खगोलीय यांत्रिकी: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Branch of astronomy}} | {{short description|Branch of astronomy}} | ||
{{Classical mechanics|cTopic=Branches}} | {{Classical mechanics|cTopic=Branches}} | ||
आकाशीय यांत्रिकी [[खगोल]] विज्ञान की वह शाखा है जो [[आकाशीय वस्तु]] की [[गति (भौतिकी)]] से संबंधित है। ऐतिहासिक रूप से, आकाशीय यांत्रिकी [[पंचांग]] डेटा का उत्पादन करने के लिए खगोलीय वस्तुओं, जैसे सितारों और [[ग्रह]]ों पर भौतिकी ([[शास्त्रीय यांत्रिकी]]) के सिद्धांतों को लागू करती है। | आकाशीय यांत्रिकी [[खगोल]] विज्ञान की वह शाखा है जो [[आकाशीय वस्तु]] की [[गति (भौतिकी)]] से संबंधित है। ऐतिहासिक रूप से, आकाशीय यांत्रिकी [[पंचांग]] डेटा का उत्पादन करने के लिए खगोलीय वस्तुओं, जैसे सितारों और [[ग्रह|ग्रहग्रहों]]ों पर भौतिकी ([[शास्त्रीय यांत्रिकी]]) के सिद्धांतों को लागू करती है। | ||
== इतिहास == | == इतिहास == | ||
आधुनिक विश्लेषणात्मक आकाशीय यांत्रिकी | आधुनिक विश्लेषणात्मक आकाशीय यांत्रिकी का प्रारंभ 1687 के [[आइजैक न्यूटन]] के फिलोसोफी नेचुरेलिस प्रिंसिपिया मैथेमेटिका से हुई थी। आकाशीय यांत्रिकी नाम उससे अधिक नया है। न्यूटन ने लिखा है कि क्षेत्र को तर्कसंगत यांत्रिकी कहा जाना चाहिए। डायनामिक्स शब्द थोड़ी देर बाद [[गॉटफ्रीड लीबनिज]]़ के साथ आया, और न्यूटन के एक सदी बाद, [[पियरे-साइमन लाप्लास]] ने आकाशीय यांत्रिकी शब्द प्रस्तुत किया। केप्लर से पहले ग्रहों की स्थिति की सटीक, मात्रात्मक भविष्यवाणी, ग्रीक खगोल विज्ञान # यूडोक्सन खगोल विज्ञान या बेबीलोनियन खगोल विज्ञान # नव-बेबीलोनियन खगोल विज्ञान तकनीकों और ग्रहों की गति के भौतिक कारणों की समकालीन चर्चाओं के बीच बहुत कम संबंध था। | ||
=== जोहान्स केप्लर === | === जोहान्स केप्लर === | ||
[[जोहान्स केप्लर]] (1571-1630) भविष्यवाणी करने वाले ज्यामितीय खगोल विज्ञान को बारीकी से एकीकृत करने वाले पहले व्यक्ति थे, जो दूसरी शताब्दी में [[टॉलेमी]] से [[कोपरनिकस]] तक प्रमुख थे, भौतिक अवधारणाओं के साथ एक एस्ट्रोनोमिया नोवा उत्पन्न करने के लिए|नई खगोल विज्ञान, कारणों पर आधारित, या आकाशीय भौतिकी 1609 में। उनके काम ने ग्रहों की गति के केप्लर के नियमों का नेतृत्व किया, जिसे उन्होंने अपने भौतिक सिद्धांतों और [[टाइको ब्राहे]] द्वारा किए गए ग्रहों के अवलोकनों का उपयोग करके विकसित किया। केपलर के मॉडल ने ग्रहों की गति की भविष्यवाणी की सटीकता में बहुत | [[जोहान्स केप्लर]] (1571-1630) भविष्यवाणी करने वाले ज्यामितीय खगोल विज्ञान को बारीकी से एकीकृत करने वाले पहले व्यक्ति थे, जो दूसरी शताब्दी में [[टॉलेमी]] से [[कोपरनिकस]] तक प्रमुख थे, '''भौतिक अवधारणाओं के साथ एक एस्ट्रोनोमिया नोवा उत्पन्न करने के लिए|नई खगोल विज्ञान, कारणों पर आधारित, या आकाशीय भौतिकी 1609 में।''' उनके काम ने ग्रहों की गति के केप्लर के नियमों का नेतृत्व किया, जिसे उन्होंने अपने भौतिक सिद्धांतों और [[टाइको ब्राहे]] द्वारा किए गए ग्रहों के अवलोकनों का उपयोग करके विकसित किया। केपलर के मॉडल ने ग्रहों की गति की भविष्यवाणी की सटीकता में बहुत संशोधन किया, आइज़ैक न्यूटन ने 1686 में अपने न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम को विकसित किया था। | ||
=== आइजैक न्यूटन === | === आइजैक न्यूटन === | ||
इसहाक न्यूटन (25 दिसंबर 1642-31 मार्च 1727) को इस विचार को प्रस्तुत करने का श्रेय दिया जाता है कि आकाश में वस्तुओं की गति, जैसे कि ग्रह, सूर्य और चंद्रमा, और | इसहाक न्यूटन (25 दिसंबर 1642-31 मार्च 1727) को इस विचार को प्रस्तुत करने का श्रेय दिया जाता है कि आकाश में वस्तुओं की गति, जैसे कि ग्रह, सूर्य और चंद्रमा, और धरती पर वस्तुओं की गति, जैसे [[तोप]] के गोले और गिरने वाले सेब, भौतिक कानूनों के एक ही सेट द्वारा वर्णित किए जा सकते हैं। इस अर्थ में उन्होंने आकाशीय और स्थलीय गतिकी को एकीकृत किया। सार्वभौमिक गुरुत्वाकर्षण के न्यूटन के नियम का उपयोग करना, एक वृत्ताकार कक्षा की स्थिति के लिए केप्लर के नियमों को सिद्ध करना सरल है। अण्डाकार कक्षाओं में अधिक जटिल गणनाएँ सम्मलित होती हैं, जिन्हें न्यूटन ने अपने [[प्राकृतिक दर्शन के गणितीय सिद्धांत]] में सम्मलित किया था। | ||
===जोसेफ-लुई लाग्रेंज === | ===जोसेफ-लुई लाग्रेंज === | ||
न्यूटन के बाद, जोसेफ-लुई लैग्रेंज#एस्ट्रोनॉमी (25 जनवरी 1736–10 अप्रैल 1813) ने तीन-पिंड की समस्या | न्यूटन के बाद, जोसेफ-लुई लैग्रेंज#एस्ट्रोनॉमी (25 जनवरी 1736–10 अप्रैल 1813) ने तीन-पिंड की समस्या का समाधान करने का प्रयास किया, ग्रहों की कक्षाओं की स्थिरता का विश्लेषण किया, और लग्रांगियन बिंदुओं के अस्तित्व की खोज की। लाग्रेंज ने शास्त्रीय यांत्रिकी के सिद्धांतों को भी संशोधित किया, बल से अधिक ऊर्जा पर जोर दिया और किसी भी कक्षा का वर्णन करने के लिए एकल ध्रुवीय समन्वय समीकरण का उपयोग करने के लिए लैग्रैन्जियन यांत्रिकी का विकास किया, यहां तक कि वे भी जो परवलयिक और अतिशयोक्तिपूर्ण हैं। यह ग्रहों और [[धूमकेतु]]ओं आदि के व्यवहार की गणना के लिए उपयोगी है। हाल ही में, यह [[अंतरिक्ष यान]] [[प्रक्षेपवक्र]] की गणना करने के लिए भी उपयोगी हो गया है। | ||
=== [[साइमन न्यूकॉम्ब]] === | === [[साइमन न्यूकॉम्ब]] === | ||
Line 19: | Line 19: | ||
=== [[अल्बर्ट आइंस्टीन]] === | === [[अल्बर्ट आइंस्टीन]] === | ||
अल्बर्ट आइंस्टीन (14 मार्च 1879-18 अप्रैल 1955) ने अपने 1916 के पेपर द फाउंडेशन ऑफ़ द जनरल थ्योरी ऑफ़ रिलेटिविटी में [[सामान्य सापेक्षता]] के विषम परीक्षणों की व्याख्या की #बुध का पेरीहेलियन प्रीसेशन|बुध के पेरीहेलियन का प्रीसेशन। इसने खगोलविदों को पहचानने के लिए प्रेरित किया कि [[न्यूटोनियन यांत्रिकी]] ने उच्चतम सटीकता प्रदान नहीं की। [[बाइनरी पल्सर]] देखे गए हैं, 1974 में पहली बार, जिनकी कक्षाओं को न केवल उनकी व्याख्या के लिए सामान्य सापेक्षता के उपयोग की आवश्यकता होती है, बल्कि जिसका विकास [[गुरुत्वाकर्षण विकिरण]] के अस्तित्व को | अल्बर्ट आइंस्टीन (14 मार्च 1879-18 अप्रैल 1955) ने अपने 1916 के पेपर द फाउंडेशन ऑफ़ द जनरल थ्योरी ऑफ़ रिलेटिविटी में [[सामान्य सापेक्षता]] के विषम परीक्षणों की व्याख्या की #बुध का पेरीहेलियन प्रीसेशन|बुध के पेरीहेलियन का प्रीसेशन। इसने खगोलविदों को पहचानने के लिए प्रेरित किया कि [[न्यूटोनियन यांत्रिकी]] ने उच्चतम सटीकता प्रदान नहीं की। [[बाइनरी पल्सर]] देखे गए हैं, 1974 में पहली बार, जिनकी कक्षाओं को न केवल उनकी व्याख्या के लिए सामान्य सापेक्षता के उपयोग की आवश्यकता होती है, बल्कि जिसका विकास [[गुरुत्वाकर्षण विकिरण]] के अस्तित्व को सिद्ध करता है, एक खोज जिसके कारण 1993 का नोबेल भौतिकी पुरस्कार मिला। | ||
== समस्याओं के उदाहरण == | == समस्याओं के उदाहरण == | ||
आकाशीय गति, बिना अतिरिक्त बल जैसे [[खिंचाव बल]] या [[राकेट]] के [[जोर]] के बिना, जनता के बीच पारस्परिक गुरुत्वाकर्षण त्वरण द्वारा नियंत्रित होती है। एक सामान्यीकरण एन-बॉडी प्रॉब्लम है|एन-बॉडी प्रॉब्लम,<ref>{{Cite journal|last1=Trenti|first1=Michele|last2=Hut|first2=Piet|date=2008-05-20|title=एन-बॉडी सिमुलेशन (गुरुत्वाकर्षण)|journal=Scholarpedia|language=en|volume=3|issue=5|pages=3930|doi=10.4249/scholarpedia.3930|bibcode=2008SchpJ...3.3930T|issn=1941-6016|doi-access=free}}</ref> जहां द्रव्यमान की संख्या n गुरुत्वाकर्षण बल के माध्यम से परस्पर क्रिया कर रही है। | आकाशीय गति, बिना अतिरिक्त बल जैसे [[खिंचाव बल]] या [[राकेट]] के [[जोर]] के बिना, जनता के बीच पारस्परिक गुरुत्वाकर्षण त्वरण द्वारा नियंत्रित होती है। एक सामान्यीकरण एन-बॉडी प्रॉब्लम है|एन-बॉडी प्रॉब्लम,<ref>{{Cite journal|last1=Trenti|first1=Michele|last2=Hut|first2=Piet|date=2008-05-20|title=एन-बॉडी सिमुलेशन (गुरुत्वाकर्षण)|journal=Scholarpedia|language=en|volume=3|issue=5|pages=3930|doi=10.4249/scholarpedia.3930|bibcode=2008SchpJ...3.3930T|issn=1941-6016|doi-access=free}}</ref> जहां द्रव्यमान की संख्या n गुरुत्वाकर्षण बल के माध्यम से परस्पर क्रिया कर रही है। चूँकि सामान्य स्थिति में विश्लेषणात्मक रूप से पूर्णांक नहीं है,<ref>{{cite arXiv|last=Combot|first=Thierry|date=2015-09-01|title=कुछ n शरीर की समस्याओं की अभिन्नता और गैर-अभिन्नता|class=math.DS|eprint=1509.08233}}</ref> एकीकरण को संख्यात्मक रूप से अच्छी तरह से अनुमानित किया जा सकता है। | ||
:उदाहरण: | :उदाहरण: | ||
Line 30: | Line 30: | ||
:**अंतरिक्ष उड़ान के लिए, और एक [[Lagrangian बिंदु]] पर रहने के लिए | :**अंतरिक्ष उड़ान के लिए, और एक [[Lagrangian बिंदु]] पर रहने के लिए | ||
में <math>n=2</math> केस ([[दो-शरीर की समस्या]]) की तुलना में कॉन्फ़िगरेशन बहुत सरल है <math>n>2</math>. इस | में <math>n=2</math> केस ([[दो-शरीर की समस्या]]) की तुलना में कॉन्फ़िगरेशन बहुत सरल है <math>n>2</math>. इस स्थिति में, सिस्टम पूरी तरह से एकीकृत है और सटीक समाधान ढूंढे जा सकते हैं।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=टू-बॉडी प्रॉब्लम -- एरिक वीस्टीन की वर्ल्ड ऑफ फिजिक्स से|url=https://scienceworld.wolfram.com/physics/Two-BodyProblem.html|access-date=2020-08-28|website=scienceworld.wolfram.com|language=en}}</ref> | ||
:उदाहरण: | :उदाहरण: | ||
:*एक [[द्विआधारी क्षुद्रग्रह]], उदाहरण के लिए, [[यह एक तारे का नाम है]] (लगभग समान द्रव्यमान) | :*एक [[द्विआधारी क्षुद्रग्रह]], उदाहरण के लिए, [[यह एक तारे का नाम है]] (लगभग समान द्रव्यमान) | ||
:*एक बाइनरी क्षुद्रग्रह, उदाहरण के लिए, 90 एंटीओप (लगभग समान द्रव्यमान) | :*एक बाइनरी क्षुद्रग्रह, उदाहरण के लिए, 90 एंटीओप (लगभग समान द्रव्यमान) | ||
एक और सरलीकरण एस्ट्रोडायनामिक्स में मानक मान्यताओं पर आधारित है, जिसमें यह | एक और सरलीकरण एस्ट्रोडायनामिक्स में मानक मान्यताओं पर आधारित है, जिसमें यह सम्मलित है कि एक पिंड, परिक्रमा करने वाला पिंड, दूसरे केंद्रीय पिंड की तुलना में बहुत छोटा है। यह अधिकांशतः लगभग मान्य भी होता है। | ||
:उदाहरण: | :उदाहरण: | ||
Line 45: | Line 45: | ||
== गड़बड़ी सिद्धांत == | == गड़बड़ी सिद्धांत == | ||
{{main|Perturbation theory}} | {{main|Perturbation theory}} | ||
पर्टर्बेशन थ्योरी में गणितीय तरीके | पर्टर्बेशन थ्योरी में गणितीय तरीके सम्मलित होते हैं जिनका उपयोग किसी समस्या का अनुमानित समाधान ढूंढने के लिए किया जाता है जिसे ठीक से हल नहीं किया जा सकता है। (यह [[संख्यात्मक विश्लेषण]] में उपयोग की जाने वाली विधियों से निकटता से संबंधित है, जो कि वर्गमूल # बेबीलोनियन पद्धति की गणना की विधियां हैं।) आधुनिक [[गड़बड़ी सिद्धांत]] का सबसे पहला उपयोग आकाशीय यांत्रिकी की अन्यथा अघुलनशील गणितीय समस्याओं से निपटने के लिए था: इसहाक न्यूटन की कक्षा की कक्षा के लिए समाधान चंद्रमा, जो पृथ्वी और सूर्य के प्रतिस्पर्धात्मक गुरुत्वाकर्षण के कारण ग्रहों की गति के सरल केप्लर के नियमों से स्पष्ट रूप से अलग चलता है। | ||
गड़बड़ी सिद्धांत मूल समस्या के सरलीकृत रूप से | गड़बड़ी सिद्धांत मूल समस्या के सरलीकृत रूप से प्रारंभ होता है, जिसे सावधानीपूर्वक समाधान करने योग्य चुना जाता है। आकाशीय यांत्रिकी में, यह सामान्यतः ग्रहों की गति के केप्लर के नियम हैं, जो सही है जब केवल दो गुरुत्वाकर्षण पिंड (कहते हैं, पृथ्वी और चंद्रमा) हैं, या एक गोलाकार कक्षा है, जो केवल दो-पिंडों के विशेष स्थितियों में सही है। गति, लेकिन अधिकतर व्यावहारिक उपयोग के लिए काफी करीब होती है। | ||
समाधान की गई, लेकिन सरलीकृत समस्या को उसके अंतर समीकरण बनाने के लिए परेशान किया जाता है। वास्तविक समस्या से मूल्यों के करीब वस्तु की स्थिति के लिए समय-दर-परिवर्तन समीकरण, जैसे कि तीसरे, अधिक दूर के शरीर के गुरुत्वाकर्षण आकर्षण को सम्मलित करना ( सूरज)। समीकरणों में शर्तों के परिणामस्वरूप होने वाले सामान्य परिवर्तन - जो स्वयं को फिर से सरलीकृत कर सकते हैं - मूल समाधान में सुधार के रूप में उपयोग किए जाते हैं। क्योंकि सरलीकरण हर कदम पर किया जाता है, सुधार कभी भी सही नहीं होते हैं, लेकिन सुधारों का एक चक्र भी अधिकतर वास्तविक समस्या का उल्लेखनीय रूप से बेहतर अनुमानित समाधान प्रदान करता है। | |||
सुधारों के केवल एक चक्र पर रुकने की कोई आवश्यकता नहीं है। गड़बड़ी और सुधार के एक और चक्र के लिए आंशिक रूप से सही किए गए समाधान को नए | सुधारों के केवल एक चक्र पर रुकने की कोई आवश्यकता नहीं है। गड़बड़ी और सुधार के एक और चक्र के लिए आंशिक रूप से सही किए गए समाधान को नए प्रारंभिक बिंदु के रूप में फिर से उपयोग किया जा सकता है। सिद्धांत रूप में, अधिकांश समस्याओं के लिए बेहतर समाधानों की एक नई पीढ़ी प्राप्त करने के लिए पूर्व समाधानों का पुनर्चक्रण और शोधन सटीकता की किसी भी वांछित परिमित डिग्री तक अनिश्चित काल तक जारी रह सकता है। | ||
विधि के साथ सामान्य कठिनाई यह है कि सुधार | विधि के साथ सामान्य कठिनाई यह है कि सुधार सामान्यतः उत्तरोत्तर नए समाधानों को बहुत अधिक जटिल बना देते हैं, इसलिए सुधार के पिछले चक्र की तुलना में प्रत्येक चक्र को प्रबंधित करना अधिक कठिन होता है। कहा जाता है कि इसहाक न्यूटन ने चंद्रमा की कक्षा की समस्या के संबंध में कहा था कि इससे मेरे सिर में दर्द होता है।<ref>{{Citation |last1=Cropper |first1=William H. |title=Great Physicists: The life and times of leading physicists from Galileo to Hawking |publisher=[[Oxford University Press]] |isbn=978-0-19-517324-6 |date=2004 |page=34}}.</ref> | ||
यह सामान्य प्रक्रिया - एक सरलीकृत समस्या से | |||
यह सामान्य प्रक्रिया - एक सरलीकृत समस्या से प्रारंभ होती है और धीरे-धीरे सुधार जोड़ती है जो सही समस्या के प्रारंभिक बिंदु को वास्तविक स्थिति के करीब बनाती है - उन्नत विज्ञान और इंजीनियरिंग में व्यापक रूप से उपयोग किया जाने वाला गणितीय उपकरण है। यह अनुमान लगाने, जाँचने और ठीक करने की पद्धति का स्वाभाविक विस्तार है। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 60: | Line 61: | ||
* खगोलगतिकी कक्षाओं का अध्ययन और निर्माण है, विशेष रूप से कृत्रिम [[उपग्रह]]ों की। | * खगोलगतिकी कक्षाओं का अध्ययन और निर्माण है, विशेष रूप से कृत्रिम [[उपग्रह]]ों की। | ||
* [[खगोल भौतिकी]] | * [[खगोल भौतिकी]] | ||
* [[आकाशीय नेविगेशन]] एक पोजीशन फिक्सिंग तकनीक है जो नाविकों को एक फीचर रहित महासागर में | * [[आकाशीय नेविगेशन]] एक पोजीशन फिक्सिंग तकनीक है जो नाविकों को एक फीचर रहित महासागर में स्वयं को ढूंढने में सहायता करने के लिए तैयार की गई पहली प्रणाली थी। | ||
* जेट नोदन प्रयोगशाला विकास पंचांग या जेट नोदन प्रयोगशाला विकास पंचांग (जेपीएल डीई) सौर प्रणाली का एक व्यापक रूप से | * जेट नोदन प्रयोगशाला विकास पंचांग या जेट नोदन प्रयोगशाला विकास पंचांग (जेपीएल डीई) सौर प्रणाली का एक व्यापक रूप से उपयोग किया जाने वाला मॉडल है, जो खगोलीय यांत्रिकी को संख्यात्मक विश्लेषण और खगोलीय और अंतरिक्ष यान डेटा के साथ जोड़ता है। | ||
* [[आकाशीय क्षेत्रों की गतिशीलता]] तारों और ग्रहों की गति के कारणों की पूर्व-न्यूटोनियन व्याख्याओं से संबंधित है। | * [[आकाशीय क्षेत्रों की गतिशीलता]] तारों और ग्रहों की गति के कारणों की पूर्व-न्यूटोनियन व्याख्याओं से संबंधित है। | ||
* [[गतिशील समय पैमाना]] | * [[गतिशील समय पैमाना]] | ||
Line 67: | Line 68: | ||
* गुरुत्वाकर्षण | * गुरुत्वाकर्षण | ||
* [[चंद्र सिद्धांत]] चंद्रमा की गतियों का हिसाब लगाने का प्रयास करता है। | * [[चंद्र सिद्धांत]] चंद्रमा की गतियों का हिसाब लगाने का प्रयास करता है। | ||
* संख्यात्मक विश्लेषण गणित की एक शाखा है, जो आकाशीय यांत्रिकी द्वारा अग्रणी है, अनुमानित संख्यात्मक उत्तरों (जैसे कि आकाश में किसी ग्रह की स्थिति) की गणना के लिए, जो एक सामान्य, सटीक सूत्र तक | * संख्यात्मक विश्लेषण गणित की एक शाखा है, जो आकाशीय यांत्रिकी द्वारा अग्रणी है, अनुमानित संख्यात्मक उत्तरों (जैसे कि आकाश में किसी ग्रह की स्थिति) की गणना के लिए, जो एक सामान्य, सटीक सूत्र तक समाधान करना बहुत कठिन है। | ||
* सौर प्रणाली का एक संख्यात्मक मॉडल बनाना आकाशीय यांत्रिकी का मूल लक्ष्य था, और इसे केवल अपूर्ण रूप से प्राप्त किया गया है। यह अनुसंधान को प्रेरित करता रहता है। | * सौर प्रणाली का एक संख्यात्मक मॉडल बनाना आकाशीय यांत्रिकी का मूल लक्ष्य था, और इसे केवल अपूर्ण रूप से प्राप्त किया गया है। यह अनुसंधान को प्रेरित करता रहता है। | ||
* एक कक्षा वह मार्ग है जो एक वस्तु किसी अन्य वस्तु के चारों ओर बनाती है, जबकि गुरुत्वाकर्षण जैसे केन्द्रापसारक बल के स्रोत के प्रभाव में होती है। | * एक कक्षा वह मार्ग है जो एक वस्तु किसी अन्य वस्तु के चारों ओर बनाती है, जबकि गुरुत्वाकर्षण जैसे केन्द्रापसारक बल के स्रोत के प्रभाव में होती है। | ||
* [[कक्षीय तत्व]] एक न्यूटोनियन दो-निकाय कक्षा को विशिष्ट रूप से निर्दिष्ट करने के लिए आवश्यक पैरामीटर हैं। | * [[कक्षीय तत्व]] एक न्यूटोनियन दो-निकाय कक्षा को विशिष्ट रूप से निर्दिष्ट करने के लिए आवश्यक पैरामीटर हैं। | ||
* [[ऑस्क्युलेटिंग ऑर्बिट]] एक केंद्रीय पिंड के बारे में अस्थायी केप्लरियन ऑर्बिट है, जिस पर एक वस्तु जारी रहेगी, यदि अन्य गड़बड़ी | * [[ऑस्क्युलेटिंग ऑर्बिट]] एक केंद्रीय पिंड के बारे में अस्थायी केप्लरियन ऑर्बिट है, जिस पर एक वस्तु जारी रहेगी, यदि अन्य गड़बड़ी उपस्थित नहीं थी। | ||
* [[प्रतिगामी गति]] एक प्रणाली में कक्षीय गति है, जैसे कि एक ग्रह और उसके उपग्रह, जो कि केंद्रीय निकाय के घूर्णन की दिशा के | * [[प्रतिगामी गति]] एक प्रणाली में कक्षीय गति है, जैसे कि एक ग्रह और उसके उपग्रह, जो कि केंद्रीय निकाय के घूर्णन की दिशा के विरुद्ध है, या सामान्यतः संपूर्ण प्रणाली के शुद्ध कोणीय गति की दिशा के विरुद्ध है। | ||
* [[स्पष्ट प्रतिगामी गति]] पृथ्वी से देखे जाने पर ग्रह पिंडों की आवधिक, स्पष्ट रूप से पीछे की ओर गति है (एक त्वरित संदर्भ फ्रेम)। | * [[स्पष्ट प्रतिगामी गति]] पृथ्वी से देखे जाने पर ग्रह पिंडों की आवधिक, स्पष्ट रूप से पीछे की ओर गति है (एक त्वरित संदर्भ फ्रेम)। | ||
* सैटेलाइट एक ऐसी वस्तु है जो किसी अन्य वस्तु [[की परिक्रमा]] करती है (जिसे इसकी प्राथमिक के रूप में जाना जाता है)। इस शब्द का प्रयोग | * सैटेलाइट एक ऐसी वस्तु है जो किसी अन्य वस्तु [[की परिक्रमा]] करती है (जिसे इसकी प्राथमिक के रूप में जाना जाता है)। इस शब्द का प्रयोग अधिकतर एक कृत्रिम उपग्रह ([[प्राकृतिक उपग्रह]]ों या चंद्रमाओं के विरुद्ध) का वर्णन करने के लिए किया जाता है। सामान्य संज्ञा 'चंद्रमा' (पूंजीकृत नहीं) का उपयोग अन्य ग्रहों के किसी भी प्राकृतिक उपग्रह के अर्थ के लिए किया जाता है। | ||
* [[ज्वारीय बल]] आउट-ऑफ-बैलेंस बलों और (ज्यादातर) ठोस पिंडों के त्वरण का संयोजन है जो तरल (महासागरों), वायुमंडलों और तनाव ग्रहों और उपग्रहों की परतों में ज्वार उठाता है। | * [[ज्वारीय बल]] आउट-ऑफ-बैलेंस बलों और (ज्यादातर) ठोस पिंडों के त्वरण का संयोजन है जो तरल (महासागरों), वायुमंडलों और तनाव ग्रहों और उपग्रहों की परतों में ज्वार उठाता है। | ||
* दो समाधान, जिन्हें [[वीएसओपी (ग्रह)]] कहा जाता है, प्रमुख ग्रहों की कक्षाओं और स्थितियों के लिए एक गणितीय सिद्धांत के संस्करण हैं, जो समय की विस्तारित अवधि में सटीक स्थिति प्रदान करना चाहते हैं। | * दो समाधान, जिन्हें [[वीएसओपी (ग्रह)]] कहा जाता है, प्रमुख ग्रहों की कक्षाओं और स्थितियों के लिए एक गणितीय सिद्धांत के संस्करण हैं, जो समय की विस्तारित अवधि में सटीक स्थिति प्रदान करना चाहते हैं। |
Revision as of 22:10, 24 January 2023
Part of a series on |
चिरसम्मत यांत्रिकी |
---|
आकाशीय यांत्रिकी खगोल विज्ञान की वह शाखा है जो आकाशीय वस्तु की गति (भौतिकी) से संबंधित है। ऐतिहासिक रूप से, आकाशीय यांत्रिकी पंचांग डेटा का उत्पादन करने के लिए खगोलीय वस्तुओं, जैसे सितारों और ग्रहग्रहोंों पर भौतिकी (शास्त्रीय यांत्रिकी) के सिद्धांतों को लागू करती है।
इतिहास
आधुनिक विश्लेषणात्मक आकाशीय यांत्रिकी का प्रारंभ 1687 के आइजैक न्यूटन के फिलोसोफी नेचुरेलिस प्रिंसिपिया मैथेमेटिका से हुई थी। आकाशीय यांत्रिकी नाम उससे अधिक नया है। न्यूटन ने लिखा है कि क्षेत्र को तर्कसंगत यांत्रिकी कहा जाना चाहिए। डायनामिक्स शब्द थोड़ी देर बाद गॉटफ्रीड लीबनिज़ के साथ आया, और न्यूटन के एक सदी बाद, पियरे-साइमन लाप्लास ने आकाशीय यांत्रिकी शब्द प्रस्तुत किया। केप्लर से पहले ग्रहों की स्थिति की सटीक, मात्रात्मक भविष्यवाणी, ग्रीक खगोल विज्ञान # यूडोक्सन खगोल विज्ञान या बेबीलोनियन खगोल विज्ञान # नव-बेबीलोनियन खगोल विज्ञान तकनीकों और ग्रहों की गति के भौतिक कारणों की समकालीन चर्चाओं के बीच बहुत कम संबंध था।
जोहान्स केप्लर
जोहान्स केप्लर (1571-1630) भविष्यवाणी करने वाले ज्यामितीय खगोल विज्ञान को बारीकी से एकीकृत करने वाले पहले व्यक्ति थे, जो दूसरी शताब्दी में टॉलेमी से कोपरनिकस तक प्रमुख थे, भौतिक अवधारणाओं के साथ एक एस्ट्रोनोमिया नोवा उत्पन्न करने के लिए|नई खगोल विज्ञान, कारणों पर आधारित, या आकाशीय भौतिकी 1609 में। उनके काम ने ग्रहों की गति के केप्लर के नियमों का नेतृत्व किया, जिसे उन्होंने अपने भौतिक सिद्धांतों और टाइको ब्राहे द्वारा किए गए ग्रहों के अवलोकनों का उपयोग करके विकसित किया। केपलर के मॉडल ने ग्रहों की गति की भविष्यवाणी की सटीकता में बहुत संशोधन किया, आइज़ैक न्यूटन ने 1686 में अपने न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम को विकसित किया था।
आइजैक न्यूटन
इसहाक न्यूटन (25 दिसंबर 1642-31 मार्च 1727) को इस विचार को प्रस्तुत करने का श्रेय दिया जाता है कि आकाश में वस्तुओं की गति, जैसे कि ग्रह, सूर्य और चंद्रमा, और धरती पर वस्तुओं की गति, जैसे तोप के गोले और गिरने वाले सेब, भौतिक कानूनों के एक ही सेट द्वारा वर्णित किए जा सकते हैं। इस अर्थ में उन्होंने आकाशीय और स्थलीय गतिकी को एकीकृत किया। सार्वभौमिक गुरुत्वाकर्षण के न्यूटन के नियम का उपयोग करना, एक वृत्ताकार कक्षा की स्थिति के लिए केप्लर के नियमों को सिद्ध करना सरल है। अण्डाकार कक्षाओं में अधिक जटिल गणनाएँ सम्मलित होती हैं, जिन्हें न्यूटन ने अपने प्राकृतिक दर्शन के गणितीय सिद्धांत में सम्मलित किया था।
जोसेफ-लुई लाग्रेंज
न्यूटन के बाद, जोसेफ-लुई लैग्रेंज#एस्ट्रोनॉमी (25 जनवरी 1736–10 अप्रैल 1813) ने तीन-पिंड की समस्या का समाधान करने का प्रयास किया, ग्रहों की कक्षाओं की स्थिरता का विश्लेषण किया, और लग्रांगियन बिंदुओं के अस्तित्व की खोज की। लाग्रेंज ने शास्त्रीय यांत्रिकी के सिद्धांतों को भी संशोधित किया, बल से अधिक ऊर्जा पर जोर दिया और किसी भी कक्षा का वर्णन करने के लिए एकल ध्रुवीय समन्वय समीकरण का उपयोग करने के लिए लैग्रैन्जियन यांत्रिकी का विकास किया, यहां तक कि वे भी जो परवलयिक और अतिशयोक्तिपूर्ण हैं। यह ग्रहों और धूमकेतुओं आदि के व्यवहार की गणना के लिए उपयोगी है। हाल ही में, यह अंतरिक्ष यान प्रक्षेपवक्र की गणना करने के लिए भी उपयोगी हो गया है।
साइमन न्यूकॉम्ब
साइमन न्यूकॉम्ब (12 मार्च 1835–11 जुलाई 1909) एक कनाडाई-अमेरिकी खगोलशास्त्री थे, जिन्होंने पीटर एंड्रियास हैनसेन की चंद्र स्थितियों की तालिका को संशोधित किया था। 1877 में, जॉर्ज विलियम हिल की सहायता से, उन्होंने सभी प्रमुख खगोलीय स्थिरांकों की पुनर्गणना की। 1884 के बाद, उन्होंने ए. एम. डब्ल्यू. डाउनिंग के साथ इस विषय पर बहुत अधिक अंतरराष्ट्रीय भ्रम को हल करने की योजना की कल्पना की। मई 1886 में जब तक उन्होंने पेरिस, फ्रांस में एक मानकीकरण सम्मेलन में भाग लिया, तब तक अंतर्राष्ट्रीय सहमति यह थी कि सभी पंचांग न्यूकॉम्ब की गणनाओं पर आधारित होने चाहिए। 1950 के बाद के एक और सम्मेलन ने न्यूकॉम्ब के स्थिरांक को अंतर्राष्ट्रीय मानक के रूप में पुष्टि की।
अल्बर्ट आइंस्टीन
अल्बर्ट आइंस्टीन (14 मार्च 1879-18 अप्रैल 1955) ने अपने 1916 के पेपर द फाउंडेशन ऑफ़ द जनरल थ्योरी ऑफ़ रिलेटिविटी में सामान्य सापेक्षता के विषम परीक्षणों की व्याख्या की #बुध का पेरीहेलियन प्रीसेशन|बुध के पेरीहेलियन का प्रीसेशन। इसने खगोलविदों को पहचानने के लिए प्रेरित किया कि न्यूटोनियन यांत्रिकी ने उच्चतम सटीकता प्रदान नहीं की। बाइनरी पल्सर देखे गए हैं, 1974 में पहली बार, जिनकी कक्षाओं को न केवल उनकी व्याख्या के लिए सामान्य सापेक्षता के उपयोग की आवश्यकता होती है, बल्कि जिसका विकास गुरुत्वाकर्षण विकिरण के अस्तित्व को सिद्ध करता है, एक खोज जिसके कारण 1993 का नोबेल भौतिकी पुरस्कार मिला।
समस्याओं के उदाहरण
आकाशीय गति, बिना अतिरिक्त बल जैसे खिंचाव बल या राकेट के जोर के बिना, जनता के बीच पारस्परिक गुरुत्वाकर्षण त्वरण द्वारा नियंत्रित होती है। एक सामान्यीकरण एन-बॉडी प्रॉब्लम है|एन-बॉडी प्रॉब्लम,[1] जहां द्रव्यमान की संख्या n गुरुत्वाकर्षण बल के माध्यम से परस्पर क्रिया कर रही है। चूँकि सामान्य स्थिति में विश्लेषणात्मक रूप से पूर्णांक नहीं है,[2] एकीकरण को संख्यात्मक रूप से अच्छी तरह से अनुमानित किया जा सकता है।
- उदाहरण:
- 4-बॉडी प्रॉब्लम: स्पेसफ्लाइट टू मार्स (उड़ान के कुछ हिस्सों के लिए एक या दो बॉडी का प्रभाव बहुत छोटा है, इसलिए वहां हमें 2- या 3-बॉडी की समस्या है; पैच्ड कॉनिक सन्निकटन भी देखें)
- 3- शरीर की समस्या :
- अर्ध-उपग्रह
- अंतरिक्ष उड़ान के लिए, और एक Lagrangian बिंदु पर रहने के लिए
में केस (दो-शरीर की समस्या) की तुलना में कॉन्फ़िगरेशन बहुत सरल है . इस स्थिति में, सिस्टम पूरी तरह से एकीकृत है और सटीक समाधान ढूंढे जा सकते हैं।[3]
- उदाहरण:
- एक द्विआधारी क्षुद्रग्रह, उदाहरण के लिए, यह एक तारे का नाम है (लगभग समान द्रव्यमान)
- एक बाइनरी क्षुद्रग्रह, उदाहरण के लिए, 90 एंटीओप (लगभग समान द्रव्यमान)
एक और सरलीकरण एस्ट्रोडायनामिक्स में मानक मान्यताओं पर आधारित है, जिसमें यह सम्मलित है कि एक पिंड, परिक्रमा करने वाला पिंड, दूसरे केंद्रीय पिंड की तुलना में बहुत छोटा है। यह अधिकांशतः लगभग मान्य भी होता है।
- उदाहरण:
- सौर मंडल आकाशगंगा के केंद्र की परिक्रमा करता है
- सूर्य की परिक्रमा करने वाला ग्रह
- चंद्रमा किसी ग्रह की परिक्रमा करता है
- * एक अंतरिक्ष यान पृथ्वी, एक चंद्रमा या एक ग्रह की परिक्रमा करता है (बाद के मामलों में सन्निकटन केवल उस कक्षा में आने के बाद लागू होता है)
गड़बड़ी सिद्धांत
पर्टर्बेशन थ्योरी में गणितीय तरीके सम्मलित होते हैं जिनका उपयोग किसी समस्या का अनुमानित समाधान ढूंढने के लिए किया जाता है जिसे ठीक से हल नहीं किया जा सकता है। (यह संख्यात्मक विश्लेषण में उपयोग की जाने वाली विधियों से निकटता से संबंधित है, जो कि वर्गमूल # बेबीलोनियन पद्धति की गणना की विधियां हैं।) आधुनिक गड़बड़ी सिद्धांत का सबसे पहला उपयोग आकाशीय यांत्रिकी की अन्यथा अघुलनशील गणितीय समस्याओं से निपटने के लिए था: इसहाक न्यूटन की कक्षा की कक्षा के लिए समाधान चंद्रमा, जो पृथ्वी और सूर्य के प्रतिस्पर्धात्मक गुरुत्वाकर्षण के कारण ग्रहों की गति के सरल केप्लर के नियमों से स्पष्ट रूप से अलग चलता है।
गड़बड़ी सिद्धांत मूल समस्या के सरलीकृत रूप से प्रारंभ होता है, जिसे सावधानीपूर्वक समाधान करने योग्य चुना जाता है। आकाशीय यांत्रिकी में, यह सामान्यतः ग्रहों की गति के केप्लर के नियम हैं, जो सही है जब केवल दो गुरुत्वाकर्षण पिंड (कहते हैं, पृथ्वी और चंद्रमा) हैं, या एक गोलाकार कक्षा है, जो केवल दो-पिंडों के विशेष स्थितियों में सही है। गति, लेकिन अधिकतर व्यावहारिक उपयोग के लिए काफी करीब होती है।
समाधान की गई, लेकिन सरलीकृत समस्या को उसके अंतर समीकरण बनाने के लिए परेशान किया जाता है। वास्तविक समस्या से मूल्यों के करीब वस्तु की स्थिति के लिए समय-दर-परिवर्तन समीकरण, जैसे कि तीसरे, अधिक दूर के शरीर के गुरुत्वाकर्षण आकर्षण को सम्मलित करना ( सूरज)। समीकरणों में शर्तों के परिणामस्वरूप होने वाले सामान्य परिवर्तन - जो स्वयं को फिर से सरलीकृत कर सकते हैं - मूल समाधान में सुधार के रूप में उपयोग किए जाते हैं। क्योंकि सरलीकरण हर कदम पर किया जाता है, सुधार कभी भी सही नहीं होते हैं, लेकिन सुधारों का एक चक्र भी अधिकतर वास्तविक समस्या का उल्लेखनीय रूप से बेहतर अनुमानित समाधान प्रदान करता है।
सुधारों के केवल एक चक्र पर रुकने की कोई आवश्यकता नहीं है। गड़बड़ी और सुधार के एक और चक्र के लिए आंशिक रूप से सही किए गए समाधान को नए प्रारंभिक बिंदु के रूप में फिर से उपयोग किया जा सकता है। सिद्धांत रूप में, अधिकांश समस्याओं के लिए बेहतर समाधानों की एक नई पीढ़ी प्राप्त करने के लिए पूर्व समाधानों का पुनर्चक्रण और शोधन सटीकता की किसी भी वांछित परिमित डिग्री तक अनिश्चित काल तक जारी रह सकता है।
विधि के साथ सामान्य कठिनाई यह है कि सुधार सामान्यतः उत्तरोत्तर नए समाधानों को बहुत अधिक जटिल बना देते हैं, इसलिए सुधार के पिछले चक्र की तुलना में प्रत्येक चक्र को प्रबंधित करना अधिक कठिन होता है। कहा जाता है कि इसहाक न्यूटन ने चंद्रमा की कक्षा की समस्या के संबंध में कहा था कि इससे मेरे सिर में दर्द होता है।[4]
यह सामान्य प्रक्रिया - एक सरलीकृत समस्या से प्रारंभ होती है और धीरे-धीरे सुधार जोड़ती है जो सही समस्या के प्रारंभिक बिंदु को वास्तविक स्थिति के करीब बनाती है - उन्नत विज्ञान और इंजीनियरिंग में व्यापक रूप से उपयोग किया जाने वाला गणितीय उपकरण है। यह अनुमान लगाने, जाँचने और ठीक करने की पद्धति का स्वाभाविक विस्तार है।
यह भी देखें
- एस्ट्रोमेट्री खगोल विज्ञान का एक हिस्सा है जो सितारों और अन्य खगोलीय पिंडों की स्थिति, उनकी दूरी और चाल को मापने से संबंधित है।
- खगोलगतिकी कक्षाओं का अध्ययन और निर्माण है, विशेष रूप से कृत्रिम उपग्रहों की।
- खगोल भौतिकी
- आकाशीय नेविगेशन एक पोजीशन फिक्सिंग तकनीक है जो नाविकों को एक फीचर रहित महासागर में स्वयं को ढूंढने में सहायता करने के लिए तैयार की गई पहली प्रणाली थी।
- जेट नोदन प्रयोगशाला विकास पंचांग या जेट नोदन प्रयोगशाला विकास पंचांग (जेपीएल डीई) सौर प्रणाली का एक व्यापक रूप से उपयोग किया जाने वाला मॉडल है, जो खगोलीय यांत्रिकी को संख्यात्मक विश्लेषण और खगोलीय और अंतरिक्ष यान डेटा के साथ जोड़ता है।
- आकाशीय क्षेत्रों की गतिशीलता तारों और ग्रहों की गति के कारणों की पूर्व-न्यूटोनियन व्याख्याओं से संबंधित है।
- गतिशील समय पैमाना
- पंचांग एक निश्चित समय या समय पर आकाश में स्वाभाविक रूप से होने वाली खगोलीय वस्तुओं के साथ-साथ कृत्रिम उपग्रहों की स्थिति का संकलन है।
- गुरुत्वाकर्षण
- चंद्र सिद्धांत चंद्रमा की गतियों का हिसाब लगाने का प्रयास करता है।
- संख्यात्मक विश्लेषण गणित की एक शाखा है, जो आकाशीय यांत्रिकी द्वारा अग्रणी है, अनुमानित संख्यात्मक उत्तरों (जैसे कि आकाश में किसी ग्रह की स्थिति) की गणना के लिए, जो एक सामान्य, सटीक सूत्र तक समाधान करना बहुत कठिन है।
- सौर प्रणाली का एक संख्यात्मक मॉडल बनाना आकाशीय यांत्रिकी का मूल लक्ष्य था, और इसे केवल अपूर्ण रूप से प्राप्त किया गया है। यह अनुसंधान को प्रेरित करता रहता है।
- एक कक्षा वह मार्ग है जो एक वस्तु किसी अन्य वस्तु के चारों ओर बनाती है, जबकि गुरुत्वाकर्षण जैसे केन्द्रापसारक बल के स्रोत के प्रभाव में होती है।
- कक्षीय तत्व एक न्यूटोनियन दो-निकाय कक्षा को विशिष्ट रूप से निर्दिष्ट करने के लिए आवश्यक पैरामीटर हैं।
- ऑस्क्युलेटिंग ऑर्बिट एक केंद्रीय पिंड के बारे में अस्थायी केप्लरियन ऑर्बिट है, जिस पर एक वस्तु जारी रहेगी, यदि अन्य गड़बड़ी उपस्थित नहीं थी।
- प्रतिगामी गति एक प्रणाली में कक्षीय गति है, जैसे कि एक ग्रह और उसके उपग्रह, जो कि केंद्रीय निकाय के घूर्णन की दिशा के विरुद्ध है, या सामान्यतः संपूर्ण प्रणाली के शुद्ध कोणीय गति की दिशा के विरुद्ध है।
- स्पष्ट प्रतिगामी गति पृथ्वी से देखे जाने पर ग्रह पिंडों की आवधिक, स्पष्ट रूप से पीछे की ओर गति है (एक त्वरित संदर्भ फ्रेम)।
- सैटेलाइट एक ऐसी वस्तु है जो किसी अन्य वस्तु की परिक्रमा करती है (जिसे इसकी प्राथमिक के रूप में जाना जाता है)। इस शब्द का प्रयोग अधिकतर एक कृत्रिम उपग्रह (प्राकृतिक उपग्रहों या चंद्रमाओं के विरुद्ध) का वर्णन करने के लिए किया जाता है। सामान्य संज्ञा 'चंद्रमा' (पूंजीकृत नहीं) का उपयोग अन्य ग्रहों के किसी भी प्राकृतिक उपग्रह के अर्थ के लिए किया जाता है।
- ज्वारीय बल आउट-ऑफ-बैलेंस बलों और (ज्यादातर) ठोस पिंडों के त्वरण का संयोजन है जो तरल (महासागरों), वायुमंडलों और तनाव ग्रहों और उपग्रहों की परतों में ज्वार उठाता है।
- दो समाधान, जिन्हें वीएसओपी (ग्रह) कहा जाता है, प्रमुख ग्रहों की कक्षाओं और स्थितियों के लिए एक गणितीय सिद्धांत के संस्करण हैं, जो समय की विस्तारित अवधि में सटीक स्थिति प्रदान करना चाहते हैं।
टिप्पणियाँ
- ↑ Trenti, Michele; Hut, Piet (2008-05-20). "एन-बॉडी सिमुलेशन (गुरुत्वाकर्षण)". Scholarpedia (in English). 3 (5): 3930. Bibcode:2008SchpJ...3.3930T. doi:10.4249/scholarpedia.3930. ISSN 1941-6016.
- ↑ Combot, Thierry (2015-09-01). "कुछ n शरीर की समस्याओं की अभिन्नता और गैर-अभिन्नता". arXiv:1509.08233 [math.DS].
- ↑ Weisstein, Eric W. "टू-बॉडी प्रॉब्लम -- एरिक वीस्टीन की वर्ल्ड ऑफ फिजिक्स से". scienceworld.wolfram.com (in English). Retrieved 2020-08-28.
- ↑ Cropper, William H. (2004), Great Physicists: The life and times of leading physicists from Galileo to Hawking, Oxford University Press, p. 34, ISBN 978-0-19-517324-6.
संदर्भ
- Forest R. Moulton, Introduction to Celestial Mechanics, 1984, Dover, ISBN 0-486-64687-4
- John E. Prussing, Bruce A. Conway, Orbital Mechanics, 1993, Oxford Univ. Press
- William M. Smart, Celestial Mechanics, 1961, John Wiley.
- Doggett, LeRoy E. (1997), "Celestial Mechanics", in Lankford, John (ed.), History of Astronomy: An Encyclopedia, New York: Taylor & Francis, pp. 131–140, ISBN 9780815303220
- J.M.A. Danby, Fundamentals of Celestial Mechanics, 1992, Willmann-Bell
- Alessandra Celletti, Ettore Perozzi, Celestial Mechanics: The Waltz of the Planets, 2007, Springer-Praxis, ISBN 0-387-30777-X.
- Michael Efroimsky. 2005. Gauge Freedom in Orbital Mechanics. Annals of the New York Academy of Sciences, Vol. 1065, pp. 346-374
- Alessandra Celletti, Stability and Chaos in Celestial Mechanics. Springer-Praxis 2010, XVI, 264 p., Hardcover ISBN 978-3-540-85145-5
अग्रिम पठन
- Encyclopedia:Celestial mechanics Scholarpedia Expert articles
बाहरी संबंध
- Calvert, James B. (2003-03-28), Celestial Mechanics, University of Denver, archived from the original on 2006-09-07, retrieved 2006-08-21
- Astronomy of the Earth's Motion in Space, high-school level educational web site by David P. Stern
- Newtonian Dynamics Undergraduate level course by Richard Fitzpatrick. This includes Lagrangian and Hamiltonian Dynamics and applications to celestial mechanics, gravitational potential theory, the 3-body problem and Lunar motion (an example of the 3-body problem with the Sun, Moon, and the Earth).
Research
Artwork
Course notes
Associations
Simulations