स्पिन समूह: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Double cover Lie group of the special orthogonal group}} | {{Short description|Double cover Lie group of the special orthogonal group}} | ||
{{Group theory sidebar}}गणित में स्पिन समूह स्पिन('' | {{Group theory sidebar}}गणित में स्पिन समूह स्पिन(''n'')<ref>{{Cite book | last1=Lawson | first1=H. Blaine | last2=Michelsohn | first2=Marie-Louise | author2-link=Marie-Louise Michelsohn| title=स्पिन ज्यामिति| publisher=[[Princeton University Press]] | isbn=978-0-691-08542-5 | year=1989 }} page 14</ref><ref>{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=[[American Mathematical Society]] | year=2000|isbn=978-0-8218-2055-1}} page 15</ref> [[ विशेष ऑर्थोगोनल समूह |विशेष ऑर्थोगोनल समूह]] {{nowrap|1=SO(''n'') = SO(''n'', '''R''')}} का दोहरा आवरण स्थान है, जैसे कि [[ झूठ समूह |असत्य समूह]] का एक संक्षिप्त निर्धारित क्रम अवस्थित है (जब {{nowrap|''n'' ≠ 2}}) | ||
:<math>1 \to \mathrm{Z}_2 \to \operatorname{Spin}(n) \to \operatorname{SO}(n) \to 1.</math> | :<math>1 \to \mathrm{Z}_2 \to \operatorname{Spin}(n) \to \operatorname{SO}(n) \to 1.</math> | ||
असत्य समूह के रूप में, स्पिन (n) इसलिए अपने आयाम, एन (एन - 1)/2, और विशेष ओर्थोगोनल समूह के साथ अपने असत्य बीजगणित को स्थानांतरित करता है। | |||
{{nowrap|''n'' > 2}} के लिए, स्पिन (n) मुख्य रूप से [[ बस जुड़ा हुआ है |संयोजित]] होता है इसलिए विशेष ऑर्थोगोनल समूह SO(n) के सार्वभौमिक आवरण के साथ समानता रखता है। | |||
[[ कर्नेल (समूह सिद्धांत) ]] के गैर-तुच्छ तत्व को -1 के रूप में दर्शाया गया है, जिसे [[ उत्पत्ति के माध्यम से प्रतिबिंब ]] के ऑर्थोगोनल परिवर्तन के साथ भ्रमित नहीं होना चाहिए, जिसे आम तौर पर निरूपित किया जाता है -{{math|''I''}}. | [[ कर्नेल (समूह सिद्धांत) |कर्नेल (समूह सिद्धांत)]] के गैर-तुच्छ तत्व को -1 के रूप में दर्शाया गया है, जिसे [[ उत्पत्ति के माध्यम से प्रतिबिंब |उत्पत्ति के माध्यम से प्रतिबिंब]] के ऑर्थोगोनल परिवर्तन के साथ भ्रमित नहीं होना चाहिए, जिसे '''आम तौर पर''' निरूपित किया जाता है -{{math|''I''}}. | ||
[[ क्लिफर्ड बीजगणित ]] सीएल ( | [[ क्लिफर्ड बीजगणित | क्लिफर्ड बीजगणित]] सीएल (n) में उल्टे तत्वों के [[ उपसमूह |उपसमूह]] के रूप में स्पिन (n) का निर्माण किया जा सकता है। एक अलग लेख स्पिन अभ्यावेदन पर चर्चा करता है। | ||
== प्रेरणा और शारीरिक व्याख्या == | == प्रेरणा और शारीरिक व्याख्या == | ||
स्पिन समूह का उपयोग भौतिकी में (विद्युत रूप से तटस्थ, अपरिवर्तित) फर्मों की समरूपता का वर्णन करने के लिए किया जाता है। इसकी जटिलता, स्पिनक, का उपयोग विद्युत रूप से आवेशित [[ फर्मियन ]], विशेष रूप से [[ इलेक्ट्रॉन ]] का वर्णन करने के लिए किया जाता है। सख्ती से बोलते हुए, स्पिन समूह शून्य-आयामी अंतरिक्ष में एक फ़र्मियन का वर्णन करता है; लेकिन निश्चित रूप से, अंतरिक्ष शून्य-आयामी नहीं है, और इसलिए स्पिन समूह का उपयोग (छद्म-) [[ रीमैनियन कई गुना ]] पर [[ स्पिन संरचना ]]ओं को परिभाषित करने के लिए किया जाता है: स्पिन समूह एक [[ स्पिनर बंडल ]] का [[ संरचना समूह ]] है। स्पिनर बंडल पर [[ affine कनेक्शन ]] [[ स्पिन कनेक्शन ]] है; स्पिन कनेक्शन उपयोगी है क्योंकि यह [[ सामान्य सापेक्षता ]] में कई जटिल गणनाओं को सरल बना सकता है और लालित्य ला सकता है। बदले में स्पिन कनेक्शन [[ डायराक समीकरण ]] को घुमावदार स्पेसटाइम (प्रभावी रूप से टेट्राड (सामान्य सापेक्षता) निर्देशांक में) में लिखने में सक्षम बनाता है, जो बदले में क्वांटम गुरुत्व के लिए एक आधार प्रदान करता है, साथ ही [[ हॉकिंग विकिरण ]] (जहां एक उलझे हुए, आभासी फ़र्मियन की जोड़ी घटना क्षितिज से आगे निकल जाती है, और दूसरा नहीं)। संक्षेप में, स्पिन समूह एक महत्वपूर्ण आधारशिला है, जो आधुनिक सैद्धांतिक भौतिकी में उन्नत अवधारणाओं को समझने के लिए केंद्रीय रूप से महत्वपूर्ण है। गणित में, स्पिन समूह अपने आप में दिलचस्प है: न केवल इन कारणों से, बल्कि और भी कई कारणों से। | स्पिन समूह का उपयोग भौतिकी में (विद्युत रूप से तटस्थ, अपरिवर्तित) फर्मों की समरूपता का वर्णन करने के लिए किया जाता है। इसकी जटिलता, स्पिनक, का उपयोग विद्युत रूप से आवेशित [[ फर्मियन |फर्मियन]], विशेष रूप से [[ इलेक्ट्रॉन |इलेक्ट्रॉन]] का वर्णन करने के लिए किया जाता है। सख्ती से बोलते हुए, स्पिन समूह शून्य-आयामी अंतरिक्ष में एक फ़र्मियन का वर्णन करता है; लेकिन निश्चित रूप से, अंतरिक्ष शून्य-आयामी नहीं है, और इसलिए स्पिन समूह का उपयोग (छद्म-) [[ रीमैनियन कई गुना |रीमैनियन कई गुना]] पर [[ स्पिन संरचना |स्पिन संरचना]] ओं को परिभाषित करने के लिए किया जाता है: स्पिन समूह एक [[ स्पिनर बंडल |स्पिनर बंडल]] का [[ संरचना समूह |संरचना समूह]] है। स्पिनर बंडल पर [[ affine कनेक्शन |affine कनेक्शन]] [[ स्पिन कनेक्शन |स्पिन कनेक्शन]] है; स्पिन कनेक्शन उपयोगी है क्योंकि यह [[ सामान्य सापेक्षता |सामान्य सापेक्षता]] में कई जटिल गणनाओं को सरल बना सकता है और लालित्य ला सकता है। बदले में स्पिन कनेक्शन [[ डायराक समीकरण |डायराक समीकरण]] को घुमावदार स्पेसटाइम (प्रभावी रूप से टेट्राड (सामान्य सापेक्षता) निर्देशांक में) में लिखने में सक्षम बनाता है, जो बदले में क्वांटम गुरुत्व के लिए एक आधार प्रदान करता है, साथ ही [[ हॉकिंग विकिरण |हॉकिंग विकिरण]] (जहां एक उलझे हुए, आभासी फ़र्मियन की जोड़ी घटना क्षितिज से आगे निकल जाती है, और दूसरा नहीं)। संक्षेप में, स्पिन समूह एक महत्वपूर्ण आधारशिला है, जो आधुनिक सैद्धांतिक भौतिकी में उन्नत अवधारणाओं को समझने के लिए केंद्रीय रूप से महत्वपूर्ण है। गणित में, स्पिन समूह अपने आप में दिलचस्प है: न केवल इन कारणों से, बल्कि और भी कई कारणों से। | ||
== निर्माण == | == निर्माण == | ||
स्पिन समूह का निर्माण अक्सर एक [[ निश्चित द्विघात रूप ]] q के साथ एक वास्तविक सदिश स्थान V पर क्लिफर्ड बीजगणित के निर्माण के साथ शुरू होता है।<ref name="jost">Jürgen Jost, ''Riemannian Geometry and Geometric Analysis'', (2002) Springer Verlag {{isbn|3-540-42627-2}} ''(See Chapter 1.)''</ref> क्लिफर्ड बीजगणित दो तरफा आदर्श द्वारा V के [[ टेंसर बीजगणित ]] टीवी का भागफल है। टेंसर बीजगणित (वास्तविक से अधिक) को इस रूप में लिखा जा सकता है | स्पिन समूह का निर्माण अक्सर एक [[ निश्चित द्विघात रूप |निश्चित द्विघात रूप]] q के साथ एक वास्तविक सदिश स्थान V पर क्लिफर्ड बीजगणित के निर्माण के साथ शुरू होता है।<ref name="jost">Jürgen Jost, ''Riemannian Geometry and Geometric Analysis'', (2002) Springer Verlag {{isbn|3-540-42627-2}} ''(See Chapter 1.)''</ref> क्लिफर्ड बीजगणित दो तरफा आदर्श द्वारा V के [[ टेंसर बीजगणित |टेंसर बीजगणित]] टीवी का भागफल है। टेंसर बीजगणित (वास्तविक से अधिक) को इस रूप में लिखा जा सकता है | ||
:<math>\mathrm{T}V= \mathbb {R} \oplus V \oplus (V\otimes V) \oplus \cdots </math> | :<math>\mathrm{T}V= \mathbb {R} \oplus V \oplus (V\otimes V) \oplus \cdots </math> | ||
क्लिफर्ड बीजगणित सीएल (वी) तब [[ भागफल साहचर्य बीजगणित ]] है | क्लिफर्ड बीजगणित सीएल (वी) तब [[ भागफल साहचर्य बीजगणित |भागफल साहचर्य बीजगणित]] है | ||
:<math>\operatorname{Cl}(V) = \mathrm{T}V / \left( v \otimes v - q(v) \right) ,</math> | :<math>\operatorname{Cl}(V) = \mathrm{T}V / \left( v \otimes v - q(v) \right) ,</math> | ||
कहां <math>q(v)</math> सदिश पर लागू होने वाला द्विघात रूप है <math>v\in V</math>. परिणामी स्थान परिमित आयामी, स्वाभाविक रूप से [[ वर्गीकृत (गणित) ]] (एक वेक्टर स्थान के रूप में) है, और इसे इस रूप में लिखा जा सकता है | कहां <math>q(v)</math> सदिश पर लागू होने वाला द्विघात रूप है <math>v\in V</math>. परिणामी स्थान परिमित आयामी, स्वाभाविक रूप से [[ वर्गीकृत (गणित) |वर्गीकृत (गणित)]] (एक वेक्टर स्थान के रूप में) है, और इसे इस रूप में लिखा जा सकता है | ||
:<math>\operatorname{Cl}(V) = \operatorname{Cl}^0 \oplus \operatorname{Cl}^1 \oplus \operatorname{Cl}^2 \oplus \cdots \oplus \operatorname{Cl}^n</math> | :<math>\operatorname{Cl}(V) = \operatorname{Cl}^0 \oplus \operatorname{Cl}^1 \oplus \operatorname{Cl}^2 \oplus \cdots \oplus \operatorname{Cl}^n</math> | ||
कहां <math>n</math> का आयाम है <math>V</math>, <math>\operatorname{Cl}^0 = \mathbf{R}</math> और <math>\operatorname{Cl}^1 = V</math>. [[ स्पिन बीजगणित ]] <math>\mathfrak{spin}</math> की तरह परिभाषित किया गया है | कहां <math>n</math> का आयाम है <math>V</math>, <math>\operatorname{Cl}^0 = \mathbf{R}</math> और <math>\operatorname{Cl}^1 = V</math>. [[ स्पिन बीजगणित |स्पिन बीजगणित]] <math>\mathfrak{spin}</math> की तरह परिभाषित किया गया है | ||
:<math>\operatorname{Cl}^n =\mathfrak{spin}(V) = \mathfrak{spin}(n) ,</math> | :<math>\operatorname{Cl}^n =\mathfrak{spin}(V) = \mathfrak{spin}(n) ,</math> | ||
जहां अंतिम V वास्तविक आयाम n का वास्तविक सदिश स्थान होने के लिए एक लघु-हाथ है। यह एक | जहां अंतिम V वास्तविक आयाम n का वास्तविक सदिश स्थान होने के लिए एक लघु-हाथ है। यह एक असत्या बीजगणित है; यह वी पर एक प्राकृतिक क्रिया है, और इस तरह असत्य बीजगणित के लिए आइसोमोर्फिक दिखाया जा सकता है <math>\mathfrak{so}(n)</math> विशेष ऑर्थोगोनल समूह की। | ||
[[ पिन समूह ]] <math>\operatorname{Pin}(V)</math> का एक उपसमूह है <math>\operatorname{Cl}(V)</math>प्रपत्र के सभी तत्वों का क्लिफोर्ड समूह | [[ पिन समूह | पिन समूह]] <math>\operatorname{Pin}(V)</math> का एक उपसमूह है <math>\operatorname{Cl}(V)</math>प्रपत्र के सभी तत्वों का क्लिफोर्ड समूह | ||
:<math>v_1 v_2 \cdots v_k ,</math> जहां प्रत्येक <math>v_i\in V</math> इकाई लंबाई की है: <math>q(v_i) = 1.</math> | :<math>v_1 v_2 \cdots v_k ,</math> जहां प्रत्येक <math>v_i\in V</math> इकाई लंबाई की है: <math>q(v_i) = 1.</math> | ||
स्पिन समूह को तब के रूप में परिभाषित किया गया है | स्पिन समूह को तब के रूप में परिभाषित किया गया है | ||
Line 35: | Line 35: | ||
यदि सेट <math>\{e_i\}</math> (वास्तविक) वेक्टर स्पेस V का एक अलौकिक आधार है, तो ऊपर का भागफल एक प्राकृतिक एंटी-कम्यूटिंग संरचना के साथ अंतरिक्ष को संपन्न करता है: | यदि सेट <math>\{e_i\}</math> (वास्तविक) वेक्टर स्पेस V का एक अलौकिक आधार है, तो ऊपर का भागफल एक प्राकृतिक एंटी-कम्यूटिंग संरचना के साथ अंतरिक्ष को संपन्न करता है: | ||
:<math>e_i e_j = -e_j e_i</math> के लिए <math>i \ne j ,</math> | :<math>e_i e_j = -e_j e_i</math> के लिए <math>i \ne j ,</math> | ||
जो विचार करके अनुसरण करता है <math>v\otimes v</math> के लिए <math>v=e_i+e_j</math>. यह एंटी-कम्यूटेशन भौतिकी में महत्वपूर्ण हो जाता है, क्योंकि यह [[ पाउली अपवर्जन सिद्धांत ]] की भावना को फर्मों के लिए पकड़ लेता है। एक | जो विचार करके अनुसरण करता है <math>v\otimes v</math> के लिए <math>v=e_i+e_j</math>. यह एंटी-कम्यूटेशन भौतिकी में महत्वपूर्ण हो जाता है, क्योंकि यह [[ पाउली अपवर्जन सिद्धांत |पाउली अपवर्जन सिद्धांत]] की भावना को फर्मों के लिए पकड़ लेता है। एक निर्धारित सूत्रीकरण यहाँ दायरे से बाहर है, लेकिन इसमें [[ मिन्कोव्स्की स्पेसटाइम |मिन्कोव्स्की स्पेसटाइम]] पर एक स्पिनर बंडल का निर्माण शामिल है; परिणामी स्पिनर क्षेत्रों को क्लिफर्ड बीजगणित निर्माण के उप-उत्पाद के रूप में विरोधी-आवागमन के रूप में देखा जा सकता है। यह एंटी-कम्यूटेशन गुण [[ सुपरसिमेट्री |सुपरसिमेट्री]] के निर्माण के लिए भी महत्वपूर्ण है। क्लिफर्ड बीजगणित और स्पिन समूह में कई दिलचस्प और दिलचस्प गुण हैं, जिनमें से कुछ नीचे सूचीबद्ध हैं। | ||
== डबल | == डबल आवरणिंग == | ||
द्विघात स्थान V के लिए, स्पिन (V) द्वारा SO(V) का दोहरा आवरण स्पष्ट रूप से निम्नानुसार दिया जा सकता है। होने देना <math>\{e_i\}</math> वी के लिए एक असामान्य आधार बनें। एक [[ antiautomorphism ]] को परिभाषित करें <math>t : \operatorname{Cl}(V) \to \operatorname{Cl}(V)</math> द्वारा | द्विघात स्थान V के लिए, स्पिन (V) द्वारा SO(V) का दोहरा आवरण स्पष्ट रूप से निम्नानुसार दिया जा सकता है। होने देना <math>\{e_i\}</math> वी के लिए एक असामान्य आधार बनें। एक [[ antiautomorphism |antiautomorphism]] को परिभाषित करें <math>t : \operatorname{Cl}(V) \to \operatorname{Cl}(V)</math> द्वारा | ||
:<math> | :<math> | ||
\left(e_i e_j \cdots e_k\right)^t | \left(e_i e_j \cdots e_k\right)^t | ||
Line 55: | Line 55: | ||
== स्पिनर स्पेस == | == स्पिनर स्पेस == | ||
इस औपचारिकता को देखते हुए, स्पिनर स्पेस और [[ वेइल स्पिनर ]]ों का निर्माण कैसे किया जाता है, इसकी समीक्षा करना उचित है। आयाम की एक वास्तविक सदिश समष्टि V दी गई है {{nowrap|1=''n'' = 2''m''}} एक सम संख्या, इसकी [[ जटिलता ]] है <math>V \otimes \mathbf{C}</math>. इसे एक उपसमष्टि के प्रत्यक्ष योग के रूप में लिखा जा सकता है <math>W</math> स्पिनरों और एक उप-स्थान की <math>\overline{W}</math> विरोधी स्पिनरों की: | इस औपचारिकता को देखते हुए, स्पिनर स्पेस और [[ वेइल स्पिनर |वेइल स्पिनर]] ों का निर्माण कैसे किया जाता है, इसकी समीक्षा करना उचित है। आयाम की एक वास्तविक सदिश समष्टि V दी गई है {{nowrap|1=''n'' = 2''m''}} एक सम संख्या, इसकी [[ जटिलता |जटिलता]] है <math>V \otimes \mathbf{C}</math>. इसे एक उपसमष्टि के प्रत्यक्ष योग के रूप में लिखा जा सकता है <math>W</math> स्पिनरों और एक उप-स्थान की <math>\overline{W}</math> विरोधी स्पिनरों की: | ||
:<math>V \otimes \mathbf{C} = W \oplus \overline{W}</math> | :<math>V \otimes \mathbf{C} = W \oplus \overline{W}</math> | ||
Line 62: | Line 62: | ||
के लिए <math>1\le k\le m</math> और जटिल संयुग्मी स्पिनर स्पैन <math>\overline{W}</math>. यह देखना सीधा है कि स्पिनर एंटी-कम्यूट करते हैं, और स्पिनर और एंटी-स्पिनर का उत्पाद एक स्केलर है। | के लिए <math>1\le k\le m</math> और जटिल संयुग्मी स्पिनर स्पैन <math>\overline{W}</math>. यह देखना सीधा है कि स्पिनर एंटी-कम्यूट करते हैं, और स्पिनर और एंटी-स्पिनर का उत्पाद एक स्केलर है। | ||
स्पिनर स्पेस को [[ बाहरी बीजगणित ]] के रूप में परिभाषित किया गया है <math>\textstyle{\bigwedge} W</math>. (जटिलीकृत) क्लिफोर्ड बीजगणित स्वाभाविक रूप से इस स्थान पर कार्य करता है; (जटिल) स्पिन समूह लंबाई-संरक्षण [[ एंडोमोर्फिज्म ]] से मेल खाता है। बाहरी बीजगणित पर एक प्राकृतिक ग्रेडिंग है: विषम संख्या में प्रतियों का गुणनफल <math>W</math> fermions की भौतिकी धारणा के अनुरूप; सम उपसमष्टि बोसोन के अनुरूप है। स्पिनर स्पेस पर स्पिन समूह की कार्रवाई का प्रतिनिधित्व अपेक्षाकृत सरल फैशन में बनाया जा सकता है।<ref name="jost"/> | स्पिनर स्पेस को [[ बाहरी बीजगणित |बाहरी बीजगणित]] के रूप में परिभाषित किया गया है <math>\textstyle{\bigwedge} W</math>. (जटिलीकृत) क्लिफोर्ड बीजगणित स्वाभाविक रूप से इस स्थान पर कार्य करता है; (जटिल) स्पिन समूह लंबाई-संरक्षण [[ एंडोमोर्फिज्म |एंडोमोर्फिज्म]] से मेल खाता है। बाहरी बीजगणित पर एक प्राकृतिक ग्रेडिंग है: विषम संख्या में प्रतियों का गुणनफल <math>W</math> fermions की भौतिकी धारणा के अनुरूप; सम उपसमष्टि बोसोन के अनुरूप है। स्पिनर स्पेस पर स्पिन समूह की कार्रवाई का प्रतिनिधित्व अपेक्षाकृत सरल फैशन में बनाया जा सकता है।<ref name="jost"/> | ||
== जटिल मामला == | == जटिल मामला == | ||
{{Main|Spin structure#SpinC structures}} | {{Main|Spin structure#SpinC structures}} | ||
द स्पिन<sup>C</sup> समूह को | द स्पिन<sup>C</sup> समूह को निर्धारित अनुक्रम द्वारा परिभाषित किया गया है | ||
:<math>1 \to \mathrm{Z}_2 \to \operatorname{Spin}^{\mathbf{C}}(n) \to \operatorname{SO}(n)\times \operatorname{U}(1) \to 1.</math> | :<math>1 \to \mathrm{Z}_2 \to \operatorname{Spin}^{\mathbf{C}}(n) \to \operatorname{SO}(n)\times \operatorname{U}(1) \to 1.</math> | ||
यह जटिलता का गुणक उपसमूह है <math>\operatorname{Cl}(V)\otimes \mathbf{C}</math> क्लिफर्ड बीजगणित का, और विशेष रूप से, यह स्पिन (वी) और 'सी' में यूनिट सर्कल द्वारा उत्पन्न उपसमूह है। वैकल्पिक रूप से, यह भागफल है | यह जटिलता का गुणक उपसमूह है <math>\operatorname{Cl}(V)\otimes \mathbf{C}</math> क्लिफर्ड बीजगणित का, और विशेष रूप से, यह स्पिन (वी) और 'सी' में यूनिट सर्कल द्वारा उत्पन्न उपसमूह है। वैकल्पिक रूप से, यह भागफल है | ||
Line 73: | Line 73: | ||
जहां समानता <math>\sim</math> पहचानता {{nowrap|(''a'', ''u'')}} साथ {{nowrap|(−''a'', −''u'')}}. | जहां समानता <math>\sim</math> पहचानता {{nowrap|(''a'', ''u'')}} साथ {{nowrap|(−''a'', −''u'')}}. | ||
इसमें 4-मैनिफोल्ड थ्योरी और सीबर्ग-विटन थ्योरी में महत्वपूर्ण अनुप्रयोग हैं। भौतिकी में, स्पिन समूह अनावेशित फ़र्मियन का वर्णन करने के लिए उपयुक्त है, जबकि स्पिन<sup>C</sup> समूह का उपयोग [[ विद्युत ]] आवेशित फ़र्मियन का वर्णन करने के लिए किया जाता है। इस मामले में, यू (1) समरूपता विशेष रूप से विद्युत चुंबकत्व का [[ गेज समूह ]] है। | इसमें 4-मैनिफोल्ड थ्योरी और सीबर्ग-विटन थ्योरी में महत्वपूर्ण अनुप्रयोग हैं। भौतिकी में, स्पिन समूह अनावेशित फ़र्मियन का वर्णन करने के लिए उपयुक्त है, जबकि स्पिन<sup>C</sup> समूह का उपयोग [[ विद्युत |विद्युत]] आवेशित फ़र्मियन का वर्णन करने के लिए किया जाता है। इस मामले में, यू (1) समरूपता विशेष रूप से विद्युत चुंबकत्व का [[ गेज समूह |गेज समूह]] है। | ||
== [[ असाधारण समरूपता ]] == | == [[ असाधारण समरूपता ]] == | ||
कम आयामों में, असाधारण [[ समाकृतिकता ]] कहे जाने वाले शास्त्रीय | कम आयामों में, असाधारण [[ समाकृतिकता |समाकृतिकता]] कहे जाने वाले शास्त्रीय असत्य समूहों के बीच समरूपताएं हैं। उदाहरण के लिए, साधारण लाई बीजगणित के विभिन्न परिवारों के [[ मूल प्रक्रिया |मूल प्रक्रिया]] (और [[ डायनकिन आरेख |डायनकिन आरेख]] ों के संगत समरूपता) के बीच निम्न-आयामी समरूपता के कारण निम्न-आयामी स्पिन समूहों और कुछ शास्त्रीय असत्य समूहों के बीच समरूपताएं हैं। वास्तविक के लिए 'आर' लिखना, जटिल संख्याओं के लिए 'सी', चतुष्कोणों के लिए 'एच' और सामान्य समझ है कि सीएल (n) सीएल ('आर' के लिए एक संक्षिप्त हाथ है)<sup>n</sup>) और वह स्पिन(n) स्पिन('आर') के लिए शॉर्ट-हैंड है<sup>n</sup>) और इसी तरह, एक के पास वह है<ref name="jost"/> | ||
:सीएल<sup>सम</sup>(1) = R वास्तविक संख्याएँ | :सीएल<sup>सम</sup>(1) = R वास्तविक संख्याएँ | ||
: पिन (1) = {+i, -i, +1, -1} | : पिन (1) = {+i, -i, +1, -1} | ||
:स्पिन(1) = लंबकोणीय समूह|O(1) = {+1, −1} | :स्पिन(1) = लंबकोणीय समूह|O(1) = {+1, −1} आयाम शून्य का लंबकोणीय समूह। | ||
-- | -- | ||
:सीएल<sup>सम</sup>(2) = C सम्मिश्र संख्याएँ | :सीएल<sup>सम</sup>(2) = C सम्मिश्र संख्याएँ | ||
Line 86: | Line 86: | ||
-- | -- | ||
:सीएल<sup>सम</sup>(3) = चतुष्कोण H | :सीएल<sup>सम</sup>(3) = चतुष्कोण H | ||
: स्पिन (3) = [[ सहानुभूतिपूर्ण समूह ]] | एसपी (1) = [[ विशेष एकात्मक समूह ]] | एसयू (2), इसके अनुरूप <math>B_1 \cong A_1</math>. मंद = 3 | : स्पिन (3) = [[ सहानुभूतिपूर्ण समूह |सहानुभूतिपूर्ण समूह]] | एसपी (1) = [[ विशेष एकात्मक समूह |विशेष एकात्मक समूह]] | एसयू (2), इसके अनुरूप <math>B_1 \cong A_1</math>. मंद = 3 | ||
-- | -- | ||
:सीएल<sup>सम</sup>(4) = H ⊕ H | :सीएल<sup>सम</sup>(4) = H ⊕ H | ||
Line 97: | Line 97: | ||
: स्पिन (6) = विशेष एकात्मक समूह | एसयू (4), इसके अनुरूप <math>D_3 \cong A_3</math>. मंद = 15 | : स्पिन (6) = विशेष एकात्मक समूह | एसयू (4), इसके अनुरूप <math>D_3 \cong A_3</math>. मंद = 15 | ||
इन समरूपताओं के कुछ अवशेषों के लिए छोड़ दिया गया है {{nowrap|1=''n'' = 7, 8}} (अधिक विवरण के लिए [[ स्पिन(8) ]] (8) देखें)। उच्च एन के लिए, ये समरूपता पूरी तरह से गायब हो जाती है। | इन समरूपताओं के कुछ अवशेषों के लिए छोड़ दिया गया है {{nowrap|1=''n'' = 7, 8}} (अधिक विवरण के लिए [[ स्पिन(8) |स्पिन(8)]] (8) देखें)। उच्च एन के लिए, ये समरूपता पूरी तरह से गायब हो जाती है। | ||
== अनिश्चितकालीन हस्ताक्षर == | == अनिश्चितकालीन हस्ताक्षर == | ||
[[ हस्ताक्षर (द्विघात रूप) ]] में, स्पिन समूह {{nowrap|Spin(''p'', ''q'')}} क्लिफर्ड बीजगणित के माध्यम से मानक स्पिन समूहों के समान बनाया गया है। यह का एक [[ आवरण समूह ]] है {{nowrap|SO<sub>0</sub>(''p'', ''q'')}}, [[ अनिश्चितकालीन ऑर्थोगोनल समूह ]] की [[ पहचान का जुड़ा हुआ घटक ]] {{nowrap|SO(''p'', ''q'')}}. के लिए {{nowrap|1=''p'' + ''q'' > 2}}, {{nowrap|Spin(''p'', ''q'')}} जुड़ा हुआ है; के लिए {{nowrap|1=(''p'', ''q'') = (1, 1)}} दो जुड़े हुए घटक हैं।<ref name=":0">{{Cite book|title=गणितज्ञों के लिए सुपरसिममेट्री: एक परिचय|last=Varadarajan|first=V. S.|date=2004|publisher=American Mathematical Society|isbn=0821835742|location=Providence, R.I.|oclc=55487352}}</ref>{{rp|193}} निश्चित हस्ताक्षर के रूप में, निम्न आयामों में कुछ आकस्मिक समरूपताएँ हैं: | [[ हस्ताक्षर (द्विघात रूप) | हस्ताक्षर (द्विघात रूप)]] में, स्पिन समूह {{nowrap|Spin(''p'', ''q'')}} क्लिफर्ड बीजगणित के माध्यम से मानक स्पिन समूहों के समान बनाया गया है। यह का एक [[ आवरण समूह |आवरण समूह]] है {{nowrap|SO<sub>0</sub>(''p'', ''q'')}}, [[ अनिश्चितकालीन ऑर्थोगोनल समूह |अनिश्चितकालीन ऑर्थोगोनल समूह]] की [[ पहचान का जुड़ा हुआ घटक |पहचान का जुड़ा हुआ घटक]] {{nowrap|SO(''p'', ''q'')}}. के लिए {{nowrap|1=''p'' + ''q'' > 2}}, {{nowrap|Spin(''p'', ''q'')}} जुड़ा हुआ है; के लिए {{nowrap|1=(''p'', ''q'') = (1, 1)}} दो जुड़े हुए घटक हैं।<ref name=":0">{{Cite book|title=गणितज्ञों के लिए सुपरसिममेट्री: एक परिचय|last=Varadarajan|first=V. S.|date=2004|publisher=American Mathematical Society|isbn=0821835742|location=Providence, R.I.|oclc=55487352}}</ref>{{rp|193}} निश्चित हस्ताक्षर के रूप में, निम्न आयामों में कुछ आकस्मिक समरूपताएँ हैं: | ||
: स्पिन (1, 1) = सामान्य रैखिक समूह | जीएल (1, आर) | : स्पिन (1, 1) = सामान्य रैखिक समूह | जीएल (1, आर) | ||
Line 116: | Line 116: | ||
== सामयिक विचार == | == सामयिक विचार == | ||
[[ जुड़ा हुआ स्थान ]] और बस कनेक्टेड लाइ ग्रुप्स को उनके ले बीजगणित द्वारा वर्गीकृत किया जाता है। इसलिए यदि जी एक साधारण लाई बीजगणित के साथ जुड़ा हुआ | [[ जुड़ा हुआ स्थान | जुड़ा हुआ स्थान]] और बस कनेक्टेड लाइ ग्रुप्स को उनके ले बीजगणित द्वारा वर्गीकृत किया जाता है। इसलिए यदि जी एक साधारण लाई बीजगणित के साथ जुड़ा हुआ असत्य समूह है, जी के सार्वभौमिक आवरण जी के साथ, इसमें एक समावेश है | ||
:<math> \pi_1 (G) \subset \operatorname{Z}(G'), </math> | :<math> \pi_1 (G) \subset \operatorname{Z}(G'), </math> | ||
Z(G′) के साथ G′ का [[ केंद्र (समूह सिद्धांत) ]]। यह समावेशन और | Z(G′) के साथ G′ का [[ केंद्र (समूह सिद्धांत) |केंद्र (समूह सिद्धांत)]] । यह समावेशन और असत्य बीजगणित <math>\mathfrak{g}</math> G का G पूरी तरह से निर्धारित करता है (ध्यान दें कि ऐसा नहीं है कि <math>\mathfrak{g}</math> और π<sub>1</sub>(जी) पूरी तरह से जी का निर्धारण; उदाहरण के लिए SL(2, 'R') और PSL(2, 'R') में समान लाई बीजगणित और समान मौलिक समूह 'Z' है, लेकिन आइसोमॉर्फिक नहीं हैं)। | ||
निश्चित सिग्नेचर स्पिन(n) सभी बस n > 2 के लिए जुड़े हुए हैं, इसलिए वे SO(n) के सार्वभौमिक आवरण हैं। | निश्चित सिग्नेचर स्पिन(n) सभी बस n > 2 के लिए जुड़े हुए हैं, इसलिए वे SO(n) के सार्वभौमिक आवरण हैं। | ||
अनिश्चितकालीन हस्ताक्षर में, स्पिन (पी, क्यू) आवश्यक रूप से जुड़ा नहीं है, और सामान्य तौर पर [[ पहचान घटक ]], स्पिन<sub>0</sub>(पी, क्यू), केवल जुड़ा नहीं है, इस प्रकार यह एक सार्वभौमिक आवरण नहीं है। [[ मौलिक समूह ]] को SO(p, q) के [[ अधिकतम कॉम्पैक्ट उपसमूह ]] पर विचार करके सबसे आसानी से समझा जा सकता है, जो SO(p) ×SO(q) है, और ध्यान दें कि 2-गुना | अनिश्चितकालीन हस्ताक्षर में, स्पिन (पी, क्यू) आवश्यक रूप से जुड़ा नहीं है, और सामान्य तौर पर [[ पहचान घटक |पहचान घटक]], स्पिन<sub>0</sub>(पी, क्यू), केवल जुड़ा नहीं है, इस प्रकार यह एक सार्वभौमिक आवरण नहीं है। [[ मौलिक समूह |मौलिक समूह]] को SO(p, q) के [[ अधिकतम कॉम्पैक्ट उपसमूह |अधिकतम कॉम्पैक्ट उपसमूह]] पर विचार करके सबसे आसानी से समझा जा सकता है, जो SO(p) ×SO(q) है, और ध्यान दें कि 2-गुना आवरण का उत्पाद होने के बजाय (इसलिए a 4-गुना आवरण), स्पिन (पी, क्यू) विकर्ण 2-गुना आवरण है - यह 4-गुना आवरण का 2-गुना भागफल है। स्पष्ट रूप से, स्पिन (पी, क्यू) का अधिकतम कॉम्पैक्ट कनेक्टेड उपसमूह है | ||
:स्पिन(p) × स्पिन(q)/{(1, 1), (−1, −1)}. | :स्पिन(p) × स्पिन(q)/{(1, 1), (−1, −1)}. | ||
Line 158: | Line 158: | ||
== भागफल समूह == | == भागफल समूह == | ||
केंद्र के एक उपसमूह द्वारा उद्धरण समूह से उद्धरण समूह प्राप्त किया जा सकता है, स्पिन समूह के साथ परिणामी भागफल का एक | केंद्र के एक उपसमूह द्वारा उद्धरण समूह से उद्धरण समूह प्राप्त किया जा सकता है, स्पिन समूह के साथ परिणामी भागफल का एक आवरणिंग समूह होता है, और दोनों समूहों में एक ही असत्य बीजगणित होता है। | ||
पूरे केंद्र द्वारा भाग लेने से न्यूनतम ऐसे समूह का उत्पादन होता है, प्रक्षेपी विशेष ऑर्थोगोनल समूह, जो [[ केंद्रहीन ]] होता है, जबकि {±1} द्वारा भाग निकालने से विशेष ऑर्थोगोनल समूह प्राप्त होता है - यदि केंद्र {±1} के बराबर होता है (अर्थात् विषम आयाम में) , ये दो भागफल समूह सहमत हैं। यदि स्पिन समूह बस जुड़ा हुआ है (जैसा कि स्पिन ( | पूरे केंद्र द्वारा भाग लेने से न्यूनतम ऐसे समूह का उत्पादन होता है, प्रक्षेपी विशेष ऑर्थोगोनल समूह, जो [[ केंद्रहीन |केंद्रहीन]] होता है, जबकि {±1} द्वारा भाग निकालने से विशेष ऑर्थोगोनल समूह प्राप्त होता है - यदि केंद्र {±1} के बराबर होता है (अर्थात् विषम आयाम में), ये दो भागफल समूह सहमत हैं। यदि स्पिन समूह बस जुड़ा हुआ है (जैसा कि स्पिन (n) के लिए है {{nowrap|''n'' > 2}}), तो स्पिन अनुक्रम में अधिकतम समूह है, और एक के पास तीन समूहों का अनुक्रम है, | ||
:स्पिन(n) → SO(n) → PSO(n), | :स्पिन(n) → SO(n) → PSO(n), | ||
समता उपज द्वारा विभाजन: | समता उपज द्वारा विभाजन: | ||
:स्पिन(2n) → SO(2n) → PSO(2n), | :स्पिन(2n) → SO(2n) → PSO(2n), | ||
:स्पिन(2n+1) → SO(2n+1) = PSO(2n+1), | :स्पिन(2n+1) → SO(2n+1) = PSO(2n+1), | ||
जो तीन [[ कॉम्पैक्ट वास्तविक रूप ]] हैं (या दो, यदि {{nowrap|1=SO = PSO}}) कॉम्पैक्ट लाई बीजगणित का <math>\mathfrak{so} (n, \mathbf{R}).</math> | जो तीन [[ कॉम्पैक्ट वास्तविक रूप |कॉम्पैक्ट वास्तविक रूप]] हैं (या दो, यदि {{nowrap|1=SO = PSO}}) कॉम्पैक्ट लाई बीजगणित का <math>\mathfrak{so} (n, \mathbf{R}).</math> | ||
आवरण और भागफल के होमोटोपी समूह एक कंपन के लंबे | आवरण और भागफल के होमोटोपी समूह एक कंपन के लंबे निर्धारित अनुक्रम से संबंधित होते हैं, असतत फाइबर (कर्नेल होने वाला फाइबर) के साथ - इस प्रकार सभी होमोटोपी समूह {{nowrap|''k'' > 1}} बराबर हैं, लेकिन π<sub>0</sub> और π<sub>1</sub> अलग हो सकता है। | ||
के लिए {{nowrap|''n'' > 2}}, स्पिन ( | के लिए {{nowrap|''n'' > 2}}, स्पिन (n) बस जुड़ा हुआ है ({{nowrap|1=π<sub>0</sub> = π<sub>1</sub> = Z<sub>1</sub>}} तुच्छ है), इसलिए SO(n) जुड़ा हुआ है और इसका मूलभूत समूह Z है<sub>2</sub> जबकि पीएसओ (n) जुड़ा हुआ है और स्पिन (n) के केंद्र के बराबर मौलिक समूह है। | ||
अनिश्चितकालीन हस्ताक्षर में | अनिश्चितकालीन हस्ताक्षर में आवरण और होमोटॉपी समूह अधिक जटिल होते हैं - स्पिन (पी, क्यू) केवल जुड़ा नहीं होता है, और भागफल भी जुड़े हुए घटकों को प्रभावित करता है। यदि कोई अधिकतम (जुड़ा हुआ) कॉम्पैक्ट मानता है तो विश्लेषण सरल होता है {{nowrap|SO(''p'') × SO(''q'') ⊂ SO(''p'', ''q'')}} और का [[ घटक समूह |घटक समूह]] {{nowrap|Spin(''p'', ''q'')}}. | ||
== [[ व्हाइटहेड टॉवर ]] == | == [[ व्हाइटहेड टॉवर ]] == | ||
Line 176: | Line 176: | ||
:<math>\ldots\rightarrow \text{Fivebrane}(n) \rightarrow \text{String}(n)\rightarrow \text{Spin}(n)\rightarrow \text{SO}(n) \rightarrow \text{O}(n) </math> | :<math>\ldots\rightarrow \text{Fivebrane}(n) \rightarrow \text{String}(n)\rightarrow \text{Spin}(n)\rightarrow \text{SO}(n) \rightarrow \text{O}(n) </math> | ||
बढ़ते क्रम के होमोटोपी समूहों को क्रमिक रूप से हटाकर (हत्या) करके टॉवर प्राप्त किया जाता है। यह होमोटॉपी समूह को हटाए जाने के लिए एलेनबर्ग-मैकलेन स्थान से शुरू होने वाले छोटे | बढ़ते क्रम के होमोटोपी समूहों को क्रमिक रूप से हटाकर (हत्या) करके टॉवर प्राप्त किया जाता है। यह होमोटॉपी समूह को हटाए जाने के लिए एलेनबर्ग-मैकलेन स्थान से शुरू होने वाले छोटे निर्धारित अनुक्रमों का निर्माण करके किया जाता है। मार रहा है {{pi}}<sub>3</sub> स्पिन (n) में होमोटोपी समूह, अनंत-आयामी [[ स्ट्रिंग समूह |स्ट्रिंग समूह]] स्ट्रिंग (n) प्राप्त करता है। | ||
== असतत उपसमूह == | == असतत उपसमूह == | ||
स्पिन समूह के असतत उपसमूहों को विशेष ऑर्थोगोनल समूह (घूर्णी [[ बिंदु समूह ]]) के असतत उपसमूहों से संबंधित करके समझा जा सकता है। | स्पिन समूह के असतत उपसमूहों को विशेष ऑर्थोगोनल समूह (घूर्णी [[ बिंदु समूह |बिंदु समूह]] ) के असतत उपसमूहों से संबंधित करके समझा जा सकता है। | ||
डबल | डबल आवरण दिया {{nowrap|Spin(''n'') → SO(''n'')}}, [[ जाली प्रमेय |जाली प्रमेय]] द्वारा, स्पिन (n) के उपसमूहों और एसओ (n) (घूर्णी बिंदु समूहों) के उपसमूहों के बीच [[ गाल्वा कनेक्शन |गाल्वा कनेक्शन]] है: स्पिन (n) के एक उपसमूह की छवि एक घूर्णी बिंदु समूह है, और प्रीइमेज एक बिंदु समूह स्पिन (n) का एक उपसमूह है, और स्पिन (n) के उपसमूहों पर [[ बंद करने वाला ऑपरेटर |बंद करने वाला ऑपरेटर]] {±1} से गुणा है। इन्हें बाइनरी पॉइंट ग्रुप कहा जा सकता है; सबसे परिचित 3-आयामी मामला है, जिसे [[ बाइनरी पॉलीहेड्रल समूह |बाइनरी पॉलीहेड्रल समूह]] के रूप में जाना जाता है। | ||
ठोस रूप से, प्रत्येक बाइनरी बिंदु समूह या तो एक बिंदु समूह का प्रीइमेज है (इसलिए बिंदु समूह G के लिए 2G को दर्शाया गया है), या एक बिंदु समूह के प्रीइमेज का एक इंडेक्स 2 उपसमूह है जो बिंदु समूह पर मैप करता है (आइसोमॉर्फिक रूप से); बाद के मामले में पूर्ण बाइनरी समूह सारगर्भित है <math>\mathrm{C}_2 \times G</math> (चूंकि {±1} केंद्रीय है)। इन उत्तरार्द्धों के उदाहरण के रूप में, विषम क्रम का चक्रीय समूह दिया गया है <math>\mathrm{Z}_{2k+1}</math> SO(n) में, इसकी पूर्व छवि दो बार क्रम का एक चक्रीय समूह है, <math>\mathrm{C}_{4k+2} \cong \mathrm{Z}_{2k+1} \times \mathrm{Z}_2,</math> और उपसमूह {{nowrap|Z<sub>2''k''+1</sub> < Spin(''n'')}} आइसोमॉर्फिक रूप से मैप करता है {{nowrap|Z<sub>2''k''+1</sub> < SO(''n'')}}. | ठोस रूप से, प्रत्येक बाइनरी बिंदु समूह या तो एक बिंदु समूह का प्रीइमेज है (इसलिए बिंदु समूह G के लिए 2G को दर्शाया गया है), या एक बिंदु समूह के प्रीइमेज का एक इंडेक्स 2 उपसमूह है जो बिंदु समूह पर मैप करता है (आइसोमॉर्फिक रूप से); बाद के मामले में पूर्ण बाइनरी समूह सारगर्भित है <math>\mathrm{C}_2 \times G</math> (चूंकि {±1} केंद्रीय है)। इन उत्तरार्द्धों के उदाहरण के रूप में, विषम क्रम का चक्रीय समूह दिया गया है <math>\mathrm{Z}_{2k+1}</math> SO(n) में, इसकी पूर्व छवि दो बार क्रम का एक चक्रीय समूह है, <math>\mathrm{C}_{4k+2} \cong \mathrm{Z}_{2k+1} \times \mathrm{Z}_2,</math> और उपसमूह {{nowrap|Z<sub>2''k''+1</sub> < Spin(''n'')}} आइसोमॉर्फिक रूप से मैप करता है {{nowrap|Z<sub>2''k''+1</sub> < SO(''n'')}}. | ||
विशेष नोट की दो श्रृंखलाएँ हैं: | विशेष नोट की दो श्रृंखलाएँ हैं: | ||
* उच्च [[ बाइनरी टेट्राहेड्रल समूह ]], एन-सिम्प्लेक्स के समरूपता के 2 गुना | * उच्च [[ बाइनरी टेट्राहेड्रल समूह |बाइनरी टेट्राहेड्रल समूह]], एन-सिम्प्लेक्स के समरूपता के 2 गुना आवरण के अनुरूप; इस समूह को वैकल्पिक और सममित समूहों के आवरणिंग समूह के रूप में भी माना जा सकता है, {{nowrap|2⋅A<sub>''n''</sub> → A<sub>''n''</sub>}}, वैकल्पिक समूह के साथ एन-सिम्प्लेक्स का (घूर्णी) समरूपता समूह है। | ||
* उच्च [[ बाइनरी ऑक्टाहेड्रल समूह ]], [[ हाइपरऑक्टाहेड्रल समूह ]] के 2-गुना | * उच्च [[ बाइनरी ऑक्टाहेड्रल समूह |बाइनरी ऑक्टाहेड्रल समूह]], [[ हाइपरऑक्टाहेड्रल समूह |हाइपरऑक्टाहेड्रल समूह]] के 2-गुना आवरण ([[ अतिविम | अतिविम]] की समरूपता, या इसके दोहरे, [[ क्रॉस-पॉलीटॉप |क्रॉस-पॉलीटॉप]] के समतुल्य) के अनुरूप। | ||
बिंदु समूहों के लिए जो ओरिएंटेशन को उल्टा करते हैं, स्थिति अधिक जटिल होती है, क्योंकि दो पिन समूह होते हैं, इसलिए किसी दिए गए बिंदु समूह के अनुरूप दो संभावित बाइनरी समूह होते हैं। | बिंदु समूहों के लिए जो ओरिएंटेशन को उल्टा करते हैं, स्थिति अधिक जटिल होती है, क्योंकि दो पिन समूह होते हैं, इसलिए किसी दिए गए बिंदु समूह के अनुरूप दो संभावित बाइनरी समूह होते हैं। | ||
Line 205: | Line 205: | ||
=== संबंधित समूह === | === संबंधित समूह === | ||
* पिन ग्रुप पिन ( | * पिन ग्रुप पिन (n) - ऑर्थोगोनल ग्रुप का दो गुना आवरण, ओ (n) | ||
* [[ मेटाप्लेक्टिक समूह ]] Mp(2n) - सहानुभूति समूह का दोहरा आवरण, Sp(2n) | * [[ मेटाप्लेक्टिक समूह | मेटाप्लेक्टिक समूह]] Mp(2n) - सहानुभूति समूह का दोहरा आवरण, Sp(2n) | ||
* स्ट्रिंग समूह स्ट्रिंग ( | * स्ट्रिंग समूह स्ट्रिंग (n) - व्हाइटहेड टॉवर में अगला समूह | ||
==संदर्भ== | ==संदर्भ== | ||
Line 223: | Line 223: | ||
* {{Cite book | last1=Karoubi | first1=Max|title=K-Theory | publisher=Springer | isbn=978-3-540-79889-7 | year=2008 |pages=210–214}} | * {{Cite book | last1=Karoubi | first1=Max|title=K-Theory | publisher=Springer | isbn=978-3-540-79889-7 | year=2008 |pages=210–214}} | ||
{{DEFAULTSORT:Spin Group}}[[श्रेणी:झूठ बोलने वाले समूह]] | {{DEFAULTSORT:Spin Group}}[[श्रेणी:झूठ बोलने वाले समूह|श्रेणी:असत्य बोलने वाले समूह]] | ||
[[श्रेणी: झूठ समूहों की टोपोलॉजी]] | [[श्रेणी: झूठ समूहों की टोपोलॉजी|श्रेणी: असत्य समूहों की टोपोलॉजी]] | ||
[[श्रेणी:स्पिनर्स]] | [[श्रेणी:स्पिनर्स]] | ||
Revision as of 21:07, 6 January 2023
बीजगणितीय संरचना → 'समूह सिद्धांत' समूह सिद्धांत |
---|
गणित में स्पिन समूह स्पिन(n)[1][2] विशेष ऑर्थोगोनल समूह SO(n) = SO(n, R) का दोहरा आवरण स्थान है, जैसे कि असत्य समूह का एक संक्षिप्त निर्धारित क्रम अवस्थित है (जब n ≠ 2)
असत्य समूह के रूप में, स्पिन (n) इसलिए अपने आयाम, एन (एन - 1)/2, और विशेष ओर्थोगोनल समूह के साथ अपने असत्य बीजगणित को स्थानांतरित करता है।
n > 2 के लिए, स्पिन (n) मुख्य रूप से संयोजित होता है इसलिए विशेष ऑर्थोगोनल समूह SO(n) के सार्वभौमिक आवरण के साथ समानता रखता है।
कर्नेल (समूह सिद्धांत) के गैर-तुच्छ तत्व को -1 के रूप में दर्शाया गया है, जिसे उत्पत्ति के माध्यम से प्रतिबिंब के ऑर्थोगोनल परिवर्तन के साथ भ्रमित नहीं होना चाहिए, जिसे आम तौर पर निरूपित किया जाता है -I.
क्लिफर्ड बीजगणित सीएल (n) में उल्टे तत्वों के उपसमूह के रूप में स्पिन (n) का निर्माण किया जा सकता है। एक अलग लेख स्पिन अभ्यावेदन पर चर्चा करता है।
प्रेरणा और शारीरिक व्याख्या
स्पिन समूह का उपयोग भौतिकी में (विद्युत रूप से तटस्थ, अपरिवर्तित) फर्मों की समरूपता का वर्णन करने के लिए किया जाता है। इसकी जटिलता, स्पिनक, का उपयोग विद्युत रूप से आवेशित फर्मियन, विशेष रूप से इलेक्ट्रॉन का वर्णन करने के लिए किया जाता है। सख्ती से बोलते हुए, स्पिन समूह शून्य-आयामी अंतरिक्ष में एक फ़र्मियन का वर्णन करता है; लेकिन निश्चित रूप से, अंतरिक्ष शून्य-आयामी नहीं है, और इसलिए स्पिन समूह का उपयोग (छद्म-) रीमैनियन कई गुना पर स्पिन संरचना ओं को परिभाषित करने के लिए किया जाता है: स्पिन समूह एक स्पिनर बंडल का संरचना समूह है। स्पिनर बंडल पर affine कनेक्शन स्पिन कनेक्शन है; स्पिन कनेक्शन उपयोगी है क्योंकि यह सामान्य सापेक्षता में कई जटिल गणनाओं को सरल बना सकता है और लालित्य ला सकता है। बदले में स्पिन कनेक्शन डायराक समीकरण को घुमावदार स्पेसटाइम (प्रभावी रूप से टेट्राड (सामान्य सापेक्षता) निर्देशांक में) में लिखने में सक्षम बनाता है, जो बदले में क्वांटम गुरुत्व के लिए एक आधार प्रदान करता है, साथ ही हॉकिंग विकिरण (जहां एक उलझे हुए, आभासी फ़र्मियन की जोड़ी घटना क्षितिज से आगे निकल जाती है, और दूसरा नहीं)। संक्षेप में, स्पिन समूह एक महत्वपूर्ण आधारशिला है, जो आधुनिक सैद्धांतिक भौतिकी में उन्नत अवधारणाओं को समझने के लिए केंद्रीय रूप से महत्वपूर्ण है। गणित में, स्पिन समूह अपने आप में दिलचस्प है: न केवल इन कारणों से, बल्कि और भी कई कारणों से।
निर्माण
स्पिन समूह का निर्माण अक्सर एक निश्चित द्विघात रूप q के साथ एक वास्तविक सदिश स्थान V पर क्लिफर्ड बीजगणित के निर्माण के साथ शुरू होता है।[3] क्लिफर्ड बीजगणित दो तरफा आदर्श द्वारा V के टेंसर बीजगणित टीवी का भागफल है। टेंसर बीजगणित (वास्तविक से अधिक) को इस रूप में लिखा जा सकता है
क्लिफर्ड बीजगणित सीएल (वी) तब भागफल साहचर्य बीजगणित है
कहां सदिश पर लागू होने वाला द्विघात रूप है . परिणामी स्थान परिमित आयामी, स्वाभाविक रूप से वर्गीकृत (गणित) (एक वेक्टर स्थान के रूप में) है, और इसे इस रूप में लिखा जा सकता है
कहां का आयाम है , और . स्पिन बीजगणित की तरह परिभाषित किया गया है
जहां अंतिम V वास्तविक आयाम n का वास्तविक सदिश स्थान होने के लिए एक लघु-हाथ है। यह एक असत्या बीजगणित है; यह वी पर एक प्राकृतिक क्रिया है, और इस तरह असत्य बीजगणित के लिए आइसोमोर्फिक दिखाया जा सकता है विशेष ऑर्थोगोनल समूह की।
पिन समूह का एक उपसमूह है प्रपत्र के सभी तत्वों का क्लिफोर्ड समूह
- जहां प्रत्येक इकाई लंबाई की है:
स्पिन समूह को तब के रूप में परिभाषित किया गया है
कहां
उन तत्वों द्वारा उत्पन्न उप-समष्टि है जो सदिशों की सम संख्या का गुणनफल हैं। अर्थात्, स्पिन (वी) में ऊपर दिए गए पिन (वी) के सभी तत्व शामिल हैं, जिसमें k एक सम संख्या है। नीचे निर्मित दो-घटक (वेइल) स्पिनरों के गठन के लिए भी उप-स्थान पर प्रतिबंध महत्वपूर्ण है।
यदि सेट (वास्तविक) वेक्टर स्पेस V का एक अलौकिक आधार है, तो ऊपर का भागफल एक प्राकृतिक एंटी-कम्यूटिंग संरचना के साथ अंतरिक्ष को संपन्न करता है:
- के लिए
जो विचार करके अनुसरण करता है के लिए . यह एंटी-कम्यूटेशन भौतिकी में महत्वपूर्ण हो जाता है, क्योंकि यह पाउली अपवर्जन सिद्धांत की भावना को फर्मों के लिए पकड़ लेता है। एक निर्धारित सूत्रीकरण यहाँ दायरे से बाहर है, लेकिन इसमें मिन्कोव्स्की स्पेसटाइम पर एक स्पिनर बंडल का निर्माण शामिल है; परिणामी स्पिनर क्षेत्रों को क्लिफर्ड बीजगणित निर्माण के उप-उत्पाद के रूप में विरोधी-आवागमन के रूप में देखा जा सकता है। यह एंटी-कम्यूटेशन गुण सुपरसिमेट्री के निर्माण के लिए भी महत्वपूर्ण है। क्लिफर्ड बीजगणित और स्पिन समूह में कई दिलचस्प और दिलचस्प गुण हैं, जिनमें से कुछ नीचे सूचीबद्ध हैं।
डबल आवरणिंग
द्विघात स्थान V के लिए, स्पिन (V) द्वारा SO(V) का दोहरा आवरण स्पष्ट रूप से निम्नानुसार दिया जा सकता है। होने देना वी के लिए एक असामान्य आधार बनें। एक antiautomorphism को परिभाषित करें द्वारा
इसे के सभी तत्वों तक बढ़ाया जा सकता है रैखिकता द्वारा। यह तब से एक एंटीहोमोमोर्फिज्म है
ध्यान दें कि Pin(V) को तब सभी तत्वों के रूप में परिभाषित किया जा सकता है जिसके लिए
अब ऑटोमोर्फिज्म को परिभाषित कीजिए जो डिग्री 1 तत्वों द्वारा दिया जाता है
और जाने निरूपित , जो Cl(V) का एक एंटीऑटोमोर्फिज्म है। इस संकेतन के साथ, एक स्पष्ट दोहरा आवरण समाकारिता है के द्वारा दिया गया
कहां . जब a के पास डिग्री 1 हो (अर्थात ), हाइपरप्लेन ऑर्थोगोनल में एक प्रतिबिंब से मेल खाती है; यह क्लिफोर्ड बीजगणित की एंटी-कम्यूटिंग संपत्ति से आता है।
यह पिन (वी) द्वारा ओ (वी) और स्पिन (वी) द्वारा एसओ (वी) दोनों का दोहरा आवरण देता है क्योंकि के समान परिवर्तन देता है .
स्पिनर स्पेस
इस औपचारिकता को देखते हुए, स्पिनर स्पेस और वेइल स्पिनर ों का निर्माण कैसे किया जाता है, इसकी समीक्षा करना उचित है। आयाम की एक वास्तविक सदिश समष्टि V दी गई है n = 2m एक सम संख्या, इसकी जटिलता है . इसे एक उपसमष्टि के प्रत्यक्ष योग के रूप में लिखा जा सकता है स्पिनरों और एक उप-स्थान की विरोधी स्पिनरों की:
अंतरिक्ष स्पिनरों द्वारा फैलाया जाता है के लिए और जटिल संयुग्मी स्पिनर स्पैन . यह देखना सीधा है कि स्पिनर एंटी-कम्यूट करते हैं, और स्पिनर और एंटी-स्पिनर का उत्पाद एक स्केलर है।
स्पिनर स्पेस को बाहरी बीजगणित के रूप में परिभाषित किया गया है . (जटिलीकृत) क्लिफोर्ड बीजगणित स्वाभाविक रूप से इस स्थान पर कार्य करता है; (जटिल) स्पिन समूह लंबाई-संरक्षण एंडोमोर्फिज्म से मेल खाता है। बाहरी बीजगणित पर एक प्राकृतिक ग्रेडिंग है: विषम संख्या में प्रतियों का गुणनफल fermions की भौतिकी धारणा के अनुरूप; सम उपसमष्टि बोसोन के अनुरूप है। स्पिनर स्पेस पर स्पिन समूह की कार्रवाई का प्रतिनिधित्व अपेक्षाकृत सरल फैशन में बनाया जा सकता है।[3]
जटिल मामला
द स्पिनC समूह को निर्धारित अनुक्रम द्वारा परिभाषित किया गया है
यह जटिलता का गुणक उपसमूह है क्लिफर्ड बीजगणित का, और विशेष रूप से, यह स्पिन (वी) और 'सी' में यूनिट सर्कल द्वारा उत्पन्न उपसमूह है। वैकल्पिक रूप से, यह भागफल है
जहां समानता पहचानता (a, u) साथ (−a, −u).
इसमें 4-मैनिफोल्ड थ्योरी और सीबर्ग-विटन थ्योरी में महत्वपूर्ण अनुप्रयोग हैं। भौतिकी में, स्पिन समूह अनावेशित फ़र्मियन का वर्णन करने के लिए उपयुक्त है, जबकि स्पिनC समूह का उपयोग विद्युत आवेशित फ़र्मियन का वर्णन करने के लिए किया जाता है। इस मामले में, यू (1) समरूपता विशेष रूप से विद्युत चुंबकत्व का गेज समूह है।
असाधारण समरूपता
कम आयामों में, असाधारण समाकृतिकता कहे जाने वाले शास्त्रीय असत्य समूहों के बीच समरूपताएं हैं। उदाहरण के लिए, साधारण लाई बीजगणित के विभिन्न परिवारों के मूल प्रक्रिया (और डायनकिन आरेख ों के संगत समरूपता) के बीच निम्न-आयामी समरूपता के कारण निम्न-आयामी स्पिन समूहों और कुछ शास्त्रीय असत्य समूहों के बीच समरूपताएं हैं। वास्तविक के लिए 'आर' लिखना, जटिल संख्याओं के लिए 'सी', चतुष्कोणों के लिए 'एच' और सामान्य समझ है कि सीएल (n) सीएल ('आर' के लिए एक संक्षिप्त हाथ है)n) और वह स्पिन(n) स्पिन('आर') के लिए शॉर्ट-हैंड हैn) और इसी तरह, एक के पास वह है[3]
- सीएलसम(1) = R वास्तविक संख्याएँ
- पिन (1) = {+i, -i, +1, -1}
- स्पिन(1) = लंबकोणीय समूह|O(1) = {+1, −1} आयाम शून्य का लंबकोणीय समूह।
--
- सीएलसम(2) = C सम्मिश्र संख्याएँ
- स्पिन (2) = यू (1) = विशेष ऑर्थोगोनल समूह | एसओ (2), जो आर में 'जेड' पर कार्य करता है2 डबल फेज रोटेशन द्वारा z ↦ u2z. मंद = 1
--
- सीएलसम(3) = चतुष्कोण H
- स्पिन (3) = सहानुभूतिपूर्ण समूह | एसपी (1) = विशेष एकात्मक समूह | एसयू (2), इसके अनुरूप . मंद = 3
--
- सीएलसम(4) = H ⊕ H
- स्पिन(4) = एसयू(2) × एसयू(2), इसके अनुरूप . मंद = 6
--
- सीएलसम(5)= M(2, H) चतुर्धातुक गुणांक वाले दो बटा दो आव्यूह
- स्पिन (5) = सहानुभूतिपूर्ण समूह | एसपी (2), इसके अनुरूप . मंद = 10
--
- सीएलसम(6)= M(4, C) जटिल गुणांक वाले चार गुणा चार आव्यूह
- स्पिन (6) = विशेष एकात्मक समूह | एसयू (4), इसके अनुरूप . मंद = 15
इन समरूपताओं के कुछ अवशेषों के लिए छोड़ दिया गया है n = 7, 8 (अधिक विवरण के लिए स्पिन(8) (8) देखें)। उच्च एन के लिए, ये समरूपता पूरी तरह से गायब हो जाती है।
अनिश्चितकालीन हस्ताक्षर
हस्ताक्षर (द्विघात रूप) में, स्पिन समूह Spin(p, q) क्लिफर्ड बीजगणित के माध्यम से मानक स्पिन समूहों के समान बनाया गया है। यह का एक आवरण समूह है SO0(p, q), अनिश्चितकालीन ऑर्थोगोनल समूह की पहचान का जुड़ा हुआ घटक SO(p, q). के लिए p + q > 2, Spin(p, q) जुड़ा हुआ है; के लिए (p, q) = (1, 1) दो जुड़े हुए घटक हैं।[4]: 193 निश्चित हस्ताक्षर के रूप में, निम्न आयामों में कुछ आकस्मिक समरूपताएँ हैं:
- स्पिन (1, 1) = सामान्य रैखिक समूह | जीएल (1, आर)
- स्पिन(2, 1) = एसएल2(आर)|एसएल(2, आर)
- स्पिन (3, 1) = विशेष रैखिक समूह | एसएल (2, सी)
- स्पिन(2, 2) = SL2(R)|SL(2, R) × SL2(R)|SL(2, R)
- स्पिन(4, 1) = सहानुभूतिपूर्ण समूह|Sp(1, 1)
- स्पिन (3, 2) = सहानुभूतिपूर्ण समूह | एसपी (4, आर)
- स्पिन (5, 1) = विशेष रैखिक समूह | एसएल (2, एच)
- स्पिन (4, 2) = विशेष एकात्मक समूह | एसयू (2, 2)
- स्पिन (3, 3) = विशेष रैखिक समूह | एसएल (4, आर)
- स्पिन (6, 2) = विशेष एकात्मक समूह | एसयू (2, 2, एच)
ध्यान दें कि Spin(p, q) = Spin(q, p).
सामयिक विचार
जुड़ा हुआ स्थान और बस कनेक्टेड लाइ ग्रुप्स को उनके ले बीजगणित द्वारा वर्गीकृत किया जाता है। इसलिए यदि जी एक साधारण लाई बीजगणित के साथ जुड़ा हुआ असत्य समूह है, जी के सार्वभौमिक आवरण जी के साथ, इसमें एक समावेश है
Z(G′) के साथ G′ का केंद्र (समूह सिद्धांत) । यह समावेशन और असत्य बीजगणित G का G पूरी तरह से निर्धारित करता है (ध्यान दें कि ऐसा नहीं है कि और π1(जी) पूरी तरह से जी का निर्धारण; उदाहरण के लिए SL(2, 'R') और PSL(2, 'R') में समान लाई बीजगणित और समान मौलिक समूह 'Z' है, लेकिन आइसोमॉर्फिक नहीं हैं)।
निश्चित सिग्नेचर स्पिन(n) सभी बस n > 2 के लिए जुड़े हुए हैं, इसलिए वे SO(n) के सार्वभौमिक आवरण हैं।
अनिश्चितकालीन हस्ताक्षर में, स्पिन (पी, क्यू) आवश्यक रूप से जुड़ा नहीं है, और सामान्य तौर पर पहचान घटक, स्पिन0(पी, क्यू), केवल जुड़ा नहीं है, इस प्रकार यह एक सार्वभौमिक आवरण नहीं है। मौलिक समूह को SO(p, q) के अधिकतम कॉम्पैक्ट उपसमूह पर विचार करके सबसे आसानी से समझा जा सकता है, जो SO(p) ×SO(q) है, और ध्यान दें कि 2-गुना आवरण का उत्पाद होने के बजाय (इसलिए a 4-गुना आवरण), स्पिन (पी, क्यू) विकर्ण 2-गुना आवरण है - यह 4-गुना आवरण का 2-गुना भागफल है। स्पष्ट रूप से, स्पिन (पी, क्यू) का अधिकतम कॉम्पैक्ट कनेक्टेड उपसमूह है
- स्पिन(p) × स्पिन(q)/{(1, 1), (−1, −1)}.
यह हमें स्पिन (पी, क्यू) के मौलिक समूहों की गणना करने की अनुमति देता है, पी ≥ क्यू लेते हुए:
इस प्रकार एक बार p, q > 2 मौलिक समूह Z है2, क्योंकि यह दो सार्वभौमिक आवरणों के उत्पाद का 2 गुना भागफल है।
मौलिक समूहों पर मानचित्र इस प्रकार दिए गए हैं। के लिए p, q > 2, इसका मतलब है कि map π1(Spin(p, q)) → π1(SO(p, q)) द्वारा दिया गया है 1 ∈ Z2 जा रहा हूँ (1, 1) ∈ Z2 × Z2. के लिए p = 2, q > 2, यह नक्शा किसके द्वारा दिया गया है 1 ∈ Z → (1,1) ∈ Z × Z2. और अंत में, के लिए p = q = 2, (1, 0) ∈ Z × Z को भेजा जाता है (1,1) ∈ Z × Z और (0, 1) को भेजा जाता है (1, −1).
केंद्र
स्पिन समूहों का केंद्र, के लिए n ≥ 3, (जटिल और वास्तविक) इस प्रकार दिए गए हैं:[4]: 208
भागफल समूह
केंद्र के एक उपसमूह द्वारा उद्धरण समूह से उद्धरण समूह प्राप्त किया जा सकता है, स्पिन समूह के साथ परिणामी भागफल का एक आवरणिंग समूह होता है, और दोनों समूहों में एक ही असत्य बीजगणित होता है।
पूरे केंद्र द्वारा भाग लेने से न्यूनतम ऐसे समूह का उत्पादन होता है, प्रक्षेपी विशेष ऑर्थोगोनल समूह, जो केंद्रहीन होता है, जबकि {±1} द्वारा भाग निकालने से विशेष ऑर्थोगोनल समूह प्राप्त होता है - यदि केंद्र {±1} के बराबर होता है (अर्थात् विषम आयाम में), ये दो भागफल समूह सहमत हैं। यदि स्पिन समूह बस जुड़ा हुआ है (जैसा कि स्पिन (n) के लिए है n > 2), तो स्पिन अनुक्रम में अधिकतम समूह है, और एक के पास तीन समूहों का अनुक्रम है,
- स्पिन(n) → SO(n) → PSO(n),
समता उपज द्वारा विभाजन:
- स्पिन(2n) → SO(2n) → PSO(2n),
- स्पिन(2n+1) → SO(2n+1) = PSO(2n+1),
जो तीन कॉम्पैक्ट वास्तविक रूप हैं (या दो, यदि SO = PSO) कॉम्पैक्ट लाई बीजगणित का आवरण और भागफल के होमोटोपी समूह एक कंपन के लंबे निर्धारित अनुक्रम से संबंधित होते हैं, असतत फाइबर (कर्नेल होने वाला फाइबर) के साथ - इस प्रकार सभी होमोटोपी समूह k > 1 बराबर हैं, लेकिन π0 और π1 अलग हो सकता है।
के लिए n > 2, स्पिन (n) बस जुड़ा हुआ है (π0 = π1 = Z1 तुच्छ है), इसलिए SO(n) जुड़ा हुआ है और इसका मूलभूत समूह Z है2 जबकि पीएसओ (n) जुड़ा हुआ है और स्पिन (n) के केंद्र के बराबर मौलिक समूह है।
अनिश्चितकालीन हस्ताक्षर में आवरण और होमोटॉपी समूह अधिक जटिल होते हैं - स्पिन (पी, क्यू) केवल जुड़ा नहीं होता है, और भागफल भी जुड़े हुए घटकों को प्रभावित करता है। यदि कोई अधिकतम (जुड़ा हुआ) कॉम्पैक्ट मानता है तो विश्लेषण सरल होता है SO(p) × SO(q) ⊂ SO(p, q) और का घटक समूह Spin(p, q).
व्हाइटहेड टॉवर
स्पिन समूह ऑर्थोगोनल समूह द्वारा लगाए गए व्हाइटहेड टावर में दिखाई देता है:
बढ़ते क्रम के होमोटोपी समूहों को क्रमिक रूप से हटाकर (हत्या) करके टॉवर प्राप्त किया जाता है। यह होमोटॉपी समूह को हटाए जाने के लिए एलेनबर्ग-मैकलेन स्थान से शुरू होने वाले छोटे निर्धारित अनुक्रमों का निर्माण करके किया जाता है। मार रहा है π3 स्पिन (n) में होमोटोपी समूह, अनंत-आयामी स्ट्रिंग समूह स्ट्रिंग (n) प्राप्त करता है।
असतत उपसमूह
स्पिन समूह के असतत उपसमूहों को विशेष ऑर्थोगोनल समूह (घूर्णी बिंदु समूह ) के असतत उपसमूहों से संबंधित करके समझा जा सकता है।
डबल आवरण दिया Spin(n) → SO(n), जाली प्रमेय द्वारा, स्पिन (n) के उपसमूहों और एसओ (n) (घूर्णी बिंदु समूहों) के उपसमूहों के बीच गाल्वा कनेक्शन है: स्पिन (n) के एक उपसमूह की छवि एक घूर्णी बिंदु समूह है, और प्रीइमेज एक बिंदु समूह स्पिन (n) का एक उपसमूह है, और स्पिन (n) के उपसमूहों पर बंद करने वाला ऑपरेटर {±1} से गुणा है। इन्हें बाइनरी पॉइंट ग्रुप कहा जा सकता है; सबसे परिचित 3-आयामी मामला है, जिसे बाइनरी पॉलीहेड्रल समूह के रूप में जाना जाता है।
ठोस रूप से, प्रत्येक बाइनरी बिंदु समूह या तो एक बिंदु समूह का प्रीइमेज है (इसलिए बिंदु समूह G के लिए 2G को दर्शाया गया है), या एक बिंदु समूह के प्रीइमेज का एक इंडेक्स 2 उपसमूह है जो बिंदु समूह पर मैप करता है (आइसोमॉर्फिक रूप से); बाद के मामले में पूर्ण बाइनरी समूह सारगर्भित है (चूंकि {±1} केंद्रीय है)। इन उत्तरार्द्धों के उदाहरण के रूप में, विषम क्रम का चक्रीय समूह दिया गया है SO(n) में, इसकी पूर्व छवि दो बार क्रम का एक चक्रीय समूह है, और उपसमूह Z2k+1 < Spin(n) आइसोमॉर्फिक रूप से मैप करता है Z2k+1 < SO(n).
विशेष नोट की दो श्रृंखलाएँ हैं:
- उच्च बाइनरी टेट्राहेड्रल समूह, एन-सिम्प्लेक्स के समरूपता के 2 गुना आवरण के अनुरूप; इस समूह को वैकल्पिक और सममित समूहों के आवरणिंग समूह के रूप में भी माना जा सकता है, 2⋅An → An, वैकल्पिक समूह के साथ एन-सिम्प्लेक्स का (घूर्णी) समरूपता समूह है।
- उच्च बाइनरी ऑक्टाहेड्रल समूह, हाइपरऑक्टाहेड्रल समूह के 2-गुना आवरण ( अतिविम की समरूपता, या इसके दोहरे, क्रॉस-पॉलीटॉप के समतुल्य) के अनुरूप।
बिंदु समूहों के लिए जो ओरिएंटेशन को उल्टा करते हैं, स्थिति अधिक जटिल होती है, क्योंकि दो पिन समूह होते हैं, इसलिए किसी दिए गए बिंदु समूह के अनुरूप दो संभावित बाइनरी समूह होते हैं।
यह भी देखें
- क्लिफर्ड बीजगणित
- क्लिफोर्ड विश्लेषण
- स्पिनर
- स्पिनर बंडल
- स्पिन संरचना
- झूठ समूहों की तालिका
- कोई भी
- अभिविन्यास उलझाव
संबंधित समूह
- पिन ग्रुप पिन (n) - ऑर्थोगोनल ग्रुप का दो गुना आवरण, ओ (n)
- मेटाप्लेक्टिक समूह Mp(2n) - सहानुभूति समूह का दोहरा आवरण, Sp(2n)
- स्ट्रिंग समूह स्ट्रिंग (n) - व्हाइटहेड टॉवर में अगला समूह
संदर्भ
- ↑ Lawson, H. Blaine; Michelsohn, Marie-Louise (1989). स्पिन ज्यामिति. Princeton University Press. ISBN 978-0-691-08542-5. page 14
- ↑ Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1 page 15
- ↑ 3.0 3.1 3.2 Jürgen Jost, Riemannian Geometry and Geometric Analysis, (2002) Springer Verlag ISBN 3-540-42627-2 (See Chapter 1.)
- ↑ 4.0 4.1 Varadarajan, V. S. (2004). गणितज्ञों के लिए सुपरसिममेट्री: एक परिचय. Providence, R.I.: American Mathematical Society. ISBN 0821835742. OCLC 55487352.
बाहरी कड़ियाँ
- The essential dimension of spin groups is OEIS:A280191.
- Grothendieck's "torsion index" is OEIS:A096336.
आगे की पढाई
- Karoubi, Max (2008). K-Theory. Springer. pp. 210–214. ISBN 978-3-540-79889-7.
श्रेणी:असत्य बोलने वाले समूह श्रेणी: असत्य समूहों की टोपोलॉजी श्रेणी:स्पिनर्स