हाइड्रोलिक पंप: Difference between revisions

From Vigyanwiki
 
No edit summary
Line 10: Line 10:


[[Image:Gerotor anm.gif|right|thumb|एक [[ gerotor ]] (छवि सेवन या निकास नहीं दिखाती है)]]
[[Image:Gerotor anm.gif|right|thumb|एक [[ gerotor ]] (छवि सेवन या निकास नहीं दिखाती है)]]
{{-}}


===रोटरी फलक पंप===
===रोटरी फलक पंप===
[[Image:Rotary vane pump.svg|thumb|फिक्स्ड विस्थापन फलक पंप]]एक रोटरी फलक पंप एक सकारात्मक-विस्थापन पंप होता है जिसमें एक रोटर पर घुड़सवार वैन होते हैं जो एक गुहा के अंदर घूमते हैं। कुछ मामलों में इन वैनों की लंबाई अलग-अलग हो सकती है और/या पंप के घूमने पर दीवारों के साथ संपर्क बनाए रखने के लिए तनावग्रस्त हो सकते हैं। फलक पंप डिजाइन में एक महत्वपूर्ण तत्व यह है कि वैन को पंप आवास के संपर्क में कैसे धकेला जाता है, और इस बिंदु पर फलक युक्तियाँ कैसे बनाई जाती हैं। कई प्रकार के होंठ डिजाइनों का उपयोग किया जाता है, और मुख्य उद्देश्य आवास और फलक के अंदर एक तंग सील प्रदान करना है, और साथ ही पहनने और धातु से धातु के संपर्क को कम करना है। घुमाने वाले केंद्र से और पंप हाउसिंग की ओर वैन को स्प्रिंग-लोडेड वैन, या अधिक परंपरागत रूप से, हाइड्रोडायनामिक रूप से लोड किए गए वैन (दबाव वाले सिस्टम तरल पदार्थ के माध्यम से) का उपयोग करके पूरा किया जाता है।
[[Image:Rotary vane pump.svg|thumb|फिक्स्ड विस्थापन फलक पंप]]एक रोटरी फलक पंप एक सकारात्मक-विस्थापन पंप होता है जिसमें एक रोटर पर घुड़सवार वैन होते हैं जो एक गुहा के अंदर घूमते हैं। कुछ मामलों में इन वैनों की लंबाई अलग-अलग हो सकती है और/या पंप के घूमने पर दीवारों के साथ संपर्क बनाए रखने के लिए तनावग्रस्त हो सकते हैं। फलक पंप डिजाइन में एक महत्वपूर्ण तत्व यह है कि वैन को पंप आवास के संपर्क में कैसे धकेला जाता है, और इस बिंदु पर फलक युक्तियाँ कैसे बनाई जाती हैं। कई प्रकार के होंठ डिजाइनों का उपयोग किया जाता है, और मुख्य उद्देश्य आवास और फलक के अंदर एक तंग सील प्रदान करना है, और साथ ही पहनने और धातु से धातु के संपर्क को कम करना है। घुमाने वाले केंद्र से और पंप हाउसिंग की ओर वैन को स्प्रिंग-लोडेड वैन, या अधिक परंपरागत रूप से, हाइड्रोडायनामिक रूप से लोड किए गए वैन (दबाव वाले सिस्टम तरल पदार्थ के माध्यम से) का उपयोग करके पूरा किया जाता है।
{{-}}


=== पेंच पंप ===
=== पेंच पंप ===
[[Image:Screwpump.gif|thumb|upright|पेंच पंप का सिद्धांत (चूषण पक्ष = सेवन, दबाव पक्ष = बहिर्वाह)]][[ पेंच पंप ]] (स्थिर विस्थापन) में दो आर्किमिडीज के पेंच होते हैं जो एक दूसरे से जुड़े होते हैं और एक ही कक्ष के भीतर बंद होते हैं। इन पंपों का उपयोग अपेक्षाकृत कम दबाव (अधिकतम) पर उच्च प्रवाह के लिए किया जाता है {{convert|100|bar}}).{{clarify|reason=100 bar isn't "low pressure", even in hydraulics. I'm also skeptical that screw pumps can reach this|date=October 2014}} उनका उपयोग जहाजों पर किया जाता था जहां एक निरंतर दबाव हाइड्रोलिक प्रणाली पूरे जहाज के माध्यम से विस्तारित होती थी, विशेष रूप से [[ बॉल वाल्व ]] को नियंत्रित करने के लिए{{clarify|reason=Since where are ball valves controlled by the hydraulics?|date=October 2014}} बल्कि स्टीयरिंग गियर और अन्य सिस्टम को चलाने में मदद करने के लिए भी। पेंच पंपों का लाभ इन पंपों का निम्न ध्वनि स्तर है; हालाँकि, दक्षता अधिक नहीं है।
[[Image:Screwpump.gif|thumb|upright|पेंच पंप का सिद्धांत (चूषण पक्ष = सेवन, दबाव पक्ष = बहिर्वाह)]][[ पेंच पंप ]] (स्थिर विस्थापन) में दो आर्किमिडीज के पेंच होते हैं जो एक दूसरे से जुड़े होते हैं और एक ही कक्ष के भीतर बंद होते हैं। इन पंपों का उपयोग अपेक्षाकृत कम दबाव (अधिकतम) पर उच्च प्रवाह के लिए किया जाता है {{convert|100|bar}}). उनका उपयोग जहाजों पर किया जाता था जहां एक निरंतर दबाव हाइड्रोलिक प्रणाली पूरे जहाज के माध्यम से विस्तारित होती थी, विशेष रूप से [[ बॉल वाल्व ]] को नियंत्रित करने के लिए बल्कि स्टीयरिंग गियर और अन्य सिस्टम को चलाने में मदद करने के लिए भी। पेंच पंपों का लाभ इन पंपों का निम्न ध्वनि स्तर है; हालाँकि, दक्षता अधिक नहीं है।


पेंच पंपों की प्रमुख समस्या यह है कि हाइड्रोलिक प्रतिक्रिया बल एक ऐसी दिशा में प्रेषित होता है जो अक्षीय रूप से प्रवाह की दिशा के विपरीत होता है।
पेंच पंपों की प्रमुख समस्या यह है कि हाइड्रोलिक प्रतिक्रिया बल एक ऐसी दिशा में प्रेषित होता है जो अक्षीय रूप से प्रवाह की दिशा के विपरीत होता है।
Line 38: Line 32:
=== [[ तुला अक्ष पंप ]] ===
=== [[ तुला अक्ष पंप ]] ===
बेंट एक्सिस पंप, एक्सियल पिस्टन पंप और मोटर्स बेंट एक्सिस सिद्धांत, निश्चित या समायोज्य विस्थापन का उपयोग करते हुए, दो अलग-अलग बुनियादी डिजाइनों में मौजूद हैं। अधिकतम 25 डिग्री कोण के साथ थोमा-सिद्धांत (इंजीनियर हंस थोमा, जर्मनी, पेटेंट 1935) और पिस्टन रॉड, पिस्टन रिंग, और अधिकतम के साथ एक टुकड़े में गोलाकार आकार के पिस्टन के साथ पहलमार्क-सिद्धांत (गुन्नार एक्सल वाह्लमार्क, पेटेंट 1960) ड्राइवशाफ्ट सेंटरलाइन और पिस्टन (वोल्वो हाइड्रोलिक्स कंपनी) के बीच 40 डिग्री। इनमें सभी पंपों की सबसे अच्छी दक्षता है। हालांकि सामान्य तौर पर, सबसे बड़ा विस्थापन लगभग एक लीटर प्रति क्रांति है, यदि आवश्यक हो तो दो लीटर स्वेप्ट वॉल्यूम पंप बनाया जा सकता है। अक्सर चर-विस्थापन पंपों का उपयोग किया जाता है ताकि तेल प्रवाह को सावधानी से समायोजित किया जा सके। ये पंप सामान्य रूप से निरंतर काम में 350-420 बार तक काम के दबाव के साथ काम कर सकते हैं।
बेंट एक्सिस पंप, एक्सियल पिस्टन पंप और मोटर्स बेंट एक्सिस सिद्धांत, निश्चित या समायोज्य विस्थापन का उपयोग करते हुए, दो अलग-अलग बुनियादी डिजाइनों में मौजूद हैं। अधिकतम 25 डिग्री कोण के साथ थोमा-सिद्धांत (इंजीनियर हंस थोमा, जर्मनी, पेटेंट 1935) और पिस्टन रॉड, पिस्टन रिंग, और अधिकतम के साथ एक टुकड़े में गोलाकार आकार के पिस्टन के साथ पहलमार्क-सिद्धांत (गुन्नार एक्सल वाह्लमार्क, पेटेंट 1960) ड्राइवशाफ्ट सेंटरलाइन और पिस्टन (वोल्वो हाइड्रोलिक्स कंपनी) के बीच 40 डिग्री। इनमें सभी पंपों की सबसे अच्छी दक्षता है। हालांकि सामान्य तौर पर, सबसे बड़ा विस्थापन लगभग एक लीटर प्रति क्रांति है, यदि आवश्यक हो तो दो लीटर स्वेप्ट वॉल्यूम पंप बनाया जा सकता है। अक्सर चर-विस्थापन पंपों का उपयोग किया जाता है ताकि तेल प्रवाह को सावधानी से समायोजित किया जा सके। ये पंप सामान्य रूप से निरंतर काम में 350-420 बार तक काम के दबाव के साथ काम कर सकते हैं।
{{-}}
=== इनलाइन अक्षीय पिस्टन पंप ===
=== इनलाइन अक्षीय पिस्टन पंप ===
[[Image:Swashplate.jpg|thumb|अक्षीय पिस्टन पंप, स्वैपप्लेट सिद्धांत]]विभिन्न मुआवजा तकनीकों का उपयोग करके, इन पंपों के परिवर्तनीय विस्थापन प्रकार प्रति क्रांति द्रव निर्वहन और भार आवश्यकताओं के आधार पर सिस्टम दबाव, अधिकतम दबाव कट-ऑफ सेटिंग्स, अश्वशक्ति/अनुपात नियंत्रण, और यहां तक ​​​​कि पूरी तरह से विद्युत आनुपातिक प्रणाली भी बदल सकते हैं, जिसके लिए किसी अन्य की आवश्यकता नहीं होती है। विद्युत संकेतों की तुलना में इनपुट। यह उन प्रणालियों में अन्य निरंतर प्रवाह पंपों की तुलना में संभावित रूप से बिजली की बचत करता है जहां प्राइम मूवर/डीजल/इलेक्ट्रिक मोटर घूर्णी गति स्थिर है और आवश्यक द्रव प्रवाह गैर-स्थिर है।
[[Image:Swashplate.jpg|thumb|अक्षीय पिस्टन पंप, स्वैपप्लेट सिद्धांत]]विभिन्न मुआवजा तकनीकों का उपयोग करके, इन पंपों के परिवर्तनीय विस्थापन प्रकार प्रति क्रांति द्रव निर्वहन और भार आवश्यकताओं के आधार पर सिस्टम दबाव, अधिकतम दबाव कट-ऑफ सेटिंग्स, अश्वशक्ति/अनुपात नियंत्रण, और यहां तक ​​​​कि पूरी तरह से विद्युत आनुपातिक प्रणाली भी बदल सकते हैं, जिसके लिए किसी अन्य की आवश्यकता नहीं होती है। विद्युत संकेतों की तुलना में इनपुट। यह उन प्रणालियों में अन्य निरंतर प्रवाह पंपों की तुलना में संभावित रूप से बिजली की बचत करता है जहां प्राइम मूवर/डीजल/इलेक्ट्रिक मोटर घूर्णी गति स्थिर है और आवश्यक द्रव प्रवाह गैर-स्थिर है।
{{-}}
=== रेडियल पिस्टन पंप ===
=== रेडियल पिस्टन पंप ===
[[Image:Radiale plunjerpomp.png|thumb|रेडियल पिस्टन पंप]]रेडियल पिस्टन पंप हाइड्रोलिक पंप का एक रूप है। काम करने वाले पिस्टन अक्षीय पिस्टन पंप के विपरीत, ड्राइव शाफ्ट के चारों ओर सममित रूप से एक रेडियल दिशा में विस्तारित होते हैं।
[[Image:Radiale plunjerpomp.png|thumb|रेडियल पिस्टन पंप]]रेडियल पिस्टन पंप हाइड्रोलिक पंप का एक रूप है। काम करने वाले पिस्टन अक्षीय पिस्टन पंप के विपरीत, ड्राइव शाफ्ट के चारों ओर सममित रूप से एक रेडियल दिशा में विस्तारित होते हैं।
Line 89: Line 75:


==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{Commons|Gear pump}}
*[https://web.archive.org/web/20120424171344/http://www.pumpschool.com/principles/external.htm External gear pump description]
*[https://web.archive.org/web/20120424171344/http://www.pumpschool.com/principles/external.htm External gear pump description]
*[https://web.archive.org/web/20080501214724/http://www.pumpschool.com/principles/internal.htm Internal gear pump description]
*[https://web.archive.org/web/20080501214724/http://www.pumpschool.com/principles/internal.htm Internal gear pump description]
{{Commons|Mechanical efficiency}}
 
*[http://hydraulicspneumatics.com/ Mechanical efficiency description]
*[http://hydraulicspneumatics.com/ Mechanical efficiency description]
*[http://hydraulicspneumatics.com/ Hydraulic efficiency description]
*[http://hydraulicspneumatics.com/ Hydraulic efficiency description]

Revision as of 14:29, 23 January 2023

Fluid flow in an external gear pump
बाहरी गियर पंप में द्रव प्रवाह

हाइड्रोलिक पंप हाइड्रोलिक ड्राइव सिस्टम में उपयोग किए जाते हैं और हाइड्रोस्टैटिक या हाइड्रोडायनामिक हो सकते हैं। एक हाइड्रोलिक पंप शक्ति का एक यांत्रिक स्रोत है जो यांत्रिक शक्ति को हाइड्रोलिक ऊर्जा (हीड्रास्टाटिक ऊर्जा यानी प्रवाह, दबाव) में परिवर्तित करता है। पंप आउटलेट पर लोड द्वारा प्रेरित दबाव को दूर करने के लिए यह पर्याप्त शक्ति के साथ प्रवाह उत्पन्न करता है। जब एक हाइड्रोलिक पंप संचालित होता है, तो यह पंप इनलेट पर एक वैक्यूम बनाता है, जो जलाशय से तरल को इनलेट लाइन में पंप तक ले जाता है और यांत्रिक क्रिया द्वारा इस तरल को पंप आउटलेट तक पहुंचाता है और इसे हाइड्रोलिक सिस्टम में मजबूर करता है।

हाइड्रोस्टैटिक पंप सकारात्मक विस्थापन पंप होते हैं, जबकि हाइड्रोडायनामिक पंप निश्चित विस्थापन पंप हो सकते हैं, जिसमें विस्थापन (पंप के प्रति रोटेशन पंप के माध्यम से प्रवाह) को समायोजित नहीं किया जा सकता है, या चर विस्थापन पंप , जिसमें अधिक जटिल निर्माण होता है जो विस्थापन की अनुमति देता है समायोजित करें। हाइड्रोडायनामिक पंप दिन-प्रतिदिन के जीवन में अधिक बार होते हैं। विभिन्न प्रकार के हाइड्रोस्टेटिक पंप पास्कल के नियम के सिद्धांत पर काम करते हैं।

बाहरी दांतों के साथ गियर पंप, गियर की घूर्णी दिशा नहीं।

हाइड्रोलिक पंप के प्रकार

गियर पंप

आंतरिक दांतों के साथ गियर पंप

गीयर पंप (बाहरी दांतों के साथ) (निश्चित विस्थापन) सरल और किफायती पंप हैं। हाइड्रॉलिक्स के लिए गियर पंपों का स्वेप्ट वॉल्यूम या इंजन विस्थापन लगभग 1 से 200 मिलीलीटर के बीच होगा। उनके पास सबसे कम वॉल्यूमेट्रिक दक्षता है ( ) सभी तीन बुनियादी पंप प्रकार (गियर, वेन और पिस्टन पंप)[1] ये पंप गियर के दांतों की जाली के माध्यम से दबाव बनाते हैं, जो आउटलेट की तरफ दबाव डालने के लिए गियर के चारों ओर द्रव को मजबूर करता है। कुछ गियर पंप अन्य प्रकारों की तुलना में काफी शोर कर सकते हैं, लेकिन पुराने मॉडल की तुलना में आधुनिक गियर पंप अत्यधिक विश्वसनीय और बहुत शांत हैं। यह आंशिक रूप से स्प्लिट गियर्स, हेलिकल गियर टीथ और उच्च परिशुद्धता/गुणवत्ता वाले टूथ प्रोफाइल को शामिल करने वाले डिजाइनों के कारण है जो अधिक सुचारू रूप से जाल और अनमेश करते हैं, दबाव तरंग और संबंधित हानिकारक समस्याओं को कम करते हैं। गियर पंप की एक और सकारात्मक विशेषता यह है कि अधिकांश अन्य प्रकार के हाइड्रोलिक पंपों की तुलना में विनाशकारी खराबी बहुत कम आम है। ऐसा इसलिए है क्योंकि गियर धीरे-धीरे हाउसिंग और/या मुख्य झाड़ियों को घिसते हैं, जिससे पंप की वॉल्यूमेट्रिक दक्षता धीरे-धीरे कम हो जाती है जब तक कि यह सब बेकार न हो जाए। यह अक्सर पहनने से बहुत पहले होता है और यूनिट को जब्त या टूटने का कारण बनता है।

एक gerotor (छवि सेवन या निकास नहीं दिखाती है)

रोटरी फलक पंप

फिक्स्ड विस्थापन फलक पंप

एक रोटरी फलक पंप एक सकारात्मक-विस्थापन पंप होता है जिसमें एक रोटर पर घुड़सवार वैन होते हैं जो एक गुहा के अंदर घूमते हैं। कुछ मामलों में इन वैनों की लंबाई अलग-अलग हो सकती है और/या पंप के घूमने पर दीवारों के साथ संपर्क बनाए रखने के लिए तनावग्रस्त हो सकते हैं। फलक पंप डिजाइन में एक महत्वपूर्ण तत्व यह है कि वैन को पंप आवास के संपर्क में कैसे धकेला जाता है, और इस बिंदु पर फलक युक्तियाँ कैसे बनाई जाती हैं। कई प्रकार के होंठ डिजाइनों का उपयोग किया जाता है, और मुख्य उद्देश्य आवास और फलक के अंदर एक तंग सील प्रदान करना है, और साथ ही पहनने और धातु से धातु के संपर्क को कम करना है। घुमाने वाले केंद्र से और पंप हाउसिंग की ओर वैन को स्प्रिंग-लोडेड वैन, या अधिक परंपरागत रूप से, हाइड्रोडायनामिक रूप से लोड किए गए वैन (दबाव वाले सिस्टम तरल पदार्थ के माध्यम से) का उपयोग करके पूरा किया जाता है।

पेंच पंप

पेंच पंप का सिद्धांत (चूषण पक्ष = सेवन, दबाव पक्ष = बहिर्वाह)

पेंच पंप (स्थिर विस्थापन) में दो आर्किमिडीज के पेंच होते हैं जो एक दूसरे से जुड़े होते हैं और एक ही कक्ष के भीतर बंद होते हैं। इन पंपों का उपयोग अपेक्षाकृत कम दबाव (अधिकतम) पर उच्च प्रवाह के लिए किया जाता है 100 bars (10,000 kPa)). उनका उपयोग जहाजों पर किया जाता था जहां एक निरंतर दबाव हाइड्रोलिक प्रणाली पूरे जहाज के माध्यम से विस्तारित होती थी, विशेष रूप से बॉल वाल्व को नियंत्रित करने के लिए बल्कि स्टीयरिंग गियर और अन्य सिस्टम को चलाने में मदद करने के लिए भी। पेंच पंपों का लाभ इन पंपों का निम्न ध्वनि स्तर है; हालाँकि, दक्षता अधिक नहीं है।

पेंच पंपों की प्रमुख समस्या यह है कि हाइड्रोलिक प्रतिक्रिया बल एक ऐसी दिशा में प्रेषित होता है जो अक्षीय रूप से प्रवाह की दिशा के विपरीत होता है।

इस समस्या को दूर करने के दो तरीके हैं:

  1. प्रत्येक रोटर के नीचे एक थ्रस्ट बियरिंग लगाएं;
  2. रोटर के नीचे एक पिस्टन को हाइड्रोलिक बल निर्देशित करके हाइड्रोलिक संतुलन बनाएं।

स्क्रू पंप के प्रकार:

  1. एक छोर
  2. दोहरा अंत
  3. सिंगल रोटर
  4. मल्टी रोटर समयबद्ध
  5. मल्टी रोटर समय से पहले।

तुला अक्ष पंप

बेंट एक्सिस पंप, एक्सियल पिस्टन पंप और मोटर्स बेंट एक्सिस सिद्धांत, निश्चित या समायोज्य विस्थापन का उपयोग करते हुए, दो अलग-अलग बुनियादी डिजाइनों में मौजूद हैं। अधिकतम 25 डिग्री कोण के साथ थोमा-सिद्धांत (इंजीनियर हंस थोमा, जर्मनी, पेटेंट 1935) और पिस्टन रॉड, पिस्टन रिंग, और अधिकतम के साथ एक टुकड़े में गोलाकार आकार के पिस्टन के साथ पहलमार्क-सिद्धांत (गुन्नार एक्सल वाह्लमार्क, पेटेंट 1960) ड्राइवशाफ्ट सेंटरलाइन और पिस्टन (वोल्वो हाइड्रोलिक्स कंपनी) के बीच 40 डिग्री। इनमें सभी पंपों की सबसे अच्छी दक्षता है। हालांकि सामान्य तौर पर, सबसे बड़ा विस्थापन लगभग एक लीटर प्रति क्रांति है, यदि आवश्यक हो तो दो लीटर स्वेप्ट वॉल्यूम पंप बनाया जा सकता है। अक्सर चर-विस्थापन पंपों का उपयोग किया जाता है ताकि तेल प्रवाह को सावधानी से समायोजित किया जा सके। ये पंप सामान्य रूप से निरंतर काम में 350-420 बार तक काम के दबाव के साथ काम कर सकते हैं।

इनलाइन अक्षीय पिस्टन पंप

अक्षीय पिस्टन पंप, स्वैपप्लेट सिद्धांत

विभिन्न मुआवजा तकनीकों का उपयोग करके, इन पंपों के परिवर्तनीय विस्थापन प्रकार प्रति क्रांति द्रव निर्वहन और भार आवश्यकताओं के आधार पर सिस्टम दबाव, अधिकतम दबाव कट-ऑफ सेटिंग्स, अश्वशक्ति/अनुपात नियंत्रण, और यहां तक ​​​​कि पूरी तरह से विद्युत आनुपातिक प्रणाली भी बदल सकते हैं, जिसके लिए किसी अन्य की आवश्यकता नहीं होती है। विद्युत संकेतों की तुलना में इनपुट। यह उन प्रणालियों में अन्य निरंतर प्रवाह पंपों की तुलना में संभावित रूप से बिजली की बचत करता है जहां प्राइम मूवर/डीजल/इलेक्ट्रिक मोटर घूर्णी गति स्थिर है और आवश्यक द्रव प्रवाह गैर-स्थिर है।

रेडियल पिस्टन पंप

रेडियल पिस्टन पंप

रेडियल पिस्टन पंप हाइड्रोलिक पंप का एक रूप है। काम करने वाले पिस्टन अक्षीय पिस्टन पंप के विपरीत, ड्राइव शाफ्ट के चारों ओर सममित रूप से एक रेडियल दिशा में विस्तारित होते हैं।

हाइड्रोलिक पंप, गणना सूत्र

प्रवाह

कहाँ पे

  • , प्रवाह (एम3/एस)
  • , स्ट्रोक आवृत्ति (हर्ट्ज)
  • , स्ट्रोक्ड वॉल्यूम (एम3)
  • , अनुमापी दक्षता

पावर

कहाँ पे

  • , शक्ति (डब्ल्यू)
  • , स्ट्रोक आवृत्ति (हर्ट्ज)
  • , स्ट्रोक्ड वॉल्यूम (एम3)
  • पंप पर दबाव अंतर (पा)
  • , यांत्रिक / हाइड्रोलिक दक्षता

यांत्रिक दक्षता

कहाँ पे

  • , यांत्रिक पंप दक्षता प्रतिशत
  • ड्राइव करने के लिए सैद्धांतिक टोक़
  • ड्राइव करने के लिए वास्तविक टोक़

हाइड्रोलिक दक्षता

कहाँ पे

  • , हाइड्रोलिक पंप दक्षता
  • , सैद्धांतिक प्रवाह दर उत्पादन
  • , वास्तविक प्रवाह दर उत्पादन

संदर्भ

  1. Parr, Andrew (2011). "Hydraulics and Pneumatics a technician's and engineer's guide", p. 38. Elsevier.


बाहरी कड़ियाँ