घूर्णी व्युत्क्रमण: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
[[ गणित ]] में, एक [[ आंतरिक उत्पाद स्थान ]] पर परिभाषित एक फ़ंक्शन (गणित) को घूर्णी आक्रमण के लिए कहा जाता है यदि इसका मूल्य तब नहीं बदलता है जब उसके तर्क पर मनमाना घुमाव लागू होते हैं।
[[ गणित ]] में, एक [[ आंतरिक उत्पाद स्थान ]] पर परिभाषित एक फ़ंक्शन (गणित) को घूर्णी व्युत्क्रमण के लिए कहा जाता है यदि इसका मान तब नहीं बदलता है जब उसके तर्क पर स्वैच्छिक घुमाव लागू होते हैं।


== गणित ==
== गणित ==
Line 8: Line 8:


:<math>f(x,y) = x^2 + y^2 </math>
:<math>f(x,y) = x^2 + y^2 </math>
मूल के चारों ओर विमान के घुमाव के तहत अपरिवर्तनीय है, क्योंकि किसी भी [[ कोण ]] के माध्यम से निर्देशांक के एक घुमाए गए सेट के लिए θ
मूल के चारों ओर तल के घुमाव के तहत अपरिवर्तनीय है, क्योंकि किसी भी [[ कोण ]] θ के माध्यम से निर्देशांक के एक घुमाए गए सेट के लिए  


:<math>x' = x \cos \theta  - y \sin \theta </math>
:<math>x' = x \cos \theta  - y \sin \theta </math>
:<math>y' = x \sin \theta + y \cos \theta </math>
:<math>y' = x \sin \theta + y \cos \theta </math>
फ़ंक्शन, शर्तों के कुछ रद्द करने के बाद, बिल्कुल एक ही रूप लेता है
फ़ंक्शन, शर्तों के कुछ निरस्त करने के बाद, बिल्कुल एक ही रूप लेता है


:<math>f(x',y') = {x}^2 + {y}^2 </math>
:<math>f(x',y') = {x}^2 + {y}^2 </math>
Line 18: Line 18:


:<math>\begin{bmatrix} x' \\ y' \\ \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix}. </math>
:<math>\begin{bmatrix} x' \\ y' \\ \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ \end{bmatrix}. </math>
या प्रतीकात्मक रूप से x & prime;= आरएक्स।प्रतीकात्मक रूप से, दो वास्तविक चर के वास्तविक-मूल्यवान कार्य का रोटेशन आक्रमण है
या प्रतीकात्मक रूप से '''x'''′ = '''Rx'''।प्रतीकात्मक रूप से, दो वास्तविक चरों के वास्तविक-मूल्यवान फलन का घूर्णन व्युत्क्रमण है


:<math>f(\mathbf{x}') = f(\mathbf{Rx}) = f(\mathbf{x}) </math>
:<math>f(\mathbf{x}') = f(\mathbf{Rx}) = f(\mathbf{x}) </math>
शब्दों में, घुमाए गए निर्देशांक का कार्य बिल्कुल वैसा ही रूप लेता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, एकमात्र अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक लोगों को प्रतिस्थापित करते हैं।कई वास्तविक चर के एक समारोह के लिए | तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान कार्य, यह अभिव्यक्ति उपयुक्त रोटेशन मैट्रिसेस का उपयोग करके आसानी से फैली हुई है।
शब्दों में, घुमाए गए निर्देशांक का कार्य ठीक उसी रूप में होता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, केवल अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक को प्रतिस्थापित करते हैं। तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान फ़ंक्शन के लिए, यह अभिव्यक्ति उचित रोटेशन मेट्रिसेस का उपयोग करके आसानी से विस्तारित होती है।


अवधारणा एक या एक से अधिक चर के [[ वेक्टर-मूल्यवान फ़ंक्शन ]] f तक भी फैली हुई है;
शब्दों में, घुमाए गए निर्देशांक का कार्य बिल्कुल वैसा ही रूप लेता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, एकमात्र अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक लोगों को प्रतिस्थापित करते हैं। तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान फ़ंक्शन के लिए, यह अभिव्यक्ति उचित रोटेशन मेट्रिसेस का उपयोग करके आसानी से विस्तारित होती है।
 
अवधारणा एक या एक से अधिक चर के [[ वेक्टर-मूल्यवान फ़ंक्शन | वेक्टर-मूल्यवान फ़ंक्शन]] f तक भी विस्तारित होती है;


:<math>\mathbf{f}(\mathbf{x}') = \mathbf{f}(\mathbf{Rx}) = \mathbf{f}(\mathbf{x}) </math>
:<math>\mathbf{f}(\mathbf{x}') = \mathbf{f}(\mathbf{Rx}) = \mathbf{f}(\mathbf{x}) </math>
उपरोक्त सभी मामलों में, तर्क (यहां समन्वय के लिए निर्देशांक कहा जाता है) को घुमाया जाता है, न कि फ़ंक्शन को ही।
उपरोक्त सभी स्थितियों में, तर्क (यहां समन्वय के लिए निर्देशांक कहा जाता है) को घुमाया जाता है, न कि फ़ंक्शन को ही।


=== ऑपरेटर ===
=== ऑपरेटर ===
Line 33: Line 35:


:<math>f : X \rightarrow X </math>
:<math>f : X \rightarrow X </math>
जो तत्वों को वास्तविक लाइन के एक [[ सबसेट ]] एक्स से अपने आप में मैप करता है, 'घूर्णी आक्रमण' का मतलब यह भी हो सकता है कि एक्स में तत्वों के घुमाव के साथ फ़ंक्शन [[ कम्यूटेटिव ऑपरेशन ]]। यह एक ऑपरेटर (गणित) के लिए भी लागू होता है जो इस तरह के कार्यों पर कार्य करता है।एक उदाहरण दो-आयामी [[ लाप्लास ऑपरेटर ]] है
जो तत्वों को वास्तविक लाइन के एक [[ सबसेट ]] एक्स से अपने आप में मैप करता है, 'घूर्णी व्युत्क्रमण' का मतलब यह भी हो सकता है कि एक्स में तत्वों के घुमाव के साथ फ़ंक्शन [[ कम्यूटेटिव ऑपरेशन ]]। यह एक ऑपरेटर (गणित) के लिए भी लागू होता है जो इस तरह के कार्यों पर कार्य करता है।एक उदाहरण दो-आयामी [[ लाप्लास ऑपरेटर ]] है


:<math>\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} </math>
:<math>\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} </math>
Line 48: Line 50:


{{Further|Rotation operator (quantum mechanics)|Symmetry in quantum mechanics}}
{{Further|Rotation operator (quantum mechanics)|Symmetry in quantum mechanics}}
[[ क्वांटम यांत्रिकी ]] में, घूर्णी आक्रमण वह संपत्ति है जो एक रोटेशन के बाद नई प्रणाली अभी भी श्रोडिंगर के समीकरण का पालन करती है।वह है
[[ क्वांटम यांत्रिकी ]] में, घूर्णी व्युत्क्रमण वह संपत्ति है जो एक रोटेशन के बाद नई प्रणाली अभी भी श्रोडिंगर के समीकरण का पालन करती है।वह है


:<math>[R,E-H] = 0</math> किसी भी रोटेशन के लिए आर। चूंकि रोटेशन समय पर स्पष्ट रूप से निर्भर नहीं करता है, यह ऊर्जा ऑपरेटर के साथ आता है।इस प्रकार घूर्णी आक्रमण के लिए हमारे पास [r, & nbsp; h] = 0 होना चाहिए।
:<math>[R,E-H] = 0</math> किसी भी रोटेशन के लिए आर। चूंकि रोटेशन समय पर स्पष्ट रूप से निर्भर नहीं करता है, यह ऊर्जा ऑपरेटर के साथ आता है।इस प्रकार घूर्णी व्युत्क्रमण के लिए हमारे पास [r, & nbsp; h] = 0 होना चाहिए।


[[ अमानवीय रोटेशन ]] के लिए (इस उदाहरण के लिए XY-PLANE में; यह किसी भी विमान के लिए भी ऐसा किया जा सकता है) एक कोण d ((infinitesimal) रोटेशन ऑपरेटर द्वारा किया जाता है
[[ अमानवीय रोटेशन ]] के लिए (इस उदाहरण के लिए XY-PLANE में; यह किसी भी तल के लिए भी ऐसा किया जा सकता है) एक कोण d ((infinitesimal) रोटेशन ऑपरेटर द्वारा किया जाता है


:<math>R = 1 + J_z d\theta \,,</math>
:<math>R = 1 + J_z d\theta \,,</math>

Revision as of 06:40, 26 January 2023

गणित में, एक आंतरिक उत्पाद स्थान पर परिभाषित एक फ़ंक्शन (गणित) को घूर्णी व्युत्क्रमण के लिए कहा जाता है यदि इसका मान तब नहीं बदलता है जब उसके तर्क पर स्वैच्छिक घुमाव लागू होते हैं।

गणित

कार्य

उदाहरण के लिए, फ़ंक्शन

मूल के चारों ओर तल के घुमाव के तहत अपरिवर्तनीय है, क्योंकि किसी भी कोण θ के माध्यम से निर्देशांक के एक घुमाए गए सेट के लिए

फ़ंक्शन, शर्तों के कुछ निरस्त करने के बाद, बिल्कुल एक ही रूप लेता है

रोटेशन मैट्रिक्स का उपयोग करके मैट्रिक्स (गणित) फॉर्म का उपयोग करके निर्देशांक के रोटेशन को व्यक्त किया जा सकता है,

या प्रतीकात्मक रूप से x′ = Rx।प्रतीकात्मक रूप से, दो वास्तविक चरों के वास्तविक-मूल्यवान फलन का घूर्णन व्युत्क्रमण है

शब्दों में, घुमाए गए निर्देशांक का कार्य ठीक उसी रूप में होता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, केवल अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक को प्रतिस्थापित करते हैं। तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान फ़ंक्शन के लिए, यह अभिव्यक्ति उचित रोटेशन मेट्रिसेस का उपयोग करके आसानी से विस्तारित होती है।

शब्दों में, घुमाए गए निर्देशांक का कार्य बिल्कुल वैसा ही रूप लेता है जैसा कि प्रारंभिक निर्देशांक के साथ किया गया था, एकमात्र अंतर यह है कि घुमाए गए निर्देशांक प्रारंभिक लोगों को प्रतिस्थापित करते हैं। तीन या अधिक वास्तविक चर के वास्तविक-मूल्यवान फ़ंक्शन के लिए, यह अभिव्यक्ति उचित रोटेशन मेट्रिसेस का उपयोग करके आसानी से विस्तारित होती है।

अवधारणा एक या एक से अधिक चर के वेक्टर-मूल्यवान फ़ंक्शन f तक भी विस्तारित होती है;

उपरोक्त सभी स्थितियों में, तर्क (यहां समन्वय के लिए निर्देशांक कहा जाता है) को घुमाया जाता है, न कि फ़ंक्शन को ही।

ऑपरेटर

एक समारोह के लिए (गणित)

जो तत्वों को वास्तविक लाइन के एक सबसेट एक्स से अपने आप में मैप करता है, 'घूर्णी व्युत्क्रमण' का मतलब यह भी हो सकता है कि एक्स में तत्वों के घुमाव के साथ फ़ंक्शन कम्यूटेटिव ऑपरेशन । यह एक ऑपरेटर (गणित) के लिए भी लागू होता है जो इस तरह के कार्यों पर कार्य करता है।एक उदाहरण दो-आयामी लाप्लास ऑपरेटर है

जो किसी अन्य फ़ंक्शन को प्राप्त करने के लिए एक फ़ंक्शन f पर कार्य करता है2 f।यह ऑपरेटर घुमाव के तहत अपरिवर्तनीय है।

यदि g फ़ंक्शन g (p) = f (r (p)) है, जहाँ r कोई रोटेशन है, तो2 </d> g) (p) = (∇ ∇2 f) (r (p));अर्थात्, एक फ़ंक्शन को घुमाना केवल उसके लाप्लासियन को घुमाता है।


भौतिकी

भौतिकी में, यदि कोई प्रणाली इस बात की परवाह किए बिना कि यह अंतरिक्ष में कैसे उन्मुख है, तो इसका व्यवहार करता है, तो इसका लैग्रैन्जियन यांत्रिकी घूर्णी रूप से अपरिवर्तनीय है।नूथर के प्रमेय के अनुसार, यदि एक भौतिक प्रणाली की कार्रवाई (भौतिकी) (इसके लैग्रैन्जियन के समय के साथ अभिन्न) रोटेशन के तहत अपरिवर्तनीय है, तो कोणीय गति का संरक्षण

क्वांटम यांत्रिकी के लिए आवेदन

क्वांटम यांत्रिकी में, घूर्णी व्युत्क्रमण वह संपत्ति है जो एक रोटेशन के बाद नई प्रणाली अभी भी श्रोडिंगर के समीकरण का पालन करती है।वह है

किसी भी रोटेशन के लिए आर। चूंकि रोटेशन समय पर स्पष्ट रूप से निर्भर नहीं करता है, यह ऊर्जा ऑपरेटर के साथ आता है।इस प्रकार घूर्णी व्युत्क्रमण के लिए हमारे पास [r, & nbsp; h] = 0 होना चाहिए।

अमानवीय रोटेशन के लिए (इस उदाहरण के लिए XY-PLANE में; यह किसी भी तल के लिए भी ऐसा किया जा सकता है) एक कोण d ((infinitesimal) रोटेशन ऑपरेटर द्वारा किया जाता है

तब

इस प्रकार

दूसरे शब्दों में कोणीय गति संरक्षित है।

यह भी देखें

संदर्भ

  • Stenger, Victor J. (2000). Timeless Reality. Prometheus Books. Especially chpt. 12. Nontechnical.