सामान्यीकरण (सांख्यिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{other uses|सामान्यीकरण स्थिरांक}} | {{other uses|सामान्यीकरण स्थिरांक}} | ||
Line 49: | Line 49: | ||
}} | }} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with short description]] | |||
[[Category:Created On 05/01/2023]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:सांख्यिकीय अनुपात]] | [[Category:सांख्यिकीय अनुपात]] | ||
Revision as of 13:20, 18 January 2023
आँकड़ों और आँकड़ों के अनुप्रयोगों में, सामान्यीकरण के कई अर्थ हो सकते हैं।[1] सरलतम स्थितियों में, रेटिंग के सामान्यीकरण का अर्थ है विभिन्न पैमानों पर मापे गए मानों को सामान्य रूप से सामान्य पैमाने पर समायोजित करना, अधिकांशतः औसत से पहले इसे समायोजित कर लिया जाता हैं। अधिक जटिल स्थितियों में, सामान्यीकरण अधिक परिष्कृत समायोजन को संदर्भित कर सकता है जहां समायोजित मूल्यों के संपूर्ण संभावना वितरण को संरेखण में लाने का आशय है। शैक्षिक मूल्यांकन में अंकों के सामान्यीकरण के स्थिति में, वितरण को सामान्य वितरण के साथ संरेखित करने का आशय हो सकता है। संभाव्यता वितरण के सामान्यीकरण के लिए अलग दृष्टिकोण [[ मात्रा त्मक सामान्यीकरण ]] है, जहां विभिन्न उपायों की मात्राओं को संरेखण में लाया जाता है।
आँकड़ों में अन्य उपयोग में, सामान्यीकरण आँकड़ों के स्थानांतरित और स्केल किए गए संस्करणों के निर्माण को संदर्भित करता है, जहाँ आशय यह है कि ये सामान्यीकृत मान विभिन्न डेटासेट के लिए सामान्यीकृत मूल्यों की तुलना की अनुमति देते हैं, जो कुछ सकल प्रभावों के प्रभाव को समाप्त करता है, जैसा कि विसंगति समय श्रृंखला में। कुछ आकार चर के सापेक्ष मूल्यों पर पहुंचने के लिए कुछ प्रकार के सामान्यीकरण में केवल पुनर्संरचना सम्मलित होती है। माप के स्तर के संदर्भ में, ऐसे अनुपात केवल अनुपात मापन के लिए मायने रखते हैं (जहां माप के अनुपात अर्थपूर्ण हैं), न कि अंतराल माप (जहां केवल दूरियां अर्थपूर्ण हैं, लेकिन अनुपात नहीं)।
सैद्धांतिक आँकड़ों में, पैरामीट्रिक सामान्यीकरण अधिकांशतः निर्णायक मात्रा में ले जा सकता है - ऐसे कार्य जिनके नमूना वितरण मापदंडों पर निर्भर नहीं होते हैं - और सहायक आँकड़ों के लिए - महत्वपूर्ण मात्राएँ जो बिना मापदंडों को जाने, टिप्पणियों से गणना की जा सकती हैं।
उदाहरण
आँकड़ों में विभिन्न प्रकार के सामान्यीकरण हैं - त्रुटियों, अवशिष्टों, साधनों और मानक विचलन के गैर-आयामी अनुपात, जो कि स्केल अपरिवर्तनीय हैं - जिनमें से कुछ को निम्नानुसार संक्षेपित किया जा सकता है। ध्यान दें कि माप के स्तरों के संदर्भ में, ये अनुपात केवल अनुपात माप के लिए मायने रखते हैं (जहां माप के अनुपात अर्थपूर्ण हैं), अंतराल माप नहीं (जहां केवल दूरी सार्थक हैं, लेकिन अनुपात नहीं)। यह भी देखें :श्रेणी:सांख्यिकीय अनुपात।
नाम | सूत्र | उपयोग |
---|---|---|
मानक प्राप्तांक | जनसंख्या पैरामीटर ज्ञात होने पर त्रुटियों को सामान्य करना। सामान्य रूप से वितरित आबादी के लिए अच्छी तरह से काम करता है।[2] | |
विद्यार्थी का टी-सांख्यिकी | इसकी मानक त्रुटि द्वारा सामान्यीकृत, इसके परिकल्पित मूल्य से एक पैरामीटर के अनुमानित मूल्य का प्रस्थान करता है। | |
विद्यार्थी अवशिष्ट | जब मापदंडों का अनुमान लगाया जाता है, तो अवशेषों को सामान्य करना, विशेष रूप से प्रतिगमन विश्लेषण में विभिन्न डेटा बिंदुओं पर केंद्रित रहता है। | |
मानकीकृत क्षण | मानक विचलन का उपयोग करते हुए क्षणों को पैमाने के उपाय के रूप में सामान्य करना । | |
का गुणांक | माध्य का उपयोग करते हुए फैलाव को सामान्य करना पैमाने के एक उपाय के रूप में, विशेष रूप से सकारात्मक वितरण जैसे कि घातीय वितरण और पॉसॉन वितरण के लिए। | |
न्यूनतम-अधिकतम सुविधा स्केलिंग | फ़ीचर स्केलिंग का उपयोग सभी मानों को [0,1] श्रेणी में लाने के लिए किया जाता है। इसे एकता-आधारित सामान्यीकरण भी कहा जाता है। इसे किसी भी स्वैच्छिक बिंदुओं के बीच डेटासेट में मानों की श्रेणी को प्रतिबंधित करने के लिए और को सामान्यीकृत किया जा सकता है , उदाहरण के लिए
. |
ध्यान दें कि कुछ अन्य अनुपात, जैसे भिन्नता-से-माध्य अनुपात , सामान्यीकरण के लिए भी किया जाता है, लेकिन गैर-आयामी नहीं हैं: इकाइयां नष्ट नहीं होती हैं, और इस प्रकार अनुपात में इकाइयां होती हैं, और यह स्केल-इनवेरिएंट नहीं है।
अन्य प्रकार
अन्य गैर-आयामी सामान्यीकरण जिनका उपयोग वितरण पर बिना किसी धारणा के किया जा सकता है:
- प्रतिशतक का असाइनमेंट। यह मानकीकृत परीक्षणों पर सरल है। मात्रात्मक सामान्यीकरण भी देखें।
- स्थिरांकों को जोड़कर और/या गुणा करके सामान्यीकरण इसलिए मान 0 और 1 के बीच आते हैं। इसका उपयोग संभाव्यता घनत्व समारोह के लिए किया जाता है, जैसे कि भौतिक रसायन विज्ञान जैसे क्षेत्रों में संभावनाओं को |ψ|2 द्वारा निर्दिष्ट करने के लिए उपयोग किया जाता हैं।
यह भी देखें
संदर्भ
- ↑ Dodge, Y (2003) The Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9 (entry for normalization of scores)
- ↑ Freedman, David; Pisani, Robert; Purves, Roger (2007-02-20). Statistics: Fourth International Student Edition (in English). W.W. Norton & Company. ISBN 9780393930436.