चतुर्विम यूक्लिडीन समष्टि में घूर्णन: Difference between revisions
No edit summary |
(TEXT) |
||
Line 1: | Line 1: | ||
{{short description|Special orthogonal group}} | {{short description|Special orthogonal group}} | ||
गणित में, चार-आयामी यूक्लिडीय स्थल में एक निश्चित बिंदु के चारों ओर घूर्णन के [[ समूह (गणित) |समूह (गणित)]] को SO(4) द्वारा निरूपित किया जाता है। नाम इस तथ्य से आता है कि यह क्रम 4 का [[ विशेष ऑर्थोगोनल समूह | विशेष आयतीय समूह]] है। | |||
गणित में, चार-आयामी | |||
इस लेख में ''घूर्णन (गणित)'' का अर्थ है ''घूर्णी विस्थापन''। विशिष्टता के लिए, | इस लेख में ''घूर्णन (गणित)'' का अर्थ है ''घूर्णी विस्थापन''। विशिष्टता के लिए, घूर्णन कोणों को खंड {{closed-closed|0, π}} में माना जाता है सिवाय जहां उल्लेख किया गया हो या अन्यथा संदर्भ द्वारा स्पष्ट रूप से निहित हो। | ||
स्थिर तल वह तल होता है जिसके लिए तल का प्रत्येक सदिश घूर्णन के बाद अपरिवर्तित रहता है। एक अपरिवर्तनीय | स्थिर तल वह तल होता है जिसके लिए तल का प्रत्येक सदिश घूर्णन के बाद अपरिवर्तित रहता है। एक अपरिवर्तनीय तल एक तल है जिसके लिए तल में प्रत्येक सदिश घूर्णन के बाद तल में रहता है, हालांकि यह घूर्णन से प्रभावित हो सकता है। | ||
== 4D घुमावों की ज्यामिति == | == 4D घुमावों की ज्यामिति == | ||
चार आयामी घुमाव दो प्रकार के होते हैं: साधारण घुमाव और दोहरा घुमाव। | चार आयामी घुमाव दो प्रकार के होते हैं: साधारण घुमाव और दोहरा घुमाव। | ||
=== | === साधारण घुमाव === | ||
एक साधारण घुमाव | एक घूर्णन केंद्र O के चारों ओर एक साधारण घुमाव R एक पूरे तल A को O (अक्ष-तल) के माध्यम से तय करता है। प्रत्येक तल B जो पूरी तरह से आयतीय है [a] A को एक निश्चित बिंदु P पर काटता है। ऐसा प्रत्येक बिंदु P, B में R द्वारा प्रेरित 2D घुमाव का केंद्र है। इन सभी 2D घुमावों का घूर्णन कोण {{mvar|α}} समान है। | ||
अक्ष-तल A में O से अर्ध-रेखाएँ विस्थापित नहीं होती हैं; O आयतीय से A तक की आधी-रेखाएँ α के माध्यम से विस्थापित होती हैं; अन्य सभी अर्ध-रेखाएँ α से कम कोण के माध्यम से विस्थापित होती हैं. | |||
=== | === युग्म घूर्णन === | ||
[[File:Tesseract.gif|thumb|[[ Tesseract ]], [[ त्रिविम प्रक्षेपण ]] में, | [[File:Tesseract.gif|thumb|[[ Tesseract ]], [[ त्रिविम प्रक्षेपण ]] में, युग्म घूर्णन में]] | ||
प्रत्येक घूर्णन के लिए {{mvar|R}} 4-स्थल (उत्पत्ति को ठीक करना) में, अचर 2-प्लेन की कम से कम एक जोड़ी है {{mvar|A}} और {{mvar|B}} जिनमें से प्रत्येक अपरिवर्तनीय है और जिसका प्रत्यक्ष योग {{math|''A'' ⊕ ''B''}} सभी 4-स्थलीय है। अतः इनमें से किसी भी तल {{mvar|R}} पर काम करने से उस तल का एक सामान्य घुमाव पैदा होता है। लगभग सभी {{mvar|R}} (3-आयामी सबसेट को छोड़कर घूर्णन के सभी 6-आयामी सम्मुच्चय) के लिए, घूर्णन कोण {{mvar|α}} तल में {{mvar|A}} और {{mvar|β}} तल में {{mvar|B}} - दोनों को अशून्य माना जाता है - अलग हैं। असमान घूर्णन कोण {{mvar|α}} और {{mvar|β}} संतुष्टि देने वाला {{math|−π < ''α''}}, {{math|''β'' < π}} लगभग {{efn|group=nb|Assuming that 4-space is oriented, then an orientation for each of the 2-planes {{mvar|A}} and {{mvar|B}} can be chosen to be consistent with this orientation of 4-space in two equally valid ways. If the angles from one such choice of orientations of {{mvar|A}} and {{mvar|B}} are {{math|{''α'', ''β''<nowiki>}</nowiki>}}, then the angles from the other choice are {{math|{−''α'', −''β''<nowiki>}</nowiki>}}. (In order to measure a rotation angle in a 2-plane, it is necessary to specify an orientation on that 2-plane. A rotation angle of −{{pi}} is the same as one of +{{pi}}. If the orientation of 4-space is reversed, the resulting angles would be either {{math|{''α'', −''β''<nowiki>}</nowiki>}} or {{math|{−''α'', ''β''<nowiki>}</nowiki>}}. Hence the absolute values of the angles are well-defined completely independently of any choices.)}} {{mvar|R}} के द्वारा विशिष्ट रूप से निर्धारित किया गया है। यह मानते हुए कि 4-स्थल उन्मुख है, फिर 2-तलों {{mvar|A}} और {{mvar|B}} का झुकाव इस अभिविन्यास के अनुरूप दो तरह से चुना जा सकता है। यदि घूर्णन कोण असमान ({{math|''α'' ≠ ''β''}}) हैं, {{mvar|R}} कभी-कभी युग्म घूर्णन कहा जाता है। | |||
युग्म घूर्णन की उस स्थिति में, {{mvar|A}} और {{mvar|B}} अपरिवर्तनीय तलों की एकमात्र जोड़ी है, और मूल से आधी-रेखाएँ {{mvar|α}} और {{mvar|β}} क्रमशः हैं {{mvar|A}}, {{mvar|B}} माध्यम से विस्थापित होते हैं , और मूल से आधी-रेखाएँ जो A या B में नहीं हैं, उन्हें α और β के बीच के कोणों से विस्थापित किया जाता है. | |||
==== | ==== समनमनी घुमाव ==== | ||
यदि एक दोहरे घुमाव के घूर्णन कोण बराबर हैं, तो केवल दो के बजाय असीम रूप से कई [[ अपरिवर्तनीय (गणित) ]] | '''यदि एक दोहरे घुमाव के घूर्णन कोण बराबर''' हैं, तो केवल दो के बजाय असीम रूप से कई [[ अपरिवर्तनीय (गणित) ]] तल हैं, और सभी अर्ध-रेखाएँ {{mvar|O}} उसी कोण से विस्थापित होते हैं। इस तरह के घुमावों को समनमनी या समकोणीय घुमाव या क्लिफर्ड विस्थापन कहा जाता है। खबरदार: सभी तलों के माध्यम से नहीं {{mvar|O}} समनमनी घुमावों के तहत अपरिवर्तनीय हैं; केवल वे समतल जो एक अर्ध-रेखा द्वारा फैलाए जाते हैं और संबंधित विस्थापित अर्ध-रेखा अपरिवर्तनीय होते हैं।{{Sfn|Kim|Rote|2016|pp=8-10|loc=Relations to Clifford Parallelism}} | ||
यह मानते हुए कि 4-आयामी स्थान के लिए एक निश्चित अभिविन्यास चुना गया है, | यह मानते हुए कि 4-आयामी स्थान के लिए एक निश्चित अभिविन्यास चुना गया है, समनमनी 4D घुमावों को दो श्रेणियों में रखा जा सकता है। इसे देखने के लिए, एक समनमनी घुमाव पर विचार करें {{mvar|R}}, और एक अभिविन्यास-संगत आदेशित सेट लें {{math|''OU'', ''OX'', ''OY'', ''OZ''}} परस्पर लंबवत अर्ध-रेखाओं का {{mvar|O}} (इस रूप में घोषित किया गया {{mvar|OUXYZ}}) ऐसा है कि {{mvar|OU}} और {{mvar|OX}} एक अपरिवर्तनीय तल फैलाओ, और इसलिए {{mvar|OY}} और {{mvar|OZ}} एक अपरिवर्तनीय तल भी फैला है। अब मान लीजिए कि केवल घूर्णन कोण है {{mvar|α}} अधिकृत है। फिर तलों में सामान्य रूप से चार समनमनी घुमाव होते हैं {{mvar|OUX}} और {{mvar|OYZ}} घूर्णन कोण के साथ {{mvar|α}}, में घूर्णन सेंस के आधार पर {{mvar|OUX}} और {{mvar|OYZ}}. | ||
हम यह परंपरा बनाते हैं कि | हम यह परंपरा बनाते हैं कि घूर्णन से होश आता है {{mvar|OU}} को {{mvar|OX}} और यहां ये {{mvar|OY}} को {{mvar|OZ}} सकारात्मक माने जाते हैं। फिर हमारे पास चार चक्कर हैं {{math|''R''<sub>1</sub> {{=}} (+''α'', +''α'')}}, {{math|''R''<sub>2</sub> {{=}} (−''α'', −''α'')}}, {{math|''R''<sub>3</sub> {{=}} (+''α'', −''α'')}} और {{math|''R''<sub>4</sub> {{=}} (−''α'', +''α'')}}. {{math|''R''<sub>1</sub>}} और {{math|''R''<sub>2</sub>}} एक दूसरे के व्युत्क्रम कार्य हैं; तो हैं {{math|''R''<sub>3</sub>}} और {{math|''R''<sub>4</sub>}}. जब तक कि {{mvar|α}} 0 और के बीच स्थित है {{pi}}, ये चार घुमाव अलग-अलग होंगे। | ||
समान चिह्नों वाले समनतिक घुमावों को बाएँ-समनत वक्र के रूप में निरूपित किया जाता है; जिनके विपरीत चिन्ह राइट- | समान चिह्नों वाले समनतिक घुमावों को बाएँ-समनत वक्र के रूप में निरूपित किया जाता है; जिनके विपरीत चिन्ह राइट-समनमनी हैं। बाएँ- और दाएँ-समनमनी घुमावों को क्रमशः बाएँ और दाएँ-गुणन द्वारा इकाई चतुष्कोणों द्वारा दर्शाया जाता है; नीचे चतुष्कोणों से संबंधित अनुच्छेद देखें। | ||
सिवाय इसके कि चार घुमाव जोड़ीदार अलग-अलग हैं {{math|''α'' {{=}} 0}} या {{math|''α'' {{=}} π}}. कोण {{math|''α'' {{=}} 0}} पहचान | सिवाय इसके कि चार घुमाव जोड़ीदार अलग-अलग हैं {{math|''α'' {{=}} 0}} या {{math|''α'' {{=}} π}}. कोण {{math|''α'' {{=}} 0}} पहचान घूर्णन से मेल खाती है; {{math|''α'' {{=}} π}} पहचान मैट्रिक्स के ऋणात्मक द्वारा दिए गए एक बिंदु में व्युत्क्रम से मेल खाती है। SO(4) के ये दो तत्व ही ऐसे हैं जो एक साथ बाएं और दाएं-समनमनी हैं। | ||
उपरोक्त के रूप में परिभाषित बाएं और दाएं-आइसोकलिन इस बात पर निर्भर करता है कि किस विशिष्ट | उपरोक्त के रूप में परिभाषित बाएं और दाएं-आइसोकलिन इस बात पर निर्भर करता है कि किस विशिष्ट समनमनी घूर्णन का चयन किया गया था। हालांकि, जब एक और समनमनी घूर्णन {{mvar|R′}} अपनी ही कुल्हाड़ियों के साथ {{mvar|OU′}}, {{mvar|OX′}}, {{mvar|OY′}}, {{mvar|OZ′}} चुना जाता है, तो कोई भी हमेशा का क्रमचय चुन सकता है {{mvar|U′}}, {{mvar|X′}}, {{mvar|Y′}}, {{mvar|Z′}} ऐसा है कि {{mvar|OUXYZ}} में परिवर्तित किया जा सकता है {{mvar|OU′X′Y′Z′}} एक घूर्णन-प्रतिबिंब के बजाय एक घूर्णन द्वारा (अर्थात, ताकि आदेशित आधार {{mvar|OU′}}, {{mvar|OX′}}, {{mvar|OY′}}, {{mvar|OZ′}} अभिविन्यास के समान निश्चित विकल्प के अनुरूप भी है {{mvar|OU}}, {{mvar|OX}}, {{mvar|OY}}, {{mvar|OZ}}). इसलिए, एक बार किसी ने एक ओरिएंटेशन (यानी, एक system {{mvar|OUXYZ}} कुल्हाड़ियों की संख्या जिसे सार्वभौमिक रूप से दाएं हाथ के रूप में दर्शाया गया है), एक विशिष्ट समनमनी घुमाव के बाएं या दाएं चरित्र को निर्धारित कर सकता है। | ||
===SO(4)=== की समूह संरचना | ===SO(4)=== की समूह संरचना | ||
SO(4) एक गैर-अनुक्रमणीय [[ कॉम्पैक्ट जगह ]] 6-डाइमेंशन#मैनिफ़ोल्ड्स [[ झूठ समूह ]] है। | SO(4) एक गैर-अनुक्रमणीय [[ कॉम्पैक्ट जगह ]] 6-डाइमेंशन#मैनिफ़ोल्ड्स [[ झूठ समूह ]] है। | ||
घूर्णन केंद्र के माध्यम से प्रत्येक तल {{mvar|O}} SO(2) के क्रम[[ विनिमेय ]] [[ उपसमूह ]] [[ समरूप ]]ी का अक्ष-तल है। ये सभी उपसमूह SO(4) में यूक्लिडीय स्थल में आइसोमेट्रीज़ के परस्पर संयुग्मन हैं। | |||
पूरी तरह से | पूरी तरह से आयतीयिटी तलों की प्रत्येक जोड़ी के माध्यम से {{mvar|O}} एसओ (4) आइसोमोर्फिक के एक कम्यूटेटिव उपसमूह के अपरिवर्तनीय (गणित) तलों की जोड़ी है {{nowrap|SO(2) × SO(2)}}. | ||
ये समूह SO(4) के [[ अधिकतम टोरस ]] हैं, जो सभी SO(4) में परस्पर संयुग्मी हैं। क्लिफोर्ड टोरस भी देखें। | ये समूह SO(4) के [[ अधिकतम टोरस ]] हैं, जो सभी SO(4) में परस्पर संयुग्मी हैं। क्लिफोर्ड टोरस भी देखें। | ||
Line 46: | Line 45: | ||
प्रत्येक बाएँ-समनतिक घुमाव क्रमविनिमेय प्रत्येक दाएँ-समनतिक घूर्णन के साथ। इसका तात्पर्य है कि [[ समूहों का प्रत्यक्ष उत्पाद ]] मौजूद है {{nowrap|{{math|''S''<sup>3</sup><sub>L</sub> × ''S''<sup>3</sup><sub>R</sub>}}}} [[ सामान्य उपसमूह ]]ों के साथ {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}}; दोनों संबंधित [[ कारक समूह ]] प्रत्यक्ष उत्पाद के अन्य कारक के लिए आइसोमोर्फिक हैं, यानी आइसोमोर्फिक टू {{math|''S''<sup>3</sup>}}. (यह SO(4) या इसका उपसमूह नहीं है, क्योंकि {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}} असंबद्ध नहीं हैं: पहचान {{mvar|I}} और केंद्रीय उलटा {{math|−''I''}} प्रत्येक दोनों का है {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}}.) | प्रत्येक बाएँ-समनतिक घुमाव क्रमविनिमेय प्रत्येक दाएँ-समनतिक घूर्णन के साथ। इसका तात्पर्य है कि [[ समूहों का प्रत्यक्ष उत्पाद ]] मौजूद है {{nowrap|{{math|''S''<sup>3</sup><sub>L</sub> × ''S''<sup>3</sup><sub>R</sub>}}}} [[ सामान्य उपसमूह ]]ों के साथ {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}}; दोनों संबंधित [[ कारक समूह ]] प्रत्यक्ष उत्पाद के अन्य कारक के लिए आइसोमोर्फिक हैं, यानी आइसोमोर्फिक टू {{math|''S''<sup>3</sup>}}. (यह SO(4) या इसका उपसमूह नहीं है, क्योंकि {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}} असंबद्ध नहीं हैं: पहचान {{mvar|I}} और केंद्रीय उलटा {{math|−''I''}} प्रत्येक दोनों का है {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}}.) | ||
प्रत्येक 4D | प्रत्येक 4D घूर्णन {{mvar|A}} दो प्रकार से बाएँ और दाएँ समनतिक घुमावों का गुणनफल है {{math|''A''<sub>L</sub>}} और {{math|''A''<sub>R</sub>}}. {{math|''A''<sub>L</sub>}} और {{math|''A''<sub>R</sub>}} एक साथ केंद्रीय व्युत्क्रम तक निर्धारित होते हैं, अर्थात जब दोनों {{math|''A''<sub>L</sub>}} और {{math|''A''<sub>R</sub>}} उनके उत्पाद के केंद्रीय व्युत्क्रम से गुणा किया जाता है {{mvar|A}} फिर। | ||
यह बताता है कि {{math|''S''<sup>3</sup><sub>L</sub> × ''S''<sup>3</sup><sub>R</sub>}} SO(4) का सार्वभौमिक आवरण समूह है - इसका अद्वितीय दोहरा आवरण समूह - और वह {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}} SO(4) के सामान्य उपसमूह हैं। पहचान | यह बताता है कि {{math|''S''<sup>3</sup><sub>L</sub> × ''S''<sup>3</sup><sub>R</sub>}} SO(4) का सार्वभौमिक आवरण समूह है - इसका अद्वितीय दोहरा आवरण समूह - और वह {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}} SO(4) के सामान्य उपसमूह हैं। पहचान घूर्णन {{mvar|I}} और केंद्रीय उलटा {{math|−''I''}} एक समूह बनाओ {{math|C<sub>2</sub>}} क्रम 2 का, जो SO(4) और दोनों के समूह का केंद्र है {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}}. किसी समूह का केंद्र उस समूह का एक सामान्य उपसमूह होता है। C का कारक समूह<sub>2</sub> SO(4) में SO(3) × SO(3) के लिए आइसोमॉर्फिक है। के कारक समूह {{math|''S''}}<sup>3</उप><sub>L</sub> सी द्वारा<sub>2</sub> और का {{math|''S''}}<sup>3</उप><sub>R</sub> सी द्वारा<sub>2</sub> SO(3) के लिए प्रत्येक तुल्याकारी हैं। इसी प्रकार, SO(4) के कारक समूह द्वारा {{math|''S''}}<sup>3</उप><sub>L</sub> और SO(4) द्वारा {{math|''S''}}<sup>3</उप><sub>R</sub> SO(3) के लिए प्रत्येक तुल्याकारी हैं। | ||
SO(4) की सांस्थिति वही है जो लाइ समूह की है {{nowrap|1=SO(3) × Spin(3) = SO(3) × SU(2)}}, अर्थात् | SO(4) की सांस्थिति वही है जो लाइ समूह की है {{nowrap|1=SO(3) × Spin(3) = SO(3) × SU(2)}}, अर्थात् स्थल <math>\mathbb{P}^3 \times \mathbb{S}^3</math> कहां <math>\mathbb{P}^3</math> आयाम 3 और का [[ वास्तविक प्रक्षेप्य स्थान ]] है <math>\mathbb{S}^3</math> [[ 3-क्षेत्र ]] है। हालांकि, यह उल्लेखनीय है कि, एक झूठ समूह के रूप में, SO(4) झूठ समूहों का प्रत्यक्ष उत्पाद नहीं है, और इसलिए यह समरूप नहीं है {{nowrap|1=SO(3) × Spin(3) = SO(3) × SU(2)}}. | ||
=== सामान्य रूप से | === सामान्य रूप से घूर्णन समूहों के बीच SO(4) की विशेष संपत्ति === | ||
विषम-आयामी | विषम-आयामी घूर्णन समूहों में केंद्रीय उलटा नहीं होता है और सरल समूह होते हैं। | ||
सम-आयामी | सम-आयामी घूर्णन समूहों में केंद्रीय उलटा होता है {{math|−''I''}} और समूह है {{nowrap|1=C<sub>2</sub> = <nowiki>{</nowiki>{{math|''I''}}, {{math|−''I''}}<nowiki>}</nowiki>}} एक समूह के उनके केंद्र के रूप में। यहां तक कि n ≥ 6 के लिए, SO(n) लगभग सरल है क्योंकि कारक समूह SO(n)/C<sub>2</sub> इसके केंद्र द्वारा SO(n) का एक साधारण समूह है। | ||
SO(4) अलग है: SO(4) के किसी भी तत्व द्वारा | SO(4) अलग है: SO(4) के किसी भी तत्व द्वारा यूक्लिडीय स्थल में आइसोमेट्री का कोई संयुग्मन नहीं है जो बाएं और दाएं-समनमनी घुमाव को एक दूसरे में बदल देता है। परावर्तन (गणित) संयुग्मन द्वारा एक बाएं-समनमनी घुमाव को दाएं-समनमनी में बदल देता है, और इसके विपरीत। इसका तात्पर्य है कि निश्चित बिंदु वाले सभी आइसोमेट्री के समूह ओ (4) के तहत {{mvar|O}} अलग उपसमूह {{math|''S''<sup>3</sup><sub>L</sub>}} और {{math|''S''<sup>3</sup><sub>R</sub>}} एक दूसरे के संयुग्मी हैं, और इसलिए ओ (4) के सामान्य उपसमूह नहीं हो सकते। 5D घूर्णन समूह SO(5) और सभी उच्च घूर्णन समूहों में उपसमूह आइसोमॉर्फिक से O(4) होते हैं। एसओ (4) की तरह, सभी समान-आयामी घूर्णन समूहों में समनमनी घूर्णन होते हैं। लेकिन एसओ (4) के विपरीत, एसओ (6) और सभी उच्च सम-आयामी घूर्णन समूहों में एक ही कोण के माध्यम से किसी भी दो समनमनी घूर्णन संयुग्मित होते हैं। सभी समनमनी घुमावों का सेट SO (2) का एक उपसमूह भी नहीं है{{math|''N''}}), अकेले एक सामान्य उपसमूह दें। | ||
== 4D घुमावों का बीजगणित == | == 4D घुमावों का बीजगणित == | ||
एसओ (4) को आमतौर पर [[ अभिविन्यास (वेक्टर स्थान) ]] के समूह के साथ पहचाना जाता है - [[ वास्तविक संख्या ]]ओं पर आंतरिक उत्पाद के साथ 4 डी [[ सदिश स्थल ]] के [[ आइसोमेट्री ]] [[ रैखिक ]] मैपिंग को संरक्षित करना। | एसओ (4) को आमतौर पर [[ अभिविन्यास (वेक्टर स्थान) | अभिविन्यास (सदिश स्थान)]] के समूह के साथ पहचाना जाता है - [[ वास्तविक संख्या ]]ओं पर आंतरिक उत्पाद के साथ 4 डी [[ सदिश स्थल ]] के [[ आइसोमेट्री ]] [[ रैखिक ]] मैपिंग को संरक्षित करना। | ||
ऐसी जगह SO(4) में [[ ऑर्थोनॉर्मल ]] [[ आधार (रैखिक बीजगणित) ]] के संबंध में निर्धारक +1 के साथ वास्तविक 4-क्रम [[ ऑर्थोगोनल मैट्रिक्स ]] के समूह के रूप में दर्शाया गया है।{{Sfn|Kim|Rote|2016|loc=§5 Four Dimensional Rotations}} | ऐसी जगह SO(4) में [[ ऑर्थोनॉर्मल ]] [[ आधार (रैखिक बीजगणित) ]] के संबंध में निर्धारक +1 के साथ वास्तविक 4-क्रम [[ ऑर्थोगोनल मैट्रिक्स | आयतीय मैट्रिक्स]] के समूह के रूप में दर्शाया गया है।{{Sfn|Kim|Rote|2016|loc=§5 Four Dimensional Rotations}} | ||
=== | === समनमनी अपघटन === | ||
इसके मैट्रिक्स द्वारा दिया गया एक 4D | इसके मैट्रिक्स द्वारा दिया गया एक 4D घूर्णन एक बाएं-समनमनी और एक राइट-समनमनी घूर्णन में विघटित होता है<ref>{{Cite journal|last1=Perez-Gracia|first1=Alba|last2=Thomas|first2=Federico|date=2017|title=4डी घूर्णन और अनुप्रयोगों के केली के गुणनखंडन पर|url=https://upcommons.upc.edu/bitstream/handle/2117/113067/1749-ON-CAYLEYS-FACTORIZATION-OF-4D-ROTATIONS-AND-APPLICATIONS.pdf|journal=Adv. Appl. Clifford Algebras|volume=27|pages=523–538|doi=10.1007/s00006-016-0683-9|hdl=2117/113067|s2cid=12350382|hdl-access=free}}</ref> निम्नलिखित नुसार: | ||
होने देना | होने देना | ||
Line 90: | Line 89: | ||
</math> | </math> | ||
{{mvar|M}} [[ रैंक (रैखिक बीजगणित) ]] एक है और यूनिट [[ यूक्लिडियन मानदंड ]] का 16 डी | {{mvar|M}} [[ रैंक (रैखिक बीजगणित) ]] एक है और यूनिट [[ यूक्लिडियन मानदंड | यूक्लिडीय मानदंड]] का 16 डी सदिश के रूप में है अगर और केवल अगर {{mvar|A}} वास्तव में एक 4D घूर्णन मैट्रिक्स है। इस मामले में वास्तविक संख्याएं मौजूद हैं {{math|''a'', ''b'', ''c'', ''d''}} और {{math|''p'', ''q'', ''r'', ''s''}} ऐसा है कि | ||
:<math>M= | :<math>M= | ||
Line 104: | Line 103: | ||
के ठीक दो सेट हैं {{math|''a'', ''b'', ''c'', ''d''}} और {{math|''p'', ''q'', ''r'', ''s''}} ऐसा है कि {{math|''a''<sup>2</sup> + ''b''<sup>2</sup> + ''c''<sup>2</sup> + ''d''<sup>2</sup> {{=}} 1}} और {{math|''p''<sup>2</sup> + ''q''<sup>2</sup> + ''r''<sup>2</sup> + ''s''<sup>2</sup> {{=}} 1}}. वे एक दूसरे के विपरीत हैं। | के ठीक दो सेट हैं {{math|''a'', ''b'', ''c'', ''d''}} और {{math|''p'', ''q'', ''r'', ''s''}} ऐसा है कि {{math|''a''<sup>2</sup> + ''b''<sup>2</sup> + ''c''<sup>2</sup> + ''d''<sup>2</sup> {{=}} 1}} और {{math|''p''<sup>2</sup> + ''q''<sup>2</sup> + ''r''<sup>2</sup> + ''s''<sup>2</sup> {{=}} 1}}. वे एक दूसरे के विपरीत हैं। | ||
घूर्णन मैट्रिक्स तब बराबर होता है | |||
:<math>\begin{align}A&= | :<math>\begin{align}A&= | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 128: | Line 127: | ||
यह सूत्र वान एल्फ्रिनखोफ (1897) के कारण है। | यह सूत्र वान एल्फ्रिनखोफ (1897) के कारण है। | ||
इस अपघटन में पहला कारक बाएं- | इस अपघटन में पहला कारक बाएं-समनमनी घूर्णन का प्रतिनिधित्व करता है, दूसरा कारक दाएं-समनमनी घूर्णन का प्रतिनिधित्व करता है। कारकों को नकारात्मक चौथे क्रम की पहचान मैट्रिक्स, यानी केंद्रीय उलटा तक निर्धारित किया जाता है। | ||
=== चतुष्कोणों से संबंध === | === चतुष्कोणों से संबंध === | ||
[[ कार्तीय निर्देशांक ]] के साथ 4-आयामी | [[ कार्तीय निर्देशांक ]] के साथ 4-आयामी स्थल में एक बिंदु {{math|(''u'', ''x'', ''y'', ''z'')}} चतुर्भुज द्वारा दर्शाया जा सकता है {{math|1=''P'' = ''u'' + ''xi'' + ''yj'' + ''zk''}}. | ||
एक बाएं-आइसोकलिनिक घुमाव को एक इकाई चतुष्कोण द्वारा बाएं-गुणन द्वारा दर्शाया जाता है {{math|1=''Q''<sub>L</sub> = ''a'' + ''bi'' + ''cj'' + ''dk''}}. मैट्रिक्स- | एक बाएं-आइसोकलिनिक घुमाव को एक इकाई चतुष्कोण द्वारा बाएं-गुणन द्वारा दर्शाया जाता है {{math|1=''Q''<sub>L</sub> = ''a'' + ''bi'' + ''cj'' + ''dk''}}. मैट्रिक्स-सदिश भाषा में यह है | ||
:<math> | :<math> | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 149: | Line 148: | ||
\end{pmatrix}. | \end{pmatrix}. | ||
</math> | </math> | ||
इसी तरह, एक राइट- | इसी तरह, एक राइट-समनमनी घूर्णन को यूनिट क्वाटरनियन द्वारा राइट-मल्टीप्लिकेशन द्वारा दर्शाया जाता है {{math|1=''Q''<sub>R</sub> = ''p'' + ''qi'' + ''rj'' + ''sk''}}, जो मैट्रिक्स-सदिश रूप में है | ||
:<math> | :<math> | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 165: | Line 164: | ||
\end{pmatrix}. | \end{pmatrix}. | ||
</math> | </math> | ||
पिछले अनुभाग में (#Isoclinic अपघटन) यह दिखाया गया है कि कैसे एक सामान्य 4D | पिछले अनुभाग में (#Isoclinic अपघटन) यह दिखाया गया है कि कैसे एक सामान्य 4D घूर्णन बाएं और दाएं-समनमनी कारकों में विभाजित होता है। | ||
Quaternion भाषा में Van Elfrinkhof का सूत्र पढ़ता है | Quaternion भाषा में Van Elfrinkhof का सूत्र पढ़ता है | ||
Line 177: | Line 176: | ||
जो दर्शाता है कि बाएँ-समनतिक और दाएँ-समनतिक घुमाव चलते हैं। | जो दर्शाता है कि बाएँ-समनतिक और दाएँ-समनतिक घुमाव चलते हैं। | ||
=== 4डी | === 4डी घूर्णन मेट्रिसेस के आइगेनवैल्यू === | ||
एक 4D | एक 4D घूर्णन मैट्रिक्स के चार [[ eigenvalue ]]s आम तौर पर यूनिट परिमाण के जटिल संख्याओं के दो संयुग्म जोड़े के रूप में होते हैं। यदि एक ईगेनवेल्यू वास्तविक है, तो यह ±1 होना चाहिए, क्योंकि घूर्णन एक सदिश के परिमाण को अपरिवर्तित छोड़ देता है। उस eigenvalue का संयुग्म भी एकता है, जो eigenvectors की एक जोड़ी प्रदान करता है जो एक निश्चित तल को परिभाषित करता है, और इसलिए घूर्णन सरल है। क्वाटरनियन नोटेशन में, एसओ (4) में एक उचित (यानी, गैर-इनवर्टिंग) घूर्णन एक उचित सरल घूर्णन है अगर और केवल अगर यूनिट क्वाटरनियंस के असली हिस्से {{math|''Q''<sub>L</sub>}} और {{math|''Q''<sub>R</sub>}} परिमाण में समान हैं और समान चिन्ह हैं।{{efn|group=nb|Example of opposite signs: the central inversion; in the quaternion representation the real parts are +1 and −1, and the central inversion cannot be accomplished by a single simple rotation.}} यदि वे दोनों शून्य हैं, तो घूर्णन के सभी eigenvalues एकता हैं, और घूर्णन अशक्त घुमाव है। अगर के असली हिस्से {{math|''Q''<sub>L</sub>}} और {{math|''Q''<sub>R</sub>}} समान नहीं हैं तो सभी ईगेनवेल्यूज जटिल हैं, और घूर्णन एक दोहरा घूर्णन है। | ||
===3डी घूर्णन के लिए यूलर-रोड्रिग्स सूत्र=== | ===3डी घूर्णन के लिए यूलर-रोड्रिग्स सूत्र=== | ||
हमारे साधारण 3डी | हमारे साधारण 3डी स्थल को समन्वय प्रणाली UXYZ के साथ 4डी स्थल के समन्वय प्रणाली 0XYZ के साथ आसानी से उप-स्थान के रूप में माना जाता है। इसके [[ घूर्णन समूह SO(3) ]] की पहचान SO(4) के उपसमूह से की जाती है जिसमें मैट्रिसेस होते हैं | ||
:<math> | :<math> | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 191: | Line 190: | ||
</math> | </math> | ||
पूर्ववर्ती उपखंड में वान एल्फ्रिन्खोफ के सूत्र में तीन आयामों के लिए यह प्रतिबंध होता है {{math|''p'' {{=}} ''a''}}, {{math|''q'' {{=}} −''b''}}, {{math|''r'' {{=}} −''c''}}, {{math|''s'' {{=}} −''d''}}, या चतुष्कोणीय प्रतिनिधित्व में: {{math|''Q''<sub>''R''</sub> {{=}} ''Q''<sub>''L''</sub>′ {{=}} ''Q''<sub>''L''</sub><sup>−1</sup>}}. | पूर्ववर्ती उपखंड में वान एल्फ्रिन्खोफ के सूत्र में तीन आयामों के लिए यह प्रतिबंध होता है {{math|''p'' {{=}} ''a''}}, {{math|''q'' {{=}} −''b''}}, {{math|''r'' {{=}} −''c''}}, {{math|''s'' {{=}} −''d''}}, या चतुष्कोणीय प्रतिनिधित्व में: {{math|''Q''<sub>''R''</sub> {{=}} ''Q''<sub>''L''</sub>′ {{=}} ''Q''<sub>''L''</sub><sup>−1</sup>}}. | ||
3डी | 3डी घूर्णन मैट्रिक्स तब 3डी घूर्णन के लिए यूलर-रॉड्रिक्स फॉर्मूला बन जाता है | ||
:<math> | :<math> | ||
\begin{pmatrix} | \begin{pmatrix} | ||
Line 205: | Line 204: | ||
\end{pmatrix}, | \end{pmatrix}, | ||
</math> | </math> | ||
जो इसके यूलर-रोड्रिग्स पैरामीटर द्वारा 3डी | जो इसके यूलर-रोड्रिग्स पैरामीटर द्वारा 3डी घूर्णन का प्रतिनिधित्व है: {{math|''a'', ''b'', ''c'', ''d''}}. | ||
इसी चतुर्धातुक सूत्र {{math|''P′'' {{=}} ''QPQ''<sup>−1</sup>}}, कहां {{math|''Q'' {{=}} ''Q''<sub>L</sub>}}, या, विस्तारित रूप में: | इसी चतुर्धातुक सूत्र {{math|''P′'' {{=}} ''QPQ''<sup>−1</sup>}}, कहां {{math|''Q'' {{=}} ''Q''<sub>L</sub>}}, या, विस्तारित रूप में: | ||
Line 213: | Line 212: | ||
=== हॉपफ निर्देशांक === | === हॉपफ निर्देशांक === | ||
[[ हाइपरस्फेरिकल निर्देशांक ]] के उपयोग से 3डी | [[ हाइपरस्फेरिकल निर्देशांक ]] के उपयोग से 3डी स्थल में घूर्णन को गणितीय रूप से अधिक सुगम बनाया जाता है। 3डी में किसी भी घुमाव को घूर्णन के एक निश्चित अक्ष और उस अक्ष के लम्बवत् एक अपरिवर्तनीय तल द्वारा अभिलक्षित किया जा सकता है। सामान्यता के नुकसान के बिना, हम ले सकते हैं {{mvar|xy}}-प्लेन इनवेरिएंट प्लेन के रूप में और {{mvar|z}}-अक्ष स्थिर अक्ष के रूप में। चूंकि रेडियल दूरियां घूर्णन से प्रभावित नहीं होती हैं, हम निश्चित अक्ष और अपरिवर्तनीय तल को संदर्भित [[ गोलाकार निर्देशांक ]] द्वारा इकाई क्षेत्र (2-गोले) पर इसके प्रभाव से एक घूर्णन को चिह्नित कर सकते हैं: | ||
:<math>\begin{align} | :<math>\begin{align} | ||
x &= \sin\theta \cos \phi \\ | x &= \sin\theta \cos \phi \\ | ||
Line 237: | Line 236: | ||
चूंकि {{math|''u''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup> {{=}} 1}}, बिंदु 3-गोले पर स्थित हैं। | चूंकि {{math|''u''<sup>2</sup> + ''x''<sup>2</sup> + ''y''<sup>2</sup> + ''z''<sup>2</sup> {{=}} 1}}, बिंदु 3-गोले पर स्थित हैं। | ||
4डी | 4डी स्थल में, उत्पत्ति के बारे में प्रत्येक घुमाव में दो अपरिवर्तनीय तल होते हैं जो एक दूसरे के लिए पूरी तरह से आयतीय होते हैं और मूल पर प्रतिच्छेद करते हैं, और दो स्वतंत्र कोणों द्वारा घुमाए जाते हैं {{math|''ξ''<sub>1</sub>}} और {{math|''ξ''<sub>2</sub>}}. व्यापकता के नुकसान के बिना, हम क्रमशः चुन सकते हैं {{mvar|uz}}- और {{mvar|xy}}-तल इन अपरिवर्तनीय तलों के रूप में। एक बिंदु के 4D में घूर्णन {{math|{''ξ''<sub>10</sub>, ''η''<sub>0</sub>, ''ξ''<sub>20</sub><nowiki>}</nowiki>}} कोणों के माध्यम से {{math|''ξ''<sub>1</sub>}} और {{math|''ξ''<sub>2</sub>}} तब बस हॉफ निर्देशांक में व्यक्त किया जाता है {{math|{''ξ''<sub>10</sub> + ''ξ''<sub>1</sub>, ''η''<sub>0</sub>, ''ξ''<sub>20</sub> + ''ξ''<sub>2</sub><nowiki>}</nowiki>}}. | ||
== 4D घुमावों का दृश्य == | == 4D घुमावों का दृश्य == | ||
[[File:4DRotationTrajectories.jpg|thumb|upright=1.75|क्लिफर्ड टोरस पर एक बिंदु के प्रक्षेपवक्र: <br> चित्र 1: सरल घुमाव (काला) और बाएँ और दाएँ | [[File:4DRotationTrajectories.jpg|thumb|upright=1.75|क्लिफर्ड टोरस पर एक बिंदु के प्रक्षेपवक्र: <br> चित्र 1: सरल घुमाव (काला) और बाएँ और दाएँ समनमनी घुमाव (लाल और नीला) <br> | ||
चित्र 2: 1:5 के अनुपात में कोणीय विस्थापन के साथ एक सामान्य घुमाव <br> | चित्र 2: 1:5 के अनुपात में कोणीय विस्थापन के साथ एक सामान्य घुमाव <br> | ||
चित्र 3: 5:1 के अनुपात में कोणीय विस्थापन के साथ एक सामान्य घुमाव <br> | चित्र 3: 5:1 के अनुपात में कोणीय विस्थापन के साथ एक सामान्य घुमाव <br> | ||
सभी छवियां स्टीरियोग्राफिक अनुमान हैं।]]3डी | सभी छवियां स्टीरियोग्राफिक अनुमान हैं।]]3डी स्थल में हर घुमाव में घूर्णन द्वारा अपरिवर्तित एक निश्चित अक्ष होता है। घूर्णन की धुरी और उस अक्ष के बारे में घूर्णन के कोण को निर्दिष्ट करके घूर्णन पूरी तरह से निर्दिष्ट किया गया है। व्यापकता के नुकसान के बिना, इस अक्ष को चुना जा सकता है {{mvar|z}}-एक कार्तीय समन्वय प्रणाली का अक्ष, घूर्णन के एक सरल दृश्य की अनुमति देता है। | ||
3डी | 3डी स्थल में, गोलाकार निर्देशांक {{math|{''θ'', ''φ''<nowiki>}</nowiki>}} 2-क्षेत्र की पैरामीट्रिक अभिव्यक्ति के रूप में देखा जा सकता है। निश्चित के लिए {{mvar|θ}} वे 2-गोले पर मंडलियों का वर्णन करते हैं जो लंबवत हैं {{mvar|z}}-अक्ष और इन वृत्तों को गोले पर एक बिंदु के प्रक्षेपवक्र के रूप में देखा जा सकता है। एक बिंदु {{math|{''θ''<sub>0</sub>, ''φ''<sub>0</sub><nowiki>}</nowiki>}} गोले पर, के बारे में एक घूर्णन के तहत {{mvar|z}}-अक्ष, एक प्रक्षेपवक्र का अनुसरण करेगा {{math|{''θ''<sub>0</sub>, ''φ''<sub>0</sub> + ''φ''<nowiki>}</nowiki>}} कोण के रूप में {{mvar|φ}} भिन्न होता है। प्रक्षेपवक्र को समय में घूर्णन पैरामीट्रिक के रूप में देखा जा सकता है, जहां घूर्णन का कोण समय में रैखिक होता है: {{math|''φ'' {{=}} ''ωt''}}, साथ {{mvar|ω}} कोणीय वेग होना। | ||
3डी मामले के अनुरूप, 4डी | 3डी मामले के अनुरूप, 4डी स्थल में प्रत्येक घूर्णन में कम से कम दो अपरिवर्तनीय धुरी-तल होते हैं जो घूर्णन द्वारा अपरिवर्तित छोड़ दिए जाते हैं और पूरी तरह से आयतीय होते हैं (यानी वे एक बिंदु पर छेड़छाड़ करते हैं)। घूर्णन पूरी तरह से धुरी तलों और उनके बारे में घूर्णन के कोणों को निर्दिष्ट करके निर्दिष्ट किया गया है। व्यापकता के नुकसान के बिना, इन धुरी तलों को चुना जा सकता है {{mvar|uz}}- और {{mvar|xy}}-एक कार्टेशियन समन्वय प्रणाली के तल, घूर्णन के एक सरल दृश्य की अनुमति देते हैं। | ||
4D | 4D स्थल में, हॉफ कोण {{math|{''ξ''<sub>1</sub>, ''η'', ''ξ''<sub>2</sub><nowiki>}</nowiki>}} 3-गोले को पैरामीटराइज़ करें। निश्चित के लिए {{mvar|η}} वे द्वारा परिचालित एक टोरस का वर्णन करते हैं {{math|''ξ''<sub>1</sub>}} और {{math|''ξ''<sub>2</sub>}}, साथ {{math|''η'' {{=}} {{sfrac|π|4}}}} क्लिफर्ड टोरस का विशेष मामला होने के नाते {{mvar|xy}}- और {{mvar|uz}}-तल। ये तोरी 3डी-स्पेस में पाई जाने वाली सामान्य तोरी नहीं हैं। जबकि वे अभी भी 2D सतह हैं, वे 3-गोले में सन्निहित हैं। 3-गोले को पूरे यूक्लिडीय 3डी-स्पेस पर प्रक्षेपित स्टीरियोग्राफिक प्रोजेक्शन हो सकता है, और इन तोरी को फिर क्रांति की सामान्य टोरी के रूप में देखा जाता है। यह देखा जा सकता है कि एक बिंदु द्वारा निर्दिष्ट {{math|{''ξ''<sub>10</sub>, ''η''<sub>0</sub>, ''ξ''<sub>20</sub><nowiki>}</nowiki>}} के साथ परिक्रमा कर रहा है {{mvar|uz}}- और {{mvar|xy}}-प्लेन इनवेरिएंट द्वारा निर्दिष्ट टोरस पर रहेगा {{math|''η''<sub>0</sub>}}.<ref name="Pinkall">{{cite journal |last=Pinkall |first=U. |date=1985 |title=स<उप>3</उप> में हॉफ टोरी|url=https://www.maths.ed.ac.uk/~aar/papers/pinkall.pdf |journal=Invent. Math. |volume=81 |issue=2 |pages=379–386 |access-date=7 April 2015 |doi=10.1007/bf01389060|bibcode=1985InMat..81..379P |s2cid=120226082 }}</ref> एक बिंदु के प्रक्षेपवक्र को समय के कार्य के रूप में लिखा जा सकता है {{math|{''ξ''<sub>10</sub> + ''ω''<sub>1</sub>''t'', ''η''<sub>0</sub>, ''ξ''<sub>20</sub> + ''ω''<sub>2</sub>''t''<nowiki>}</nowiki>}} और इसके संबंधित टोरस पर स्टीरियोग्राफिक रूप से प्रक्षेपित किया गया है, जैसा कि नीचे दिए गए आंकड़ों में है।<ref name="Banchoff">{{cite book |last=Banchoff |first=Thomas F. |date=1990 |title=तीसरे आयाम से परे|url=https://archive.org/details/beyondthirddimen00thom |publisher=W H Freeman & Co |isbn=978-0716750253 |access-date=2015-04-08 |url-access=registration }}</ref> इन आंकड़ों में, प्रारंभिक बिंदु लिया जाता है {{math|{0, {{sfrac|π|4}}, 0<nowiki>}</nowiki>}}, यानी क्लिफर्ड टोरस पर। चित्र 1 में, दो सरल घूर्णन प्रक्षेपवक्र काले रंग में दिखाए गए हैं, जबकि एक बाएँ और दाएँ समनमनी प्रक्षेपवक्र क्रमशः लाल और नीले रंग में दिखाए गए हैं। चित्र 2 में, एक सामान्य घुमाव जिसमें {{math|''ω''<sub>1</sub> {{=}} 1}} और {{math|''ω''<sub>2</sub> {{=}} 5}} दिखाया गया है, जबकि चित्र 3 में, एक सामान्य घुमाव जिसमें {{math|''ω''<sub>1</sub> {{=}} 5}} और {{math|''ω''<sub>2</sub> {{=}} 1}} दिखाई जा रही है। | ||
== 4D | == 4D घूर्णन मेट्रिसेस उत्पन्न करना == | ||
रोड्रिग्स के घूर्णन सूत्र और केली सूत्र से चार आयामी घुमाव प्राप्त किए जा सकते हैं। होने देना {{mvar|A}} एक 4 × 4 [[ तिरछा-सममित मैट्रिक्स ]] बनें। तिरछा-सममित मैट्रिक्स {{mvar|A}} के रूप में विशिष्ट रूप से विघटित किया जा सकता है | रोड्रिग्स के घूर्णन सूत्र और केली सूत्र से चार आयामी घुमाव प्राप्त किए जा सकते हैं। होने देना {{mvar|A}} एक 4 × 4 [[ तिरछा-सममित मैट्रिक्स ]] बनें। तिरछा-सममित मैट्रिक्स {{mvar|A}} के रूप में विशिष्ट रूप से विघटित किया जा सकता है | ||
:<math>A =\theta_1 A_1+\theta_2 A_2</math> | :<math>A =\theta_1 A_1+\theta_2 A_2</math> | ||
Line 267: | Line 266: | ||
फिर, | फिर, | ||
:<math>R = e^A = I + \sin\theta_1 A_1 + \left(1-\cos\theta_1\right) {A_1}^2 + \sin\theta_2 A_2 + \left(1-\cos\theta_2\right) {A_2}^2</math> | :<math>R = e^A = I + \sin\theta_1 A_1 + \left(1-\cos\theta_1\right) {A_1}^2 + \sin\theta_2 A_2 + \left(1-\cos\theta_2\right) {A_2}^2</math> | ||
में एक | में एक घूर्णन मैट्रिक्स है {{math|'''E'''<sup>4</sup>}}, जो रोड्रिग्स के घूर्णन सूत्र द्वारा ईगेनवैल्यू के सेट के साथ उत्पन्न होता है | ||
:<math>\left\{e^{\theta_1 i}, e^{-\theta_1 i}, e^{\theta_2 i}, e^{-\theta_2 i}\right\}.</math> | :<math>\left\{e^{\theta_1 i}, e^{-\theta_1 i}, e^{\theta_2 i}, e^{-\theta_2 i}\right\}.</math> | ||
भी, | भी, | ||
:<math>R = (I+A)(I-A)^{-1} = I+\frac{2\theta_1}{1+{\theta_1}^2}A_1+\frac{2{\theta_1}^2}{1+{\theta_1}^2}{A_1}^2+\frac{2\theta_2}{1+{\theta_2}^2}A_2+\frac{2{\theta_2}^2}{1+{\theta_2}^2}{A_2}^2</math> | :<math>R = (I+A)(I-A)^{-1} = I+\frac{2\theta_1}{1+{\theta_1}^2}A_1+\frac{2{\theta_1}^2}{1+{\theta_1}^2}{A_1}^2+\frac{2\theta_2}{1+{\theta_2}^2}A_2+\frac{2{\theta_2}^2}{1+{\theta_2}^2}{A_2}^2</math> | ||
में एक | में एक घूर्णन मैट्रिक्स है {{math|'''E'''<sup>4</sup>}}, जो केली के घूर्णन सूत्र द्वारा उत्पन्न होता है, जैसे कि eigenvalues का सेट {{mvar|R}} है, | ||
:<math>\left\{\frac{\left(1+\theta_1 i\right)^2}{1+{\theta_1}^2},\frac{\left(1-\theta_1 i\right)^2}{1+{\theta_1}^2},\frac{\left(1+\theta_2 i\right)^2}{1+{\theta_2}^2},\frac{\left(1-\theta_2 i\right)^2}{1+{\theta_2}^2}\right\}.</math> | :<math>\left\{\frac{\left(1+\theta_1 i\right)^2}{1+{\theta_1}^2},\frac{\left(1-\theta_1 i\right)^2}{1+{\theta_1}^2},\frac{\left(1+\theta_2 i\right)^2}{1+{\theta_2}^2},\frac{\left(1-\theta_2 i\right)^2}{1+{\theta_2}^2}\right\}.</math> | ||
जनरेटिंग | जनरेटिंग घूर्णन मैट्रिक्स को मूल्यों के संबंध में वर्गीकृत किया जा सकता है {{math|''θ''<sub>1</sub>}} और {{math|''θ''<sub>2</sub>}} निम्नलिखित नुसार: | ||
# यदि {{math|''θ''<sub>1</sub> {{=}} 0}} और {{math|''θ''<sub>2</sub> ≠ 0}} या इसके विपरीत, तब सूत्र सरल घुमाव उत्पन्न करते हैं; | # यदि {{math|''θ''<sub>1</sub> {{=}} 0}} और {{math|''θ''<sub>2</sub> ≠ 0}} या इसके विपरीत, तब सूत्र सरल घुमाव उत्पन्न करते हैं; | ||
# यदि {{math|''θ''<sub>1</sub>}} और {{math|''θ''<sub>2</sub>}} अशून्य हैं और {{math|''θ''<sub>1</sub> ≠ ''θ''<sub>2</sub>}}, तब सूत्र दोहरा घुमाव उत्पन्न करते हैं; | # यदि {{math|''θ''<sub>1</sub>}} और {{math|''θ''<sub>2</sub>}} अशून्य हैं और {{math|''θ''<sub>1</sub> ≠ ''θ''<sub>2</sub>}}, तब सूत्र दोहरा घुमाव उत्पन्न करते हैं; | ||
# यदि {{math|''θ''<sub>1</sub>}} और {{math|''θ''<sub>2</sub>}} अशून्य हैं और {{math|''θ''<sub>1</sub> {{=}} ''θ''<sub>2</sub>}}, तब सूत्र | # यदि {{math|''θ''<sub>1</sub>}} और {{math|''θ''<sub>2</sub>}} अशून्य हैं और {{math|''θ''<sub>1</sub> {{=}} ''θ''<sub>2</sub>}}, तब सूत्र समनमनी घुमाव उत्पन्न करते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
*लाप्लास-रेंज-लेन्ज़ | *लाप्लास-रेंज-लेन्ज़ सदिश | ||
* [[ लोरेंत्ज़ समूह ]] | * [[ लोरेंत्ज़ समूह ]] | ||
*[[ ऑर्थोगोनल समूह ]] | *[[ ऑर्थोगोनल समूह | आयतीय समूह]] | ||
* | *आयतीय मैट्रिक्स | ||
* | * घूर्णन का तल | ||
* पोंकारे समूह | * पोंकारे समूह | ||
*[[ चतुर्भुज और स्थानिक रोटेशन ]] | *[[ चतुर्भुज और स्थानिक रोटेशन | चतुर्भुज और स्थानिक घूर्णन]] | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 313: | Line 312: | ||
[[श्रेणी: चार आयामी ज्यामिति]] | [[श्रेणी: चार आयामी ज्यामिति]] | ||
[[श्रेणी:चतुर्भुज]] | [[श्रेणी:चतुर्भुज]] | ||
[[श्रेणी:रोटेशन]] | [[श्रेणी:रोटेशन|श्रेणी:घूर्णन]] | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 27/12/2022]] | [[Category:Created On 27/12/2022]] |
Revision as of 06:33, 10 January 2023
गणित में, चार-आयामी यूक्लिडीय स्थल में एक निश्चित बिंदु के चारों ओर घूर्णन के समूह (गणित) को SO(4) द्वारा निरूपित किया जाता है। नाम इस तथ्य से आता है कि यह क्रम 4 का विशेष आयतीय समूह है।
इस लेख में घूर्णन (गणित) का अर्थ है घूर्णी विस्थापन। विशिष्टता के लिए, घूर्णन कोणों को खंड [0, π] में माना जाता है सिवाय जहां उल्लेख किया गया हो या अन्यथा संदर्भ द्वारा स्पष्ट रूप से निहित हो।
स्थिर तल वह तल होता है जिसके लिए तल का प्रत्येक सदिश घूर्णन के बाद अपरिवर्तित रहता है। एक अपरिवर्तनीय तल एक तल है जिसके लिए तल में प्रत्येक सदिश घूर्णन के बाद तल में रहता है, हालांकि यह घूर्णन से प्रभावित हो सकता है।
4D घुमावों की ज्यामिति
चार आयामी घुमाव दो प्रकार के होते हैं: साधारण घुमाव और दोहरा घुमाव।
साधारण घुमाव
एक घूर्णन केंद्र O के चारों ओर एक साधारण घुमाव R एक पूरे तल A को O (अक्ष-तल) के माध्यम से तय करता है। प्रत्येक तल B जो पूरी तरह से आयतीय है [a] A को एक निश्चित बिंदु P पर काटता है। ऐसा प्रत्येक बिंदु P, B में R द्वारा प्रेरित 2D घुमाव का केंद्र है। इन सभी 2D घुमावों का घूर्णन कोण α समान है।
अक्ष-तल A में O से अर्ध-रेखाएँ विस्थापित नहीं होती हैं; O आयतीय से A तक की आधी-रेखाएँ α के माध्यम से विस्थापित होती हैं; अन्य सभी अर्ध-रेखाएँ α से कम कोण के माध्यम से विस्थापित होती हैं.
युग्म घूर्णन
प्रत्येक घूर्णन के लिए R 4-स्थल (उत्पत्ति को ठीक करना) में, अचर 2-प्लेन की कम से कम एक जोड़ी है A और B जिनमें से प्रत्येक अपरिवर्तनीय है और जिसका प्रत्यक्ष योग A ⊕ B सभी 4-स्थलीय है। अतः इनमें से किसी भी तल R पर काम करने से उस तल का एक सामान्य घुमाव पैदा होता है। लगभग सभी R (3-आयामी सबसेट को छोड़कर घूर्णन के सभी 6-आयामी सम्मुच्चय) के लिए, घूर्णन कोण α तल में A और β तल में B - दोनों को अशून्य माना जाता है - अलग हैं। असमान घूर्णन कोण α और β संतुष्टि देने वाला −π < α, β < π लगभग [lower-alpha 1] R के द्वारा विशिष्ट रूप से निर्धारित किया गया है। यह मानते हुए कि 4-स्थल उन्मुख है, फिर 2-तलों A और B का झुकाव इस अभिविन्यास के अनुरूप दो तरह से चुना जा सकता है। यदि घूर्णन कोण असमान (α ≠ β) हैं, R कभी-कभी युग्म घूर्णन कहा जाता है।
युग्म घूर्णन की उस स्थिति में, A और B अपरिवर्तनीय तलों की एकमात्र जोड़ी है, और मूल से आधी-रेखाएँ α और β क्रमशः हैं A, B माध्यम से विस्थापित होते हैं , और मूल से आधी-रेखाएँ जो A या B में नहीं हैं, उन्हें α और β के बीच के कोणों से विस्थापित किया जाता है.
समनमनी घुमाव
यदि एक दोहरे घुमाव के घूर्णन कोण बराबर हैं, तो केवल दो के बजाय असीम रूप से कई अपरिवर्तनीय (गणित) तल हैं, और सभी अर्ध-रेखाएँ O उसी कोण से विस्थापित होते हैं। इस तरह के घुमावों को समनमनी या समकोणीय घुमाव या क्लिफर्ड विस्थापन कहा जाता है। खबरदार: सभी तलों के माध्यम से नहीं O समनमनी घुमावों के तहत अपरिवर्तनीय हैं; केवल वे समतल जो एक अर्ध-रेखा द्वारा फैलाए जाते हैं और संबंधित विस्थापित अर्ध-रेखा अपरिवर्तनीय होते हैं।[1] यह मानते हुए कि 4-आयामी स्थान के लिए एक निश्चित अभिविन्यास चुना गया है, समनमनी 4D घुमावों को दो श्रेणियों में रखा जा सकता है। इसे देखने के लिए, एक समनमनी घुमाव पर विचार करें R, और एक अभिविन्यास-संगत आदेशित सेट लें OU, OX, OY, OZ परस्पर लंबवत अर्ध-रेखाओं का O (इस रूप में घोषित किया गया OUXYZ) ऐसा है कि OU और OX एक अपरिवर्तनीय तल फैलाओ, और इसलिए OY और OZ एक अपरिवर्तनीय तल भी फैला है। अब मान लीजिए कि केवल घूर्णन कोण है α अधिकृत है। फिर तलों में सामान्य रूप से चार समनमनी घुमाव होते हैं OUX और OYZ घूर्णन कोण के साथ α, में घूर्णन सेंस के आधार पर OUX और OYZ.
हम यह परंपरा बनाते हैं कि घूर्णन से होश आता है OU को OX और यहां ये OY को OZ सकारात्मक माने जाते हैं। फिर हमारे पास चार चक्कर हैं R1 = (+α, +α), R2 = (−α, −α), R3 = (+α, −α) और R4 = (−α, +α). R1 और R2 एक दूसरे के व्युत्क्रम कार्य हैं; तो हैं R3 और R4. जब तक कि α 0 और के बीच स्थित है π, ये चार घुमाव अलग-अलग होंगे।
समान चिह्नों वाले समनतिक घुमावों को बाएँ-समनत वक्र के रूप में निरूपित किया जाता है; जिनके विपरीत चिन्ह राइट-समनमनी हैं। बाएँ- और दाएँ-समनमनी घुमावों को क्रमशः बाएँ और दाएँ-गुणन द्वारा इकाई चतुष्कोणों द्वारा दर्शाया जाता है; नीचे चतुष्कोणों से संबंधित अनुच्छेद देखें।
सिवाय इसके कि चार घुमाव जोड़ीदार अलग-अलग हैं α = 0 या α = π. कोण α = 0 पहचान घूर्णन से मेल खाती है; α = π पहचान मैट्रिक्स के ऋणात्मक द्वारा दिए गए एक बिंदु में व्युत्क्रम से मेल खाती है। SO(4) के ये दो तत्व ही ऐसे हैं जो एक साथ बाएं और दाएं-समनमनी हैं।
उपरोक्त के रूप में परिभाषित बाएं और दाएं-आइसोकलिन इस बात पर निर्भर करता है कि किस विशिष्ट समनमनी घूर्णन का चयन किया गया था। हालांकि, जब एक और समनमनी घूर्णन R′ अपनी ही कुल्हाड़ियों के साथ OU′, OX′, OY′, OZ′ चुना जाता है, तो कोई भी हमेशा का क्रमचय चुन सकता है U′, X′, Y′, Z′ ऐसा है कि OUXYZ में परिवर्तित किया जा सकता है OU′X′Y′Z′ एक घूर्णन-प्रतिबिंब के बजाय एक घूर्णन द्वारा (अर्थात, ताकि आदेशित आधार OU′, OX′, OY′, OZ′ अभिविन्यास के समान निश्चित विकल्प के अनुरूप भी है OU, OX, OY, OZ). इसलिए, एक बार किसी ने एक ओरिएंटेशन (यानी, एक system OUXYZ कुल्हाड़ियों की संख्या जिसे सार्वभौमिक रूप से दाएं हाथ के रूप में दर्शाया गया है), एक विशिष्ट समनमनी घुमाव के बाएं या दाएं चरित्र को निर्धारित कर सकता है।
===SO(4)=== की समूह संरचना SO(4) एक गैर-अनुक्रमणीय कॉम्पैक्ट जगह 6-डाइमेंशन#मैनिफ़ोल्ड्स झूठ समूह है।
घूर्णन केंद्र के माध्यम से प्रत्येक तल O SO(2) के क्रमविनिमेय उपसमूह समरूप ी का अक्ष-तल है। ये सभी उपसमूह SO(4) में यूक्लिडीय स्थल में आइसोमेट्रीज़ के परस्पर संयुग्मन हैं।
पूरी तरह से आयतीयिटी तलों की प्रत्येक जोड़ी के माध्यम से O एसओ (4) आइसोमोर्फिक के एक कम्यूटेटिव उपसमूह के अपरिवर्तनीय (गणित) तलों की जोड़ी है SO(2) × SO(2).
ये समूह SO(4) के अधिकतम टोरस हैं, जो सभी SO(4) में परस्पर संयुग्मी हैं। क्लिफोर्ड टोरस भी देखें।
सभी बाएं-आइसोकलिनिक घुमाव एक गैर-अनुवर्ती उपसमूह बनाते हैं S3L SO(4) का, जो गुणक समूह के लिए तुल्याकारी है S3 इकाई चतुष्कोणों की। इसी तरह सभी समकोणीय घूर्णन एक उपसमूह बनाते हैं S3R SO(4) का समरूपी S3. दोनों S3L और S3R SO(4) के अधिकतम उपसमूह हैं।
प्रत्येक बाएँ-समनतिक घुमाव क्रमविनिमेय प्रत्येक दाएँ-समनतिक घूर्णन के साथ। इसका तात्पर्य है कि समूहों का प्रत्यक्ष उत्पाद मौजूद है S3L × S3R सामान्य उपसमूह ों के साथ S3L और S3R; दोनों संबंधित कारक समूह प्रत्यक्ष उत्पाद के अन्य कारक के लिए आइसोमोर्फिक हैं, यानी आइसोमोर्फिक टू S3. (यह SO(4) या इसका उपसमूह नहीं है, क्योंकि S3L और S3R असंबद्ध नहीं हैं: पहचान I और केंद्रीय उलटा −I प्रत्येक दोनों का है S3L और S3R.)
प्रत्येक 4D घूर्णन A दो प्रकार से बाएँ और दाएँ समनतिक घुमावों का गुणनफल है AL और AR. AL और AR एक साथ केंद्रीय व्युत्क्रम तक निर्धारित होते हैं, अर्थात जब दोनों AL और AR उनके उत्पाद के केंद्रीय व्युत्क्रम से गुणा किया जाता है A फिर।
यह बताता है कि S3L × S3R SO(4) का सार्वभौमिक आवरण समूह है - इसका अद्वितीय दोहरा आवरण समूह - और वह S3L और S3R SO(4) के सामान्य उपसमूह हैं। पहचान घूर्णन I और केंद्रीय उलटा −I एक समूह बनाओ C2 क्रम 2 का, जो SO(4) और दोनों के समूह का केंद्र है S3L और S3R. किसी समूह का केंद्र उस समूह का एक सामान्य उपसमूह होता है। C का कारक समूह2 SO(4) में SO(3) × SO(3) के लिए आइसोमॉर्फिक है। के कारक समूह S3</उप>L सी द्वारा2 और का S3</उप>R सी द्वारा2 SO(3) के लिए प्रत्येक तुल्याकारी हैं। इसी प्रकार, SO(4) के कारक समूह द्वारा S3</उप>L और SO(4) द्वारा S3</उप>R SO(3) के लिए प्रत्येक तुल्याकारी हैं।
SO(4) की सांस्थिति वही है जो लाइ समूह की है SO(3) × Spin(3) = SO(3) × SU(2), अर्थात् स्थल कहां आयाम 3 और का वास्तविक प्रक्षेप्य स्थान है 3-क्षेत्र है। हालांकि, यह उल्लेखनीय है कि, एक झूठ समूह के रूप में, SO(4) झूठ समूहों का प्रत्यक्ष उत्पाद नहीं है, और इसलिए यह समरूप नहीं है SO(3) × Spin(3) = SO(3) × SU(2).
सामान्य रूप से घूर्णन समूहों के बीच SO(4) की विशेष संपत्ति
विषम-आयामी घूर्णन समूहों में केंद्रीय उलटा नहीं होता है और सरल समूह होते हैं।
सम-आयामी घूर्णन समूहों में केंद्रीय उलटा होता है −I और समूह है C2 = {I, −I} एक समूह के उनके केंद्र के रूप में। यहां तक कि n ≥ 6 के लिए, SO(n) लगभग सरल है क्योंकि कारक समूह SO(n)/C2 इसके केंद्र द्वारा SO(n) का एक साधारण समूह है।
SO(4) अलग है: SO(4) के किसी भी तत्व द्वारा यूक्लिडीय स्थल में आइसोमेट्री का कोई संयुग्मन नहीं है जो बाएं और दाएं-समनमनी घुमाव को एक दूसरे में बदल देता है। परावर्तन (गणित) संयुग्मन द्वारा एक बाएं-समनमनी घुमाव को दाएं-समनमनी में बदल देता है, और इसके विपरीत। इसका तात्पर्य है कि निश्चित बिंदु वाले सभी आइसोमेट्री के समूह ओ (4) के तहत O अलग उपसमूह S3L और S3R एक दूसरे के संयुग्मी हैं, और इसलिए ओ (4) के सामान्य उपसमूह नहीं हो सकते। 5D घूर्णन समूह SO(5) और सभी उच्च घूर्णन समूहों में उपसमूह आइसोमॉर्फिक से O(4) होते हैं। एसओ (4) की तरह, सभी समान-आयामी घूर्णन समूहों में समनमनी घूर्णन होते हैं। लेकिन एसओ (4) के विपरीत, एसओ (6) और सभी उच्च सम-आयामी घूर्णन समूहों में एक ही कोण के माध्यम से किसी भी दो समनमनी घूर्णन संयुग्मित होते हैं। सभी समनमनी घुमावों का सेट SO (2) का एक उपसमूह भी नहीं हैN), अकेले एक सामान्य उपसमूह दें।
4D घुमावों का बीजगणित
एसओ (4) को आमतौर पर अभिविन्यास (सदिश स्थान) के समूह के साथ पहचाना जाता है - वास्तविक संख्या ओं पर आंतरिक उत्पाद के साथ 4 डी सदिश स्थल के आइसोमेट्री रैखिक मैपिंग को संरक्षित करना।
ऐसी जगह SO(4) में ऑर्थोनॉर्मल आधार (रैखिक बीजगणित) के संबंध में निर्धारक +1 के साथ वास्तविक 4-क्रम आयतीय मैट्रिक्स के समूह के रूप में दर्शाया गया है।[2]
समनमनी अपघटन
इसके मैट्रिक्स द्वारा दिया गया एक 4D घूर्णन एक बाएं-समनमनी और एक राइट-समनमनी घूर्णन में विघटित होता है[3] निम्नलिखित नुसार:
होने देना
मनमाने ढंग से ऑर्थोनॉर्मल आधार के संबंध में इसका मैट्रिक्स बनें।
इससे तथाकथित सहयोगी मैट्रिक्स की गणना करें
M रैंक (रैखिक बीजगणित) एक है और यूनिट यूक्लिडीय मानदंड का 16 डी सदिश के रूप में है अगर और केवल अगर A वास्तव में एक 4D घूर्णन मैट्रिक्स है। इस मामले में वास्तविक संख्याएं मौजूद हैं a, b, c, d और p, q, r, s ऐसा है कि
और
के ठीक दो सेट हैं a, b, c, d और p, q, r, s ऐसा है कि a2 + b2 + c2 + d2 = 1 और p2 + q2 + r2 + s2 = 1. वे एक दूसरे के विपरीत हैं।
घूर्णन मैट्रिक्स तब बराबर होता है
यह सूत्र वान एल्फ्रिनखोफ (1897) के कारण है।
इस अपघटन में पहला कारक बाएं-समनमनी घूर्णन का प्रतिनिधित्व करता है, दूसरा कारक दाएं-समनमनी घूर्णन का प्रतिनिधित्व करता है। कारकों को नकारात्मक चौथे क्रम की पहचान मैट्रिक्स, यानी केंद्रीय उलटा तक निर्धारित किया जाता है।
चतुष्कोणों से संबंध
कार्तीय निर्देशांक के साथ 4-आयामी स्थल में एक बिंदु (u, x, y, z) चतुर्भुज द्वारा दर्शाया जा सकता है P = u + xi + yj + zk.
एक बाएं-आइसोकलिनिक घुमाव को एक इकाई चतुष्कोण द्वारा बाएं-गुणन द्वारा दर्शाया जाता है QL = a + bi + cj + dk. मैट्रिक्स-सदिश भाषा में यह है
इसी तरह, एक राइट-समनमनी घूर्णन को यूनिट क्वाटरनियन द्वारा राइट-मल्टीप्लिकेशन द्वारा दर्शाया जाता है QR = p + qi + rj + sk, जो मैट्रिक्स-सदिश रूप में है
पिछले अनुभाग में (#Isoclinic अपघटन) यह दिखाया गया है कि कैसे एक सामान्य 4D घूर्णन बाएं और दाएं-समनमनी कारकों में विभाजित होता है।
Quaternion भाषा में Van Elfrinkhof का सूत्र पढ़ता है
या, प्रतीकात्मक रूप में,
जर्मन गणितज्ञ फेलिक्स क्लेन के अनुसार यह सूत्र 1854 में केली को पहले से ही ज्ञात था[citation needed].
Quaternion गुणन साहचर्य है। इसलिए,
जो दर्शाता है कि बाएँ-समनतिक और दाएँ-समनतिक घुमाव चलते हैं।
4डी घूर्णन मेट्रिसेस के आइगेनवैल्यू
एक 4D घूर्णन मैट्रिक्स के चार eigenvalue s आम तौर पर यूनिट परिमाण के जटिल संख्याओं के दो संयुग्म जोड़े के रूप में होते हैं। यदि एक ईगेनवेल्यू वास्तविक है, तो यह ±1 होना चाहिए, क्योंकि घूर्णन एक सदिश के परिमाण को अपरिवर्तित छोड़ देता है। उस eigenvalue का संयुग्म भी एकता है, जो eigenvectors की एक जोड़ी प्रदान करता है जो एक निश्चित तल को परिभाषित करता है, और इसलिए घूर्णन सरल है। क्वाटरनियन नोटेशन में, एसओ (4) में एक उचित (यानी, गैर-इनवर्टिंग) घूर्णन एक उचित सरल घूर्णन है अगर और केवल अगर यूनिट क्वाटरनियंस के असली हिस्से QL और QR परिमाण में समान हैं और समान चिन्ह हैं।[lower-alpha 2] यदि वे दोनों शून्य हैं, तो घूर्णन के सभी eigenvalues एकता हैं, और घूर्णन अशक्त घुमाव है। अगर के असली हिस्से QL और QR समान नहीं हैं तो सभी ईगेनवेल्यूज जटिल हैं, और घूर्णन एक दोहरा घूर्णन है।
3डी घूर्णन के लिए यूलर-रोड्रिग्स सूत्र
हमारे साधारण 3डी स्थल को समन्वय प्रणाली UXYZ के साथ 4डी स्थल के समन्वय प्रणाली 0XYZ के साथ आसानी से उप-स्थान के रूप में माना जाता है। इसके घूर्णन समूह SO(3) की पहचान SO(4) के उपसमूह से की जाती है जिसमें मैट्रिसेस होते हैं
पूर्ववर्ती उपखंड में वान एल्फ्रिन्खोफ के सूत्र में तीन आयामों के लिए यह प्रतिबंध होता है p = a, q = −b, r = −c, s = −d, या चतुष्कोणीय प्रतिनिधित्व में: QR = QL′ = QL−1. 3डी घूर्णन मैट्रिक्स तब 3डी घूर्णन के लिए यूलर-रॉड्रिक्स फॉर्मूला बन जाता है
जो इसके यूलर-रोड्रिग्स पैरामीटर द्वारा 3डी घूर्णन का प्रतिनिधित्व है: a, b, c, d.
इसी चतुर्धातुक सूत्र P′ = QPQ−1, कहां Q = QL, या, विस्तारित रूप में:
विलियम रोवन हैमिल्टन -आर्थर केली सूत्र के रूप में जाना जाता है।
हॉपफ निर्देशांक
हाइपरस्फेरिकल निर्देशांक के उपयोग से 3डी स्थल में घूर्णन को गणितीय रूप से अधिक सुगम बनाया जाता है। 3डी में किसी भी घुमाव को घूर्णन के एक निश्चित अक्ष और उस अक्ष के लम्बवत् एक अपरिवर्तनीय तल द्वारा अभिलक्षित किया जा सकता है। सामान्यता के नुकसान के बिना, हम ले सकते हैं xy-प्लेन इनवेरिएंट प्लेन के रूप में और z-अक्ष स्थिर अक्ष के रूप में। चूंकि रेडियल दूरियां घूर्णन से प्रभावित नहीं होती हैं, हम निश्चित अक्ष और अपरिवर्तनीय तल को संदर्भित गोलाकार निर्देशांक द्वारा इकाई क्षेत्र (2-गोले) पर इसके प्रभाव से एक घूर्णन को चिह्नित कर सकते हैं:
चूंकि x2 + y2 + z2 = 1, बिंदु 2-गोले पर स्थित हैं। पर एक बिंदु {θ0, φ0} एक कोण से घुमाया गया φ बारे में z-अक्ष बस द्वारा निर्दिष्ट किया गया है {θ0, φ0 + φ}. जबकि हाइपरस्फेरिकल निर्देशांक 4D घुमावों से निपटने में भी उपयोगी होते हैं, 4D के लिए और भी अधिक उपयोगी समन्वय प्रणाली 3-क्षेत्र #Hopf निर्देशांक द्वारा प्रदान की जाती है {ξ1, η, ξ2},[4] जो 3-गोले पर स्थिति निर्दिष्ट करने वाले तीन कोणीय निर्देशांक का एक सेट है। उदाहरण के लिए:
चूंकि u2 + x2 + y2 + z2 = 1, बिंदु 3-गोले पर स्थित हैं।
4डी स्थल में, उत्पत्ति के बारे में प्रत्येक घुमाव में दो अपरिवर्तनीय तल होते हैं जो एक दूसरे के लिए पूरी तरह से आयतीय होते हैं और मूल पर प्रतिच्छेद करते हैं, और दो स्वतंत्र कोणों द्वारा घुमाए जाते हैं ξ1 और ξ2. व्यापकता के नुकसान के बिना, हम क्रमशः चुन सकते हैं uz- और xy-तल इन अपरिवर्तनीय तलों के रूप में। एक बिंदु के 4D में घूर्णन {ξ10, η0, ξ20} कोणों के माध्यम से ξ1 और ξ2 तब बस हॉफ निर्देशांक में व्यक्त किया जाता है {ξ10 + ξ1, η0, ξ20 + ξ2}.
4D घुमावों का दृश्य
3डी स्थल में हर घुमाव में घूर्णन द्वारा अपरिवर्तित एक निश्चित अक्ष होता है। घूर्णन की धुरी और उस अक्ष के बारे में घूर्णन के कोण को निर्दिष्ट करके घूर्णन पूरी तरह से निर्दिष्ट किया गया है। व्यापकता के नुकसान के बिना, इस अक्ष को चुना जा सकता है z-एक कार्तीय समन्वय प्रणाली का अक्ष, घूर्णन के एक सरल दृश्य की अनुमति देता है।
3डी स्थल में, गोलाकार निर्देशांक {θ, φ} 2-क्षेत्र की पैरामीट्रिक अभिव्यक्ति के रूप में देखा जा सकता है। निश्चित के लिए θ वे 2-गोले पर मंडलियों का वर्णन करते हैं जो लंबवत हैं z-अक्ष और इन वृत्तों को गोले पर एक बिंदु के प्रक्षेपवक्र के रूप में देखा जा सकता है। एक बिंदु {θ0, φ0} गोले पर, के बारे में एक घूर्णन के तहत z-अक्ष, एक प्रक्षेपवक्र का अनुसरण करेगा {θ0, φ0 + φ} कोण के रूप में φ भिन्न होता है। प्रक्षेपवक्र को समय में घूर्णन पैरामीट्रिक के रूप में देखा जा सकता है, जहां घूर्णन का कोण समय में रैखिक होता है: φ = ωt, साथ ω कोणीय वेग होना।
3डी मामले के अनुरूप, 4डी स्थल में प्रत्येक घूर्णन में कम से कम दो अपरिवर्तनीय धुरी-तल होते हैं जो घूर्णन द्वारा अपरिवर्तित छोड़ दिए जाते हैं और पूरी तरह से आयतीय होते हैं (यानी वे एक बिंदु पर छेड़छाड़ करते हैं)। घूर्णन पूरी तरह से धुरी तलों और उनके बारे में घूर्णन के कोणों को निर्दिष्ट करके निर्दिष्ट किया गया है। व्यापकता के नुकसान के बिना, इन धुरी तलों को चुना जा सकता है uz- और xy-एक कार्टेशियन समन्वय प्रणाली के तल, घूर्णन के एक सरल दृश्य की अनुमति देते हैं।
4D स्थल में, हॉफ कोण {ξ1, η, ξ2} 3-गोले को पैरामीटराइज़ करें। निश्चित के लिए η वे द्वारा परिचालित एक टोरस का वर्णन करते हैं ξ1 और ξ2, साथ η = π/4 क्लिफर्ड टोरस का विशेष मामला होने के नाते xy- और uz-तल। ये तोरी 3डी-स्पेस में पाई जाने वाली सामान्य तोरी नहीं हैं। जबकि वे अभी भी 2D सतह हैं, वे 3-गोले में सन्निहित हैं। 3-गोले को पूरे यूक्लिडीय 3डी-स्पेस पर प्रक्षेपित स्टीरियोग्राफिक प्रोजेक्शन हो सकता है, और इन तोरी को फिर क्रांति की सामान्य टोरी के रूप में देखा जाता है। यह देखा जा सकता है कि एक बिंदु द्वारा निर्दिष्ट {ξ10, η0, ξ20} के साथ परिक्रमा कर रहा है uz- और xy-प्लेन इनवेरिएंट द्वारा निर्दिष्ट टोरस पर रहेगा η0.[5] एक बिंदु के प्रक्षेपवक्र को समय के कार्य के रूप में लिखा जा सकता है {ξ10 + ω1t, η0, ξ20 + ω2t} और इसके संबंधित टोरस पर स्टीरियोग्राफिक रूप से प्रक्षेपित किया गया है, जैसा कि नीचे दिए गए आंकड़ों में है।[6] इन आंकड़ों में, प्रारंभिक बिंदु लिया जाता है {0, π/4, 0}, यानी क्लिफर्ड टोरस पर। चित्र 1 में, दो सरल घूर्णन प्रक्षेपवक्र काले रंग में दिखाए गए हैं, जबकि एक बाएँ और दाएँ समनमनी प्रक्षेपवक्र क्रमशः लाल और नीले रंग में दिखाए गए हैं। चित्र 2 में, एक सामान्य घुमाव जिसमें ω1 = 1 और ω2 = 5 दिखाया गया है, जबकि चित्र 3 में, एक सामान्य घुमाव जिसमें ω1 = 5 और ω2 = 1 दिखाई जा रही है।
4D घूर्णन मेट्रिसेस उत्पन्न करना
रोड्रिग्स के घूर्णन सूत्र और केली सूत्र से चार आयामी घुमाव प्राप्त किए जा सकते हैं। होने देना A एक 4 × 4 तिरछा-सममित मैट्रिक्स बनें। तिरछा-सममित मैट्रिक्स A के रूप में विशिष्ट रूप से विघटित किया जा सकता है
दो तिरछा-सममित आव्यूहों में A1 और A2 गुणों को संतुष्ट करना A1A2 = 0, A13 = −A1 और A23 = −A2, कहां ∓θ1i और ∓θ2i के आइगेनवैल्यू हैं A. फिर, तिरछा-सममित आव्यूहों से 4डी घूर्णन आव्यूह प्राप्त किए जा सकते हैं A1 और A2 रोड्रिग्स के घूर्णन सूत्र और केली सूत्र द्वारा।[7] होने देना A eigenvalues के सेट के साथ एक 4 × 4 गैर-शून्य तिरछा-सममित मैट्रिक्स बनें
फिर A के रूप में विघटित किया जा सकता है
कहां A1 और A2 विषम-सममित आव्यूह हैं जो गुणों को संतुष्ट करते हैं
इसके अलावा, तिरछा-सममित मैट्रिक्स A1 और A2 के रूप में विशिष्ट रूप से प्राप्त होते हैं
और
फिर,
में एक घूर्णन मैट्रिक्स है E4, जो रोड्रिग्स के घूर्णन सूत्र द्वारा ईगेनवैल्यू के सेट के साथ उत्पन्न होता है
भी,
में एक घूर्णन मैट्रिक्स है E4, जो केली के घूर्णन सूत्र द्वारा उत्पन्न होता है, जैसे कि eigenvalues का सेट R है,
जनरेटिंग घूर्णन मैट्रिक्स को मूल्यों के संबंध में वर्गीकृत किया जा सकता है θ1 और θ2 निम्नलिखित नुसार:
- यदि θ1 = 0 और θ2 ≠ 0 या इसके विपरीत, तब सूत्र सरल घुमाव उत्पन्न करते हैं;
- यदि θ1 और θ2 अशून्य हैं और θ1 ≠ θ2, तब सूत्र दोहरा घुमाव उत्पन्न करते हैं;
- यदि θ1 और θ2 अशून्य हैं और θ1 = θ2, तब सूत्र समनमनी घुमाव उत्पन्न करते हैं।
यह भी देखें
- लाप्लास-रेंज-लेन्ज़ सदिश
- लोरेंत्ज़ समूह
- आयतीय समूह
- आयतीय मैट्रिक्स
- घूर्णन का तल
- पोंकारे समूह
- चतुर्भुज और स्थानिक घूर्णन
टिप्पणियाँ
- ↑ Assuming that 4-space is oriented, then an orientation for each of the 2-planes A and B can be chosen to be consistent with this orientation of 4-space in two equally valid ways. If the angles from one such choice of orientations of A and B are {α, β}, then the angles from the other choice are {−α, −β}. (In order to measure a rotation angle in a 2-plane, it is necessary to specify an orientation on that 2-plane. A rotation angle of −π is the same as one of +π. If the orientation of 4-space is reversed, the resulting angles would be either {α, −β} or {−α, β}. Hence the absolute values of the angles are well-defined completely independently of any choices.)
- ↑ Example of opposite signs: the central inversion; in the quaternion representation the real parts are +1 and −1, and the central inversion cannot be accomplished by a single simple rotation.
संदर्भ
- ↑ Kim & Rote 2016, pp. 8–10, Relations to Clifford Parallelism.
- ↑ Kim & Rote 2016, §5 Four Dimensional Rotations.
- ↑ Perez-Gracia, Alba; Thomas, Federico (2017). "4डी घूर्णन और अनुप्रयोगों के केली के गुणनखंडन पर" (PDF). Adv. Appl. Clifford Algebras. 27: 523–538. doi:10.1007/s00006-016-0683-9. hdl:2117/113067. S2CID 12350382.
- ↑ Karcher, Hermann, "Bianchi–Pinkall Flat Tori in S3", 3DXM Documentation, 3DXM Consortium, retrieved 5 April 2015
- ↑ Pinkall, U. (1985). "स<उप>3</उप> में हॉफ टोरी" (PDF). Invent. Math. 81 (2): 379–386. Bibcode:1985InMat..81..379P. doi:10.1007/bf01389060. S2CID 120226082. Retrieved 7 April 2015.
- ↑ Banchoff, Thomas F. (1990). तीसरे आयाम से परे. W H Freeman & Co. ISBN 978-0716750253. Retrieved 2015-04-08.
- ↑ Erdoğdu, M.; Özdemir, M. (2015). "चार आयामी रोटेशन मैट्रिक्स उत्पन्न करना".
{{cite journal}}
: Cite journal requires|journal=
(help)
ग्रन्थसूची
- L. van Elfrinkhof: Eene eigenschap van de orthogonale substitutie van de vierde orde. Handelingen van het 6e Nederlandsch Natuurkundig en Geneeskundig Congres, Delft, 1897.
- Felix Klein: Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. Translated by E.R. Hedrick and C.A. Noble. The Macmillan Company, New York, 1932.
- Henry Parker Manning: Geometry of four dimensions. The Macmillan Company, 1914. Republished unaltered and unabridged by Dover Publications in 1954. In this monograph four-dimensional geometry is developed from first principles in a synthetic axiomatic way. Manning's work can be considered as a direct extension of the works of Euclid and Hilbert to four dimensions.
- J. H. Conway and D. A. Smith: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A. K. Peters, 2003.
- Hathaway, Arthur S. (1902). "Quaternion Space". Transactions of the American Mathematical Society. 3 (1): 46–59. doi:10.1090/S0002-9947-1902-1500586-2. JSTOR 1986315.
- Johan Ernest Mebius (2005). "A matrix-based proof of the quaternion representation theorem for four-dimensional rotations". arXiv:math/0501249.
- Johan Ernest Mebius (2007). "Derivation of the Euler-Rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations". arXiv:math/0701759.
- P.H.Schoute: Mehrdimensionale Geometrie. Leipzig: G.J.Göschensche Verlagshandlung. Volume 1 (Sammlung Schubert XXXV): Die linearen Räume, 1902. Volume 2 (Sammlung Schubert XXXVI): Die Polytope, 1905.
- Stringham, Irving (1901). "On the geometry of planes in a parabolic space of four dimensions". Transactions of the American Mathematical Society. 2 (2): 183–214. doi:10.1090/s0002-9947-1901-1500564-2. JSTOR 1986218.
- Erdoğdu, Melek; Özdemi̇r, Mustafa (2020). "Simple, Double and Isoclinic Rotations with Applications". Mathematical Sciences and Applications E-Notes. doi:10.36753/mathenot.642208.
- Mortari, Daniele (July 2001). "On the Rigid Rotation Concept in n-Dimensional Spaces" (PDF). Journal of the Astronautical Sciences. 49 (3): 401–420. Bibcode:2001JAnSc..49..401M. doi:10.1007/BF03546230. S2CID 16952309. Archived from the original (PDF) on 2019-02-17.
- Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". arXiv:1603.07269 [cs.CG].
- Zamboj, Michal (8 Jan 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". Journal of Computational Design and Engineering. 8 (3): 836–854. arXiv:2003.09236. doi:10.1093/jcde/qwab018.