साथ संरचनाओं, स्पेक्ट्रा और ऊष्मप्रवैगिकी गुणों जैसे अवलोकन योग्य गुणों के बारे में अधिक से अधिक जानकारी प्राप्त करना है। प्रमात्रा रसायन विज्ञान आणविक गतिशीलता और रासायनिक गतिज पर प्रमात्रा  प्रभावों की गणना से भी संबंधित है।
{{Cleanup|reason=weak and misleading information content|date=January 2011}}
{{No footnotes|date=December 2012}}
}}
प्रमात्रा रसायन विज्ञान, जिसे आणविक [[क्वांटम यांत्रिकी|प्रमात्रा यांत्रिकी]] भी कहा जाता है, रासायनिक प्रणालियों के लिए प्रमात्रा यांत्रिकी के अनुप्रयोग पर केंद्रित [[भौतिक रसायन]] विज्ञान की एक शाखा है, विशेष रूप से [[अणु|अणुओं]], [[सामग्री|सामग्रियों]]  और समाधानों के भौतिक और रासायनिक गुणों में वैद्युतकशास्त्र योगदान की प्रमात्रा-यांत्रिक गणना की ओर परमाणु स्तर। इन गणनाओं में व्यवस्थित रूप से लागू किए गए सन्निकटन सम्मलित हैं, जिनका उद्देश्य गणनाओं को  कम्प्यूटेशनल रूप से व्यवहार्य बनाने के  साथ-साथ गणना किए गए [[तरंग क्रिया]] के साथ-साथ संरचनाओं, स्पेक्ट्रा और ऊष्मप्रवैगिकी गुणों जैसे अवलोकन योग्य गुणों के बारे में अधिक से अधिक जानकारी प्राप्त करना है। प्रमात्रा रसायन विज्ञान आणविक गतिशीलता और रासायनिक गतिज पर प्रमात्रा  प्रभावों की गणना से भी संबंधित है।


रसायनज्ञ [[स्पेक्ट्रोस्कोपी]] पर बहुत अधिक निर्भर करते हैं जिसके माध्यम से आणविक पैमाने पर ऊर्जा के [[परिमाणीकरण (भौतिकी)]] के बारे में जानकारी प्राप्त की जा सकती है। सामान्य विधियाँ [[इन्फ्रा-रेड (IR) स्पेक्ट्रोस्कोपी]], [[परमाणु चुंबकीय अनुनाद (NMR) स्पेक्ट्रोस्कोपी]] और [[स्कैनिंग जांच माइक्रोस्कोपी]] हैं। प्रमात्रा रसायन शास्त्र स्पेक्ट्रोस्कोपिक डेटा के साथ-साथ अन्य प्रयोगात्मक डेटा की भविष्यवाणी और सत्यापन के लिए भी लागू किया जा सकता है।
रसायनज्ञ [[स्पेक्ट्रोस्कोपी]] पर बहुत अधिक निर्भर करते हैं जिसके माध्यम से आणविक पैमाने पर ऊर्जा के [[परिमाणीकरण (भौतिकी)]] के बारे में जानकारी प्राप्त की जा सकती है। सामान्य विधियाँ [[इन्फ्रा-रेड (IR) स्पेक्ट्रोस्कोपी]], [[परमाणु चुंबकीय अनुनाद (NMR) स्पेक्ट्रोस्कोपी]] और [[स्कैनिंग जांच माइक्रोस्कोपी]] हैं। प्रमात्रा रसायन शास्त्र स्पेक्ट्रोस्कोपिक डेटा के साथ-साथ अन्य प्रयोगात्मक डेटा की भविष्यवाणी और सत्यापन के लिए भी लागू किया जा सकता है।

Revision as of 22:29, 9 January 2023

प्रमात्रा रसायन विज्ञान, जिसे आणविक प्रमात्रा यांत्रिकी भी कहा जाता है, रासायनिक प्रणालियों के लिए प्रमात्रा यांत्रिकी के अनुप्रयोग पर केंद्रित भौतिक रसायन विज्ञान की एक शाखा है, विशेष रूप से अणुओं, सामग्रियों और समाधानों के भौतिक और रासायनिक गुणों में वैद्युतकशास्त्र योगदान की प्रमात्रा-यांत्रिक गणना की ओर परमाणु स्तर। इन गणनाओं में व्यवस्थित रूप से लागू किए गए सन्निकटन सम्मलित हैं, जिनका उद्देश्य गणनाओं को कम्प्यूटेशनल रूप से व्यवहार्य बनाने के साथ-साथ गणना किए गए तरंग क्रिया के साथ-साथ संरचनाओं, स्पेक्ट्रा और ऊष्मप्रवैगिकी गुणों जैसे अवलोकन योग्य गुणों के बारे में अधिक से अधिक जानकारी प्राप्त करना है। प्रमात्रा रसायन विज्ञान आणविक गतिशीलता और रासायनिक गतिज पर प्रमात्रा प्रभावों की गणना से भी संबंधित है।

रसायनज्ञ स्पेक्ट्रोस्कोपी पर बहुत अधिक निर्भर करते हैं जिसके माध्यम से आणविक पैमाने पर ऊर्जा के परिमाणीकरण (भौतिकी) के बारे में जानकारी प्राप्त की जा सकती है। सामान्य विधियाँ इन्फ्रा-रेड (IR) स्पेक्ट्रोस्कोपी, परमाणु चुंबकीय अनुनाद (NMR) स्पेक्ट्रोस्कोपी और स्कैनिंग जांच माइक्रोस्कोपी हैं। प्रमात्रा रसायन शास्त्र स्पेक्ट्रोस्कोपिक डेटा के साथ-साथ अन्य प्रयोगात्मक डेटा की भविष्यवाणी और सत्यापन के लिए भी लागू किया जा सकता है।

कई प्रमात्रा रसायन विज्ञान के अध्ययन वैद्युतकशास्त्र निम्नतम अवस्था और व्यक्तिगत परमाणुओं और अणुओं की उत्साहित स्थिति के साथ-साथ रासायनिक प्रतिक्रियाओं के दौरान होने वाले प्रतिक्रिया मार्गों और संक्रमण अवस्था के अध्ययन पर केंद्रित हैं। स्पेक्ट्रोस्कोपिक गुणों का भी अनुमान लगाया जा सकता है। सामान्यतः, इस प्रकार के अध्ययन मानते हैं कि वैद्युतकशास्त्र तरंग फ़ंक्शन परमाणु स्थितियों (अर्थात, बोर्न-ओपेनहाइमर सन्निकटन) द्वारा एडिएबैटिक रूप से परिचालित होता है। अर्ध-अनुभवजन्य प्रमात्रा रसायन पद्धति सहित विभिन्न प्रकार के दृष्टिकोणों का उपयोग किया जाता है |

श्रोडिंगर समीकरण के कम्प्यूटेशनल समाधान के प्रगतिके माध्यम से वैद्युतकशास्त्र संरचना और आणविक गतिकी को समझना प्रमात्रा रसायन विज्ञान का एक केंद्रीय लक्ष्य है। क्षेत्र में प्रगति कई चुनौतियों पर दक्षता पाने पर निर्भर करती है, जिसमें छोटे आणविक प्रणालियों के लिए परिणामों की सटीकता बढ़ाने की आवश्यकता और बड़े अणुओं के आकार को भी बढ़ाना सम्मलित है, जो वास्तविक रूप से संगणना के अधीन हो सकते हैं, जो स्केलिंग विचारों द्वारा सीमित है - गणना समय परमाणुओं की संख्या की शक्ति के रूप में बढ़ता है।

इतिहास

कुछ लोग प्रमात्रा रसायन विज्ञान के जन्म को श्रोडिंगर समीकरण की खोज और 1926 में हाइड्रोजन परमाणु में इसके अनुप्रयोग के रूप में देखते हैं।[citation needed] चूंकि, वाल्टर हिटलर (1904-1981) और फ्रिट्ज लंदन के 1927 के लेख को प्रायः प्रमात्रा रसायन विज्ञान के इतिहास में पहले मील के पत्थर के रूप में पहचाना जाता है। यह डायटोमिक हाइड्रोजन अणु के लिए प्रमात्रा यांत्रिकी का पहला अनुप्रयोग है, और इस प्रकार रासायनिक बंधन की घटना है। बाद के वर्षों में रॉबर्ट एस. मुल्लिकेन, मैक्स बोर्न, जे. रॉबर्ट ओपेनहाइमर, लिनुस पॉलिंग, एरिच ह्युकेल, डगलस हार्ट्री, व्लादिमीर फॉक जैसे कुछ लोगों ने काफी प्रगति की। प्रमात्रा रसायन विज्ञान का इतिहास माइकल फैराडे द्वारा कैथोड किरणों की 1838 की खोज, गुस्ताव किरचॉफ द्वारा श्याम पिंडों से उत्पन्न विकिरण समस्या के 1859 के बयान, लुडविग बोल्ट्जमैन द्वारा 1877 के सुझाव से भी जाना जाता है कि एक भौतिक प्रणाली की ऊर्जा अवस्था असतत हो सकती है, और मैक्स प्लैंक द्वारा 1900 प्रमात्रा परिकल्पना कि किसी भी ऊर्जा विकिरण परमाणु प्रणाली को सैद्धांतिक रूप से असतत ऊर्जा तत्वों की संख्या में विभाजित किया जा सकता है ε जैसे कि इनमें से प्रत्येक ऊर्जा तत्व आवृत्ति ν के समानुपाती होता है जिसके साथ वे प्रत्येक व्यक्तिगत रूप से ऊर्जा और एक संख्यात्मक मूल्य विकीर्ण करते हैं प्लांक नियतांक कहते हैं। फिर, 1905 में, प्रकाश विद्युत प्रभाव (1839) की व्याख्या करने के लिए, अर्थात, कुछ सामग्रियों पर चमकने वाला प्रकाश सामग्री से इलेक्ट्रॉनों को बाहर निकालने के लिए कार्य कर सकता है, अल्बर्ट आइंस्टीन ने प्लैंक की प्रमात्रा परिकल्पना के आधार पर पोस्ट किया, कि प्रकाश में व्यक्तिगत प्रमात्रा कण होते हैं, जिसे बाद में फोटॉन (1926) कहा जाने लगा। आने वाले वर्षों में, इस सैद्धांतिक आधार को धीरे-धीरे रासायनिक संरचना, प्रतिक्रियाशीलता और बंधन पर लागू किया जाने लगा। संभवतः इस क्षेत्र में सबसे बड़ा योगदान लिनस पॉलिंग का था।[citation needed]


वैद्युतकशास्त्र संरचना

प्रमात्रा रासायनिक समस्या को हल करने में पहला कदम सामान्यतः वैद्युतकशास्त्र आणविक हैमिल्टन के साथ श्रोडिंगर समीकरण (या सापेक्षतावादी प्रमात्रा रसायन विज्ञान में डायराक समीकरण) को हल करना है। इसे अणु की वैद्युतकशास्त्र संरचना का निर्धारण कहा जाता है। यह कहा जा सकता है कि अणु या क्रिस्टल की वैद्युतकशास्त्र संरचना अनिवार्य रूप से इसके रासायनिक गुणों को दर्शाती है। श्रोडिंगर समीकरण के लिए एक सटीक समाधान केवल हाइड्रोजन परमाणु के लिए प्राप्त किया जा सकता है (चूंकि डाइहाइड्रोजन धनायन की बाध्य राज्य ऊर्जाओं के लिए सटीक समाधान लैम्बर्ट डब्ल्यू फ़ंक्शन # सामान्यीकरण के संदर्भ में पहचाने गए हैं)। चूंकि अन्य सभी परमाणु, या आणविक प्रणालियों में तीन या अधिक कणों की गति सम्मलित होती है, उनके श्रोडिंगर समीकरणों को सटीक रूप से हल नहीं किया जा सकता है और इसलिए अनुमानित समाधानों की खोज की जानी चाहिए।

वैलेंस बॉन्ड

यद्यपि प्रमात्रा रसायन विज्ञान का गणितीय आधार 1926 में इरविन श्रोडिंगर | श्रोडिंगर द्वारा रखा गया था, यह सामान्यतः स्वीकार किया जाता है कि प्रमात्रा रसायन विज्ञान में पहली सच्ची गणना जर्मन भौतिकविदों वाल्टर हेटलर और फ्रिट्ज लंदन द्वारा हाइड्रोजन (एच2) 1927 में अणु।[citation needed] हेटलर और लंदन की विधि को अमेरिकी सैद्धांतिक भौतिक विज्ञानी जॉन सी. स्लेटर और अमेरिकी सैद्धांतिक रसायनज्ञ लिनुस पॉलिंग ने वैलेंस-बॉन्ड (वीबी) [या हेटलर-लंदन-स्लेटर-पॉलिंग (एचएलएसपी)] विधि बनने के लिए विस्तारित किया था। इस पद्धति में, ध्यान मुख्य रूप से परमाणुओं के बीच जोड़ीदार अंतःक्रियाओं के लिए समर्पित है, और इसलिए यह विधि शास्त्रीय रसायनज्ञों के रासायनिक बंधन के चित्र के साथ निकटता से संबंधित है। यह इस बात पर ध्यान केंद्रित करता है कि एक परमाणु के परमाणु ऑर्बिटल्स एक अणु के बनने पर अलग-अलग रासायनिक बांड देने के लिए कैसे गठबंधन करते हैं, जिसमें कक्षीय संकरण और अनुनाद (रसायन विज्ञान) की दो प्रमुख अवधारणाओं को सम्मलित किया गया है।

आणविक कक्षीय

ब्यूटाडाइइन का एक प्रति-बंधन आणविक कक्षीय

फ्रेडरिक डॉग और रॉबर्ट एस. मुल्लिकेन द्वारा 1929 में एक वैकल्पिक दृष्टिकोण विकसित किया गया था, जिसमें लेक्ट्रॉनॉन का वर्णन गणितीय कार्यों द्वारा किया जाता है जो एक पूरे अणु पर विस्थानित किए जाते हैं। हंड-मुल्लिकेन दृष्टिकोण या आणविक कक्षीय (एमओ) विधि रसायनज्ञों के लिए कम सहज है, किन्तु वीबी विधि से श्रेष्ठ स्पेक्ट्रोस्कोपी की भविष्यवाणी करने में सक्षम हो गई है। यह दृष्टिकोण हार्ट्री-फॉक पद्धति का वैचारिक आधार है और आगे हार्ट्री-फॉक विधियों के बाद है।

घनत्व कार्यात्मक सिद्धांत

थॉमस-फर्मी मॉडल को 1927 में एल. एच. थॉमस और एनरिको फर्मी द्वारा स्वतंत्र रूप से विकसित किया गया था। यह तरंग कार्यों के अतिरिक्त वैद्युतकशास्त्र घनत्व के आधार पर कई-इलेक्ट्रॉन प्रणालियों का वर्णन करने का पहला प्रयास था, चूंकि यह पूरे अणुओं के उपचार में बहुत सफल नहीं रहा। विधि ने उस आधार को प्रदान किया जिसे अब घनत्व कार्यात्मक सिद्धांत (डीएफटी) के रूप में जाना जाता है। आधुनिक युग में डीएफटी कोह्न-शाम समीकरण उपयोग करता है, जहां कार्यात्मक घनत्व को चार पदों में विभाजित किया जाता है; कोहन-शाम गतिज ऊर्जा, एक बाहरी क्षमता, विनिमय और सहसंबंध ऊर्जा। डीएफटी के प्रगति पर ध्यान केंद्रित करने का एक बड़ा हिस्सा लेन - देन और सहसंबंध शर्तों में सुधार पर है। चूंकि यह विधि पोस्ट हार्ट्री-फॉक विधियों की तुलना में कम विकसित है, इसकी काफी कम कम्प्यूटेशनल आवश्यकताएं (स्केलिंग सामान्यतः एन से भी बुरा नहीं है) n 3 आधार कार्यों के संबंध में, शुद्ध कार्यात्मकों के लिए) इसे बड़े बहुपरमाणुक अणुओं और यहां तक ​​कि मैक्रो मोलेक्यूल से निपटने की अनुमति देता है। मोलर-प्लेसेट गड़बड़ी सिद्धांत और युग्मित क्लस्टर सीसीएसडी (टी) (पोस्ट-हार्ट्री-फॉक विधियों) के लिए यह कम्प्यूटेशनल सामर्थ्य और अधिकांशतः तुलनीय सटीकता ने इसे कम्प्यूटेशनल रसायन विज्ञान में सबसे लोकप्रिय प्रणाली में से एक बना दिया है।

रासायनिक गतिकी

अणुओं की गति का अध्ययन करने के लिए एक और कदम में कुल आणविक हैमिल्टनियन के साथ श्रोडिंगर समीकरण को हल करना सम्मलित हो सकता है। श्रोडिंगर समीकरण के प्रत्यक्ष समाधान को प्रमात्रा गतिकी कहा जाता है, जबकि अर्धशास्त्रीय भौतिकी सन्निकटन के भीतर इसके समाधान को अर्धशास्त्रीय गतिकी कहा जाता है। आणविक गति के विशुद्ध रूप से शास्त्रीय यांत्रिकी सिमुलेशन को आणविक गतिकी (एमडी) के रूप में संदर्भित किया जाता है। गतिशीलता के लिए एक अन्य दृष्टिकोण मिश्रित प्रमात्रा-शास्त्रीय गतिशीलता के रूप में जाना जाने वाला एक संकर स्वरूप है; अभी तक एक और हाइब्रिड स्वरूप आणविक गतिशीलता में प्रमात्रा सुधार जोड़ने के लिए पथ अभिन्न सूत्रीकरण सूत्रीकरण का उपयोग करता है, जिसे पथ अभिन्न आणविक गतिशीलता कहा जाता है। सांख्यिकीय दृष्टिकोण, उदाहरण के लिए शास्त्रीय और प्रमात्रा मोंटे कार्लो विधियों का उपयोग करना भी संभव है और विशेष रूप से अवस्था संतुलन वितरण का वर्णन करने के लिए उपयोगी है।

रुद्धोष्म रासायनिक गतिकी

रुद्धोष्म गतिकी में, अंतरापरमाण्विक अन्योन्यक्रियाओं को एकल अदिश (भौतिकी) संभाव्यता द्वारा प्रदर्शित किया जाता है जिसे संभावित ऊर्जा सतह कहा जाता है। यह 1927 में मैक्स बोर्न और रॉबर्ट ओपेनहाइमर द्वारा निवेदित किया गया बोर्न-ओपेनहाइमर सन्निकटन है। रसायन विज्ञान में इसके अग्रणी अनुप्रयोगों को 1927 में राइस और रामस्परगर और 1928 में कासेल द्वारा प्रदर्शित किया गया था, और 1952 में मार्कस द्वारा आरआरकेएम सिद्धांत में सामान्यीकृत किया गया था जिन्होंने संक्रमण अवस्था सिद्धांत लिया था। 1935 में हेनरी आइरिंग (रसायनज्ञ) द्वारा विकसित संक्रमण अवस्था सिद्धांत को ध्यान में रखा। ये विधियां संभावित सतह की कुछ विशेषताओं से अनिमोल्यूलर प्रतिक्रिया दर के सरल अनुमानों को सक्षम करती हैं।

गैर-स्थिरोष्म रासायनिक गतिशीलता

गैर-स्थिरोष्म गतिशीलता में कई युग्मित संभावित ऊर्जा सतह (अणु के विभिन्न वैद्युतकशास्त्र प्रमात्रा अवस्था के अनुरूप) के बीच बातचीत करना सम्मलित है। युग्मन शर्तों को वाइब्रोनिक कपलिंग कहा जाता है। इस क्षेत्र में अग्रणी काम 1930 के दशक में अर्नस्ट स्टुएकेलबर्ग, लेव डेविडोविच लैंडौ और क्लेरेंस जेनर द्वारा किया गया था, जिसे अब लैंडौ-जेनर संक्रमण के रूप में जाना जाता है। उनका सूत्र गणना करने के लिए टाले पार करने से परहेज किया के पड़ोस में दो मधुमेह संभावित घटता के बीच संक्रमण की संभावना की अनुमति देता है | स्पिन-निषिद्ध प्रतिक्रियाएं एक प्रकार की गैर-स्थिरोष्म प्रतिक्रियाएं होती हैं जहां स्पिन अवस्था (डी इलेक्ट्रॉनों) में कम से कम एक परिवर्तन तब होता है जब अभिकर्मक से उत्पाद (रसायन विज्ञान) में प्रगति होती है।

यह भी देखें


संदर्भ

  • Atkins, P.W. (2002). Physical Chemistry. Oxford University Press. ISBN 0-19-879285-9.
  • Atkins, P.W.; Friedman, R. (2005). Molecular Quantum Mechanics (4th ed.). Oxford University Press. ISBN 978-0-19-927498-7.
  • Atkins, P.W.; Friedman, R. (2008). Quanta, Matter and Change: A Molecular Approach to Physical Change. ISBN 978-0-7167-6117-4.
  • Bader, Richard (1994). Atoms in Molecules: A Quantum Theory. Oxford University Press. ISBN 978-0-19-855865-1.
  • Gavroglu, Kostas; Ana Simões: Neither Physics nor Chemistry: A History of Quantum Chemistry, MIT Press, 2011, ISBN 0-262-01618-4
  • Karplus M., Porter R.N. (1971). Atoms and Molecules. An introduction for students of physical chemistry, Benjamin–Cummings Publishing Company, ISBN 978-0-8053-5218-4
  • Landau, L.D.; Lifshitz, E.M. (1977). Quantum Mechanics:Non-relativistic Theory. Course of Theoretical Physic. Vol. 3. Pergamon Press. ISBN 0-08-019012-X.
  • Levine, I. (2008). Physical Chemistry (6th ed.). McGraw–Hill Science. ISBN 978-0-07-253862-5.
  • McWeeny, R. (1979). Coulson's Valence. Oxford Science Publications. ISBN 0-19-855144-4.
  • Pauling, L. (1954). General Chemistry. Dover Publications. ISBN 0-486-65622-5.
  • Pauling, L.; Wilson, E. B. (1963) [1935]. Introduction to Quantum Mechanics with Applications to Chemistry. Dover Publications. ISBN 0-486-64871-0.
  • Pullman, Bernard; Pullman, Alberte (1963). Quantum Biochemistry. New York and London: Academic Press. ISBN 90-277-1830-X.
  • Scerri, Eric R. (2006). The Periodic Table: Its Story and Its Significance. Oxford University Press. ISBN 0-19-530573-6. Considers the extent to which chemistry and especially the periodic system has been reduced to quantum mechanics.
  • Simon, Z. (1976). Quantum Biochemistry and Specific Interactions. Taylor & Francis. ISBN 978-0-85626-087-2.
  • Szabo, Attila; Ostlund, Neil S. (1996). Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover. ISBN 0-486-69186-1.


बाहरी संबंध