डी लवल नोजल: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Lowercase title}}
{{Lowercase title}}
{{short description|Pinched tube generating supersonic flow}}
{{short description|Pinched tube generating supersonic flow}}
[[Image:Nozzle de Laval diagram.svg|right|thumb|250px|तापमान (टी) और दबाव (पी) पर प्रभाव के साथ अनुमानित प्रवाह वेग (वी) दिखाते हुए एक डी लवल नोजल का आरेख]]डे लावल नोज़ल (या अभिसारी-अपसारी नोज़ल, सीडी नोज़ल या कोन-डी नोज़ल) एक ट्यूब होती है जिसे बीच में संकुचित (पिंच) किया जाता है, जिससे सावधानीपूर्वक संतुलित, असममित[[ hourglass | रेत घड़ी (आउर्ग्लैस)]] आकार बनता है। प्रवाह की ऊष्मीय ऊर्जा को[[ गतिज ऊर्जा | गतिज ऊर्जा]] में परिवर्तित करके, अक्षीय (जोर) दिशा में सुपरसोनिक गति के लिए एक संपीड़ित तरल पदार्थ को तेज करने के लिए इसका उपयोग किया जाता है। कुछ प्रकार के[[ भाप टर्बाइन | भाप टर्बाइन]] और[[ रॉकेट इंजन नोजल | रॉकेट इंजन नोजल]] में डी लवल नोजल का व्यापक रूप से उपयोग किया जाता है। यह सुपरसोनिक[[ जेट इंजन ]]में भी उपयोगी होता है।
[[Image:Nozzle de Laval diagram.svg|right|thumb|250px|तापमान (टी) और दबाव (पी) पर प्रभाव के साथ अनुमानित प्रवाह वेग (वी) दिखाते हुए एक डी लवल नोजल का आरेख]]डे लावल नोज़ल (या अभिसारी-अपसारी नोज़ल, सीडी नोज़ल या कोन-डी नोज़ल) एक ट्यूब होती है जिसे बीच में संकुचित (पिंच) किया जाता है, जिससे सावधानीपूर्वक संतुलित, असममित[[ hourglass | रेत घड़ी (आउर्ग्लैस)]] आकार बनता है। प्रवाह की ऊष्मीय ऊर्जा को[[ गतिज ऊर्जा | गतिज ऊर्जा]] में परिवर्तित करके, अक्षीय (जोर) दिशा में सुपरसोनिक गति के लिए एक संपीड़ित तरल पदार्थ को तेज करने के लिए इसका उपयोग किया जाता है। कुछ प्रकार के[[ भाप टर्बाइन | भाप टर्बाइन]] और[[ रॉकेट इंजन नोजल | रॉकेट इंजन नोजल]] में डी लवल नोजल का व्यापक रूप से उपयोग किया जाता है। यह सुपरसोनिक (पराध्वनिक) [[ जेट इंजन |जेट इंजन]] में भी उपयोगी होता है।


[[ खगोल भौतिकी |खगोल भौतिकी]] के भीतर[[ जेट (द्रव) | जेट (द्रव)]] पर समान प्रवाह गुण लागू किए गए हैं।<ref>{{cite book| author= C.J. Clarke and B. Carswell|title=Principles of Astrophysical Fluid Dynamics| url= https://archive.org/details/principlesastrop00clar_804| url-access= limited|edition=1st|pages=[https://archive.org/details/principlesastrop00clar_804/page/n237 226]| publisher=[[Cambridge University Press]]|year=2007|isbn= 978-0-521-85331-6}}</ref>
[[ खगोल भौतिकी |खगोल भौतिकी]] के भीतर[[ जेट (द्रव) | जेट (द्रव)]] पर समान प्रवाह गुण लागू किए गए हैं।<ref>{{cite book| author= C.J. Clarke and B. Carswell|title=Principles of Astrophysical Fluid Dynamics| url= https://archive.org/details/principlesastrop00clar_804| url-access= limited|edition=1st|pages=[https://archive.org/details/principlesastrop00clar_804/page/n237 226]| publisher=[[Cambridge University Press]]|year=2007|isbn= 978-0-521-85331-6}}</ref>
Line 17: Line 17:
== संचालन ==
== संचालन ==


इसका संचालन[[ ध्वनि | सबसोनिक]],[[ मच संख्या |सोनिक]] और[[ पराध्वनिक | सुपरसोनिक(पराध्वनिक)]] गति से बहने वाली गैसों के विभिन्न गुणों पर निर्भर करता है। गैस के सबसोनिक प्रवाह की गति बढ़ जाएगी यदि इसे ले जाने वाला पाइप संकरा हो जाता है क्योंकि द्रव्यमान प्रवाह दर स्थिर है। डी लवल नोजल के माध्यम से गैस का प्रवाह आइसेंट्रोपिक प्रवाह (गैस एन्ट्रॉपी लगभग स्थिर है) है। सबसोनिक प्रवाह में ध्वनि गैस के माध्यम से फैलती है। गले में, जहां क्रॉस-सेक्शनल क्षेत्र अपने न्यूनतम पर है, गैस का वेग स्थानीय रूप से ध्वनि (मच संख्या = 1.0) हो जाता है, एक स्थिति जिसे[[ अवरुद्ध प्रवाह | अवरुद्ध प्रवाह]] कहा जाता है। जैसे-जैसे नोज़ल का क्रॉस-सेक्शनल क्षेत्र बढ़ता है, गैस का विस्तार होना शुरू हो जाता है और गैस का प्रवाह सुपरसोनिक वेगों तक बढ़ जाता है, जहाँ एक ध्वनि तरंग गैस के माध्यम से पीछे की ओर नहीं फैलती है जैसा कि नोज़ल के संदर्भ के फ्रेम में देखा गया है (मैक नंबर> 1.0)। जैसे ही गैस गले से बाहर निकलती है, क्षेत्र में वृद्धि इसके लिए जूल-थॉमसन प्रभाव से गुजरने की अनुमति देती है। जिसमें गैस सुपरसोनिक गति से उच्च से निम्न दबाव तक फैलती है, द्रव्यमान प्रवाह के वेग को ध्वनि गति से परे धकेलती है।
इसका संचालन[[ ध्वनि | सबसोनिक]],[[ मच संख्या |सोनिक]] और[[ पराध्वनिक | सुपरसोनिक(पराध्वनिक)]] गति से बहने वाली गैसों के विभिन्न गुणों पर निर्भर करता है। गैस के सबसोनिक प्रवाह की गति बढ़ जाएगी यदि इसे ले जाने वाला पाइप संकरा हो जाता है क्योंकि द्रव्यमान प्रवाह दर स्थिर है। डी लवल नोजल के माध्यम से गैस का प्रवाह आइसेंट्रोपिक प्रवाह (गैस एन्ट्रॉपी लगभग स्थिर) है। सबसोनिक प्रवाह में ध्वनि गैस के माध्यम से फैलती है। गले में, जहां क्रॉस-सेक्शनल क्षेत्र अपने न्यूनतम पर है, गैस का वेग स्थानीय रूप से ध्वनि (मच संख्या = 1.0) हो जाता है, एक स्थिति जिसे[[ अवरुद्ध प्रवाह | अवरुद्ध प्रवाह]] कहा जाता है। जैसे-जैसे नोज़ल का क्रॉस-सेक्शनल क्षेत्र बढ़ता है, गैस का विस्तार होना प्रारम्भहो जाता है और गैस का प्रवाह सुपरसोनिक वेगों तक बढ़ जाता है, जहाँ एक ध्वनि तरंग गैस के माध्यम से पीछे की ओर नहीं फैलती है जैसा कि नोज़ल के संदर्भ के फ्रेम में देखा गया है (मैक नंबर> 1.0)। जैसे ही गैस गले से बाहर निकलती है, क्षेत्र में वृद्धि इसके लिए जूल-थॉमसन प्रभाव से गुजरने की अनुमति देती है। जिसमें गैस सुपरसोनिक गति से उच्च से निम्न दबाव तक फैलती है, द्रव्यमान प्रवाह के वेग को ध्वनि गति से परे धकेलती है।


रॉकेट और जेट इंजन के बीच नोजल के सामान्य ज्यामितीय आकार की तुलना करते समय, यह केवल पहली नज़र में अलग दिखता है, जब वास्तव में एक ही ज्यामितीय क्रॉस-सेक्शन पर एक ही आवश्यक तथ्य ध्यान देने योग्य होते हैं - कि दहन कक्ष में जेट इंजन में गैस जेट के आउटलेट की दिशा में एक ही गला (संकुचन) होना चाहिए, ताकि जेट टरबाइन के पहले चरण का टरबाइन पहिया हमेशा उस संकीर्णता के ठीक पीछे स्थित हो, जबकि आगे के चरणों में कोई भी टर्बाइन नोजल के बड़े आउटलेट क्रॉस सेक्शन में स्थित हैं, जहां प्रवाह में तेजी आती है।
रॉकेट और जेट इंजन के बीच नोजल के सामान्य ज्यामितीय आकार की तुलना करते समय, यह केवल पहली नज़र में अलग दिखता है, जब वास्तव में एक ही ज्यामितीय क्रॉस-सेक्शन पर एक ही आवश्यक तथ्य ध्यान देने योग्य होते हैं - कि दहन कक्ष में जेट इंजन में गैस जेट के आउटलेट की दिशा में एक ही गला (संकुचन) होना चाहिए, ताकि जेट टरबाइन के पहले चरण का टरबाइन पहिया हमेशा उस संकीर्णता के ठीक पीछे स्थित हो, जबकि आगे के चरणों में कोई भी टर्बाइन नोजल के बड़े आउटलेट क्रॉस सेक्शन में स्थित हैं, जहां प्रवाह में तेजी आती है।
Line 23: Line 23:
== संचालन के लिए शर्तें ==
== संचालन के लिए शर्तें ==


डी लवल नोजल केवल गले में चोक होगा यदि दबाव और द्रव्यमान प्रवाह नोजल के माध्यम से ध्वनि गति तक पहुंचने के लिए पर्याप्त है, अन्यथा कोई सुपरसोनिक प्रवाह प्राप्त नहीं होता है, और यह वेंचुरी ट्यूब के रूप में कार्य करेगा; इसके लिए नोज़ल में प्रवेश दबाव हर समय परिवेश से काफी ऊपर होना आवश्यक है (समतुल्य, जेट का स्थिरीकरण दबाव परिवेश से ऊपर होना चाहिए)।
डी लवल नोजल केवल गले में चोक होगा यदि दबाव और द्रव्यमान प्रवाह नोजल के माध्यम से ध्वनि गति तक पहुंचने के लिए पर्याप्त है, अन्यथा कोई सुपरसोनिक प्रवाह (पराध्वनिक चाल) प्राप्त नहीं होता है, और यह वेंचुरी ट्यूब के रूप में कार्य करेगा; इसके लिए नोज़ल में प्रवेश दबाव हर समय परिवेश से काफी ऊपर होना आवश्यक है (समतुल्य, जेट का स्थिरीकरण दबाव परिवेश से ऊपर होना चाहिए)।


इसके अलावा, नोजल के निकास के विस्तार वाले हिस्से के बाहर निकलने पर गैस का दबाव बहुत कम नहीं होना चाहिए। क्योंकि दबाव सुपरसोनिक प्रवाह के माध्यम से ऊपर की ओर यात्रा नहीं कर सकता है, बाहर निकलने का दबाव उस परिवेश के दबाव से काफी नीचे हो सकता है जिसमें यह निकलता है, लेकिन अगर यह परिवेश से बहुत नीचे है, तो प्रवाह सुपरसोनिक होना बंद हो जाएगा, या प्रवाह भीतर अलग हो जाएगा नोज़ल का विस्तार भाग, एक अस्थिर जेट बनाता है जो नोज़ल के चारों ओर असफल (फ़्लॉप) हो सकता है, एक पार्श्व जोर पैदा कर सकता है और संभवतः इसे नुकसान पहुँचा सकता है।
इसके अलावा, नोजल के निकास के विस्तार वाले हिस्से के बाहर निकलने पर गैस का दबाव बहुत कम नहीं होना चाहिए। क्योंकि दबाव सुपरसोनिक प्रवाह के माध्यम से ऊपर की ओर यात्रा नहीं कर सकता है, बाहर निकलने का दबाव उस परिवेश के दबाव से काफी नीचे हो सकता है जिसमें यह निकलता है, लेकिन अगर यह परिवेश से बहुत नीचे है, तो प्रवाह सुपरसोनिक होना बंद हो जाएगा, या प्रवाह भीतर अलग हो जाएगा नोज़ल का विस्तार भाग, एक अस्थिर जेट बनाता है जो नोज़ल के चारों ओर असफल (फ़्लॉप) हो सकता है, एक पार्श्व जोर पैदा कर सकता है और संभवतः इसे नुकसान पहुँचा सकता है।
Line 31: Line 31:
== डी लवल नोज़ल में गैस प्रवाह का विश्लेषण==
== डी लवल नोज़ल में गैस प्रवाह का विश्लेषण==


डी लवल नोजल के माध्यम से गैस प्रवाह के विश्लेषण में कई अवधारणाएं और धारणाएं शामिल हैं:
डी लवल नोजल के माध्यम से गैस प्रवाह के विश्लेषण में कई अवधारणाएं और धारणाएं सम्मिलित हैं:


* सरलता के लिए गैस को[[ आदर्श गैस | आदर्श गैस]] माना गया है।
* सरलता के लिए गैस को[[ आदर्श गैस | आदर्श गैस]] माना गया है।
Line 41: Line 41:
== निकास गैस वेग ==
== निकास गैस वेग ==


जैसे ही गैस नोजल में प्रवेश करती है, यह ध्वनि वेग की गति से चलती है। क्रॉस-सेक्शनल क्षेत्र अनुबंध के रूप में गैस को तब तक तेज करने के लिए मजबूर किया जाता है जब तक कि नोजल गले में अक्षीय वेग ध्वनि नहीं हो जाता, जहां क्रॉस-सेक्शनल क्षेत्र सबसे छोटा होता है। गले से पार-अनुभागीय क्षेत्र तब बढ़ जाता है, जिससे गैस का विस्तार होता है और अक्षीय वेग उत्तरोत्तर अधिक सुपरसोनिक बन जाता है।
जैसे ही गैस नोजल में प्रवेश करती है, यह ध्वनि वेग की गति से चलती है। क्रॉस-सेक्शनल क्षेत्र अनुबंध के रूप में गैस को तब तक तेज किया जाता है जब तक कि नोजल गले में अक्षीय वेग ध्वनि नहीं हो जाता, जहां क्रॉस-सेक्शनल क्षेत्र सबसे छोटा होता है। गले से पार-अनुभागीय क्षेत्र तब बढ़ जाता है, जिससे गैस का विस्तार होता है और अक्षीय वेग उत्तरोत्तर अधिक सुपरसोनिक बन जाता है।


निम्नलिखित समीकरण का उपयोग करके बाहर निकलने वाली निकास गैसों के रैखिक वेग की गणना की जा सकती है:<ref>{{Cite web |url=http://www.nakka-rocketry.net/th_nozz.html |title=Richard Nakka's Equation 12. |access-date=2008-01-14 |archive-date=2017-07-15 |archive-url=https://web.archive.org/web/20170715044159/http://www.nakka-rocketry.net/th_nozz.html |url-status=live }}</ref><ref>{{Cite web |url=http://www.braeunig.us/space/propuls.htm#intro |title=Robert Braeuning's Equation 1.22. |access-date=2006-04-15 |archive-date=2006-06-12 |archive-url=https://web.archive.org/web/20060612212910/http://www.braeunig.us/space/propuls.htm#intro |url-status=live }}</ref><ref>{{cite book|author=George P. Sutton| title=Rocket Propulsion Elements: An Introduction to the Engineering of Rockets|edition=6th|pages=636| publisher=[[Wiley-Interscience]]|year=1992|isbn=0-471-52938-9}}</ref>
निम्नलिखित समीकरण का उपयोग करके बाहर निकलने वाली निकास गैसों के रैखिक वेग की गणना की जा सकती है:<ref>{{Cite web |url=http://www.nakka-rocketry.net/th_nozz.html |title=Richard Nakka's Equation 12. |access-date=2008-01-14 |archive-date=2017-07-15 |archive-url=https://web.archive.org/web/20170715044159/http://www.nakka-rocketry.net/th_nozz.html |url-status=live }}</ref><ref>{{Cite web |url=http://www.braeunig.us/space/propuls.htm#intro |title=Robert Braeuning's Equation 1.22. |access-date=2006-04-15 |archive-date=2006-06-12 |archive-url=https://web.archive.org/web/20060612212910/http://www.braeunig.us/space/propuls.htm#intro |url-status=live }}</ref><ref>{{cite book|author=George P. Sutton| title=Rocket Propulsion Elements: An Introduction to the Engineering of Rockets|edition=6th|pages=636| publisher=[[Wiley-Interscience]]|year=1992|isbn=0-471-52938-9}}</ref>
Line 52: Line 52:
|-
|-
!align=right|<math>v_e</math>
!align=right|<math>v_e</math>
|align=left|= exhaust velocity at nozzle exit,
|align=left|= नोजल निकास पर निकास वेग,
|-
|-
!align=right|<math>T</math>
!align=right|<math>T</math>
|align=left|= absolute [[temperature]] of inlet gas,
|align=left|= इनलेट गैस का पूर्ण तापमान,
|-
|-
!align=right|<math>R</math>
!align=right|<math>R</math>
|align=left|= [[gas constant|universal gas law constant]],
|align=left|= [[gas constant|सार्वभौमिक गैस नियम स्थिरांक]],
|-
|-
!align=right|<math>M</math>
!align=right|<math>M</math>
|align=left|= the gas [[molecular mass]] (also known as the molecular weight)
|align=left|= गैस आणविक द्रव्यमान (आणविक भार के रूप में भी जाना जाता है)
|-
|-
!align=right|<math>\gamma</math>
!align=right|<math>\gamma</math>
|align=left|= <math>\frac{c_p}{c_v}</math> = [[adiabatic index|isentropic expansion factor]]
|align=left|= <math>\frac{c_p}{c_v}</math> = आइसेंट्रोपिक विस्तार कारक
|-
|-
|
|
|align=left|&emsp; (<math>c_p</math> and <math>c_v</math> are specific heats of the gas at constant pressure and constant volume respectively),
|align=left|&emsp; (<math>c_p</math> और <math>c_v</math> स्थिर ऊष्माऔर स्थिर आयतन पर क्रमशः गैस की विशिष्ट ऊष्मा होती है),
|-
|-
!align=right|<math>p_e</math>  
!align=right|<math>p_e</math>  
|align=left|= [[pressure|absolute pressure]] of exhaust gas at nozzle exit,
|align=left|= नोजल निकास पर निकास गैस का पूर्ण दबाव,
|-
|-
!align=right|<math>p</math>
!align=right|<math>p</math>
|align=left|= absolute pressure of inlet gas.
|align=left|= इनलेट गैस का पूर्ण दबाव.
|}
|}
निकास गैस के वेग ''v''<sub>e</sub> के कुछ विशिष्ट मान विभिन्न प्रणोदकों को जलाने वाले रॉकेट इंजनों के लिए हैं:
निकास गैस के वेग ''v''<sub>e</sub> के कुछ विशिष्ट मान विभिन्न प्रणोदकों को जलाने वाले रॉकेट इंजनों के लिए हैं:
Line 81: Line 81:
* [[ ठोस रॉकेट |ठोस रॉकेट]] के लिए 2,100 से 3,200 मी/से (4,700 से 7,200 मील प्रति घंटा)।
* [[ ठोस रॉकेट |ठोस रॉकेट]] के लिए 2,100 से 3,200 मी/से (4,700 से 7,200 मील प्रति घंटा)।


रुचि के नोट के रूप में, वी<sub>e</sub> कभी-कभी आदर्श निकास गैस वेग के रूप में संदर्भित किया जाता है क्योंकि यह इस धारणा पर आधारित है कि निकास गैस आदर्श गैस के रूप में व्यवहार करती है।
नोट के रूप में, v<sub>e</sub> कभी-कभी आदर्श निकास गैस वेग के रूप में संदर्भित किया जाता है क्योंकि यह इस धारणा पर आधारित है कि निकास गैस आदर्श गैस के रूप में व्यवहार करती है।


उपरोक्त समीकरण का उपयोग करते हुए एक उदाहरण गणना के रूप में, मान लें कि प्रणोदक दहन गैसें हैं: एक पूर्ण दबाव में नोजल पी = 7.0 एमपीए में प्रवेश करना और एक पूर्ण दबाव पी पर रॉकेट निकास से बाहर निकलना ''p''<sub>e</sub> = 0.1 एमपीए; T = 3500 K के पूर्ण तापमान पर; एक आइसेंट्रोपिक विस्तार कारक γ = 1.22 और मोलर द्रव्यमान M = 22 kg/kmol के साथ। उपरोक्त समीकरण में उन मानों का उपयोग करने से निकास वेग प्राप्त होता है ''v''<sub>e</sub> = 2802 मी/से, या 2.80 किमी/सेकंड, जो उपरोक्त विशिष्ट मानों के अनुरूप है।
उपरोक्त समीकरण का उपयोग करते हुए एक उदाहरण गणना के रूप में, मान लें कि प्रणोदक दहन गैसें हैं: एक पूर्ण दबाव में नोजल पी = 7.0 एमपीए में प्रवेश करना और एक पूर्ण दबाव पी पर रॉकेट निकास से बाहर निकलना ''p''<sub>e</sub> = 0.1 एमपीए; T = 3500 K के पूर्ण तापमान पर; एक आइसेंट्रोपिक विस्तार कारक γ = 1.22 और मोलर द्रव्यमान M = 22 kg/kmol के साथ। उपरोक्त समीकरण में उन मानों का उपयोग करने से निकास वेग प्राप्त होता है ''v''<sub>e</sub> = 2802 मी/से, या 2.80 किमी/सेकंड, जो उपरोक्त विशिष्ट मानों के अनुरूप है।


तकनीकी साहित्य अक्सर सार्वभौमिक गैस नियम स्थिरांक R पर ध्यान दिए बिना अदला-बदली करता है, जो गैस नियम स्थिरांक  ''R<sub>s</sub>'' के साथ किसी भी आदर्श गैस पर लागू होता है, जो केवल दाढ़ द्रव्यमान एम के एक विशिष्ट व्यक्तिगत गैस पर लागू होता है। दो स्थिरांक के बीच संबंध आर है ''R<sub>s</sub>'' = ''R/M''।
तकनीकी साहित्य अक्सर सार्वभौमिक गैस नियम स्थिरांक R पर ध्यान दिए बिना अदला-बदली करता है, जो गैस नियम स्थिरांक  ''R<sub>s</sub>'' के साथ किसी भी आदर्श गैस पर लागू होता है, जो केवल दाढ़ द्रव्यमान M के एक विशिष्ट व्यक्तिगत गैस पर लागू होता है। दो स्थिरांक के बीच संबंध है ''R<sub>s</sub>'' = ''R/M''।


== द्रव्यमान प्रवाह दर ==
== द्रव्यमान प्रवाह दर ==
Line 98: Line 98:
|-
|-
!align=right|<math>\dot{m}</math>
!align=right|<math>\dot{m}</math>
|align=left|= mass flow rate,
|align=left|= द्रव्यमान प्रवाह दर,
|-
|-
!align=right|<math>A</math>
!align=right|<math>A</math>
|align=left|= cross-sectional area ,
|align=left|= क्रॉस-सेक्शनल क्षेत्र ,
|-
|-
!align=right|<math>p_t</math>
!align=right|<math>p_t</math>
|align=left|= total pressure,
|align=left|= कुल दबाव,
|-
|-
!align=right|<math>T_t</math>
!align=right|<math>T_t</math>
|align=left|= total temperature,
|align=left|= कुल तापमान,
|-
|-
!align=right|<math>\gamma</math>
!align=right|<math>\gamma</math>
|align=left|= <math>\frac{c_p}{c_v}</math> = [[adiabatic index|isentropic expansion factor]],
|align=left|= <math>\frac{c_p}{c_v}</math> = आइसेंट्रोपिक विस्तार कारक,
|-
|-
!align=right|<math>R</math>
!align=right|<math>R</math>
|align=left|= [[gas constant]],
|align=left|= [[gas constant|गैस स्थिरांक]],
|-
|-
!align=right|<math>\mathrm{Ma}</math>
!align=right|<math>\mathrm{Ma}</math>
|align=left|= [[Mach number]]
|align=left|= [[Mach number|मच संख्या]]
|-
|-
!align=right|<math>M</math>
!align=right|<math>M</math>
|align=left|= the gas [[molecular mass]] (also known as the molecular weight)
|align=left|= गैस आणविक द्रव्यमान (आणविक भार के रूप में भी जाना जाता है)
|}
|}
जब गला ध्वनि गति पर होता है तो Ma = 1 जहां समीकरण सरल हो जाता है:
जब गला ध्वनि गति पर होता है तो Ma = 1 जहां समीकरण सरल हो जाता है:
Line 134: Line 134:
|-
|-
!align=right|<math>F</math>
!align=right|<math>F</math>
|align=left|= force exerted,
|align=left|= बल लगाना,
|-
|-
!align=right|<math>\dot{m}</math>
!align=right|<math>\dot{m}</math>
|align=left|= mass flow rate,
|align=left|= द्रव्यमान प्रवाह दर,
|-
|-
!align=right|<math>v_e</math>
!align=right|<math>v_e</math>
|align=left|= exit velocity at nozzle exit
|align=left|= नोजल निकास पर निकास वेग
|}
|}
वायुगतिकी में, नोज़ल द्वारा लगाए गए बल को थ्रस्ट के रूप में परिभाषित किया जाता है।
वायुगतिकी में, नोज़ल द्वारा लगाए गए बल को थ्रस्ट के रूप में परिभाषित किया जाता है।

Revision as of 18:30, 29 January 2023

तापमान (टी) और दबाव (पी) पर प्रभाव के साथ अनुमानित प्रवाह वेग (वी) दिखाते हुए एक डी लवल नोजल का आरेख

डे लावल नोज़ल (या अभिसारी-अपसारी नोज़ल, सीडी नोज़ल या कोन-डी नोज़ल) एक ट्यूब होती है जिसे बीच में संकुचित (पिंच) किया जाता है, जिससे सावधानीपूर्वक संतुलित, असममित रेत घड़ी (आउर्ग्लैस) आकार बनता है। प्रवाह की ऊष्मीय ऊर्जा को गतिज ऊर्जा में परिवर्तित करके, अक्षीय (जोर) दिशा में सुपरसोनिक गति के लिए एक संपीड़ित तरल पदार्थ को तेज करने के लिए इसका उपयोग किया जाता है। कुछ प्रकार के भाप टर्बाइन और रॉकेट इंजन नोजल में डी लवल नोजल का व्यापक रूप से उपयोग किया जाता है। यह सुपरसोनिक (पराध्वनिक) जेट इंजन में भी उपयोगी होता है।

खगोल भौतिकी के भीतर जेट (द्रव) पर समान प्रवाह गुण लागू किए गए हैं।[1]


इतिहास

जियोवन्नी बतिस्ता वेंटुरी ने चोक (वेंचुरी प्रभाव) के माध्यम से प्रवाहित होने के दौरान द्रव दबाव में कमी के प्रभावों का प्रयोग करने के लिए वेंटुरी ट्यूब के रूप में जानी जाने वाली अभिसारी-विचलन ट्यूबों को डिजाइन किया। माना जाता है कि जर्मन इंजीनियर और आविष्कारक अर्नस्ट कोर्टिंग ने 1878 तक अपने जेट पंप में कनवर्जेंट नोजल का उपयोग करने के बाद एक कनवर्जिंग-डाइवर्जिंग नोजल पर स्विच किया, लेकिन ये नोजल कंपनी के लिए रहस्य बने रहे।[2] बाद में, स्वीडिश इंजीनियर गुस्ताफ डी लवल ने 1888 में अपने वाष्प टरबाइन पर उपयोग के लिए अपने स्वयं के कनवर्जिंग डाइवर्जिंग नोजल डिजाइन को लागू किया।[3][4][5][6]

लावल के अभिसारी-अपसारी नोज़ल को सबसे पहले रॉबर्ट गोडार्ड (वैज्ञानिक) द्वारा रॉकेट इंजन में लगाया गया था। अधिकांश आधुनिक रॉकेट इंजन जो गर्म गैस दहन का उपयोग करते हैं, डी लवल नोजल का उपयोग करते हैं।

संचालन

इसका संचालन सबसोनिक,सोनिक और सुपरसोनिक(पराध्वनिक) गति से बहने वाली गैसों के विभिन्न गुणों पर निर्भर करता है। गैस के सबसोनिक प्रवाह की गति बढ़ जाएगी यदि इसे ले जाने वाला पाइप संकरा हो जाता है क्योंकि द्रव्यमान प्रवाह दर स्थिर है। डी लवल नोजल के माध्यम से गैस का प्रवाह आइसेंट्रोपिक प्रवाह (गैस एन्ट्रॉपी लगभग स्थिर) है। सबसोनिक प्रवाह में ध्वनि गैस के माध्यम से फैलती है। गले में, जहां क्रॉस-सेक्शनल क्षेत्र अपने न्यूनतम पर है, गैस का वेग स्थानीय रूप से ध्वनि (मच संख्या = 1.0) हो जाता है, एक स्थिति जिसे अवरुद्ध प्रवाह कहा जाता है। जैसे-जैसे नोज़ल का क्रॉस-सेक्शनल क्षेत्र बढ़ता है, गैस का विस्तार होना प्रारम्भहो जाता है और गैस का प्रवाह सुपरसोनिक वेगों तक बढ़ जाता है, जहाँ एक ध्वनि तरंग गैस के माध्यम से पीछे की ओर नहीं फैलती है जैसा कि नोज़ल के संदर्भ के फ्रेम में देखा गया है (मैक नंबर> 1.0)। जैसे ही गैस गले से बाहर निकलती है, क्षेत्र में वृद्धि इसके लिए जूल-थॉमसन प्रभाव से गुजरने की अनुमति देती है। जिसमें गैस सुपरसोनिक गति से उच्च से निम्न दबाव तक फैलती है, द्रव्यमान प्रवाह के वेग को ध्वनि गति से परे धकेलती है।

रॉकेट और जेट इंजन के बीच नोजल के सामान्य ज्यामितीय आकार की तुलना करते समय, यह केवल पहली नज़र में अलग दिखता है, जब वास्तव में एक ही ज्यामितीय क्रॉस-सेक्शन पर एक ही आवश्यक तथ्य ध्यान देने योग्य होते हैं - कि दहन कक्ष में जेट इंजन में गैस जेट के आउटलेट की दिशा में एक ही गला (संकुचन) होना चाहिए, ताकि जेट टरबाइन के पहले चरण का टरबाइन पहिया हमेशा उस संकीर्णता के ठीक पीछे स्थित हो, जबकि आगे के चरणों में कोई भी टर्बाइन नोजल के बड़े आउटलेट क्रॉस सेक्शन में स्थित हैं, जहां प्रवाह में तेजी आती है।

संचालन के लिए शर्तें

डी लवल नोजल केवल गले में चोक होगा यदि दबाव और द्रव्यमान प्रवाह नोजल के माध्यम से ध्वनि गति तक पहुंचने के लिए पर्याप्त है, अन्यथा कोई सुपरसोनिक प्रवाह (पराध्वनिक चाल) प्राप्त नहीं होता है, और यह वेंचुरी ट्यूब के रूप में कार्य करेगा; इसके लिए नोज़ल में प्रवेश दबाव हर समय परिवेश से काफी ऊपर होना आवश्यक है (समतुल्य, जेट का स्थिरीकरण दबाव परिवेश से ऊपर होना चाहिए)।

इसके अलावा, नोजल के निकास के विस्तार वाले हिस्से के बाहर निकलने पर गैस का दबाव बहुत कम नहीं होना चाहिए। क्योंकि दबाव सुपरसोनिक प्रवाह के माध्यम से ऊपर की ओर यात्रा नहीं कर सकता है, बाहर निकलने का दबाव उस परिवेश के दबाव से काफी नीचे हो सकता है जिसमें यह निकलता है, लेकिन अगर यह परिवेश से बहुत नीचे है, तो प्रवाह सुपरसोनिक होना बंद हो जाएगा, या प्रवाह भीतर अलग हो जाएगा नोज़ल का विस्तार भाग, एक अस्थिर जेट बनाता है जो नोज़ल के चारों ओर असफल (फ़्लॉप) हो सकता है, एक पार्श्व जोर पैदा कर सकता है और संभवतः इसे नुकसान पहुँचा सकता है।

व्यवहार में, सुपरसोनिक प्रवाह के नोजल छोड़ने के लिए बाहर निकलने पर सुपरसोनिक गैस में परिवेशी दबाव लगभग 2-3 गुना दबाव से अधिक नहीं होना चाहिए।

डी लवल नोज़ल में गैस प्रवाह का विश्लेषण

डी लवल नोजल के माध्यम से गैस प्रवाह के विश्लेषण में कई अवधारणाएं और धारणाएं सम्मिलित हैं:

  • सरलता के लिए गैस को आदर्श गैस माना गया है।
  • गैस प्रवाह आइसेंट्रोपिक है (यानी, निरंतर एन्ट्रॉपी पर) है। नतीजतन, प्रवाह प्रतिवर्ती प्रक्रिया (ऊष्मप्रवैगिकी) (घर्षण रहित और कोई अपव्यय नुकसान नहीं), और एडियाबेटिक प्रक्रिया (यानी, कोई गर्मी प्रणाली में प्रवेश या छोड़ती नहीं है) है।
  • प्रणोदक के जलने की अवधि के दौरान गैस का प्रवाह स्थिर (अर्थात स्थिर अवस्था में) होता है।
  • गैस प्रवाह गैस इनलेट से निकास गैस तक एक सीधी रेखा के साथ है (यानी, समरूपता के नोजल के अक्ष के साथ)
  • गैस प्रवाह व्यवहार संकुचित प्रवाह है क्योंकि प्रवाह बहुत उच्चवेग (मच संख्या> 0.3) पर है।

निकास गैस वेग

जैसे ही गैस नोजल में प्रवेश करती है, यह ध्वनि वेग की गति से चलती है। क्रॉस-सेक्शनल क्षेत्र अनुबंध के रूप में गैस को तब तक तेज किया जाता है जब तक कि नोजल गले में अक्षीय वेग ध्वनि नहीं हो जाता, जहां क्रॉस-सेक्शनल क्षेत्र सबसे छोटा होता है। गले से पार-अनुभागीय क्षेत्र तब बढ़ जाता है, जिससे गैस का विस्तार होता है और अक्षीय वेग उत्तरोत्तर अधिक सुपरसोनिक बन जाता है।

निम्नलिखित समीकरण का उपयोग करके बाहर निकलने वाली निकास गैसों के रैखिक वेग की गणना की जा सकती है:[7][8][9]

जहाँ:  
= नोजल निकास पर निकास वेग,
= इनलेट गैस का पूर्ण तापमान,
= सार्वभौमिक गैस नियम स्थिरांक,
= गैस आणविक द्रव्यमान (आणविक भार के रूप में भी जाना जाता है)
= = आइसेंट्रोपिक विस्तार कारक
  ( और स्थिर ऊष्माऔर स्थिर आयतन पर क्रमशः गैस की विशिष्ट ऊष्मा होती है),
= नोजल निकास पर निकास गैस का पूर्ण दबाव,
= इनलेट गैस का पूर्ण दबाव.

निकास गैस के वेग ve के कुछ विशिष्ट मान विभिन्न प्रणोदकों को जलाने वाले रॉकेट इंजनों के लिए हैं:

नोट के रूप में, ve कभी-कभी आदर्श निकास गैस वेग के रूप में संदर्भित किया जाता है क्योंकि यह इस धारणा पर आधारित है कि निकास गैस आदर्श गैस के रूप में व्यवहार करती है।

उपरोक्त समीकरण का उपयोग करते हुए एक उदाहरण गणना के रूप में, मान लें कि प्रणोदक दहन गैसें हैं: एक पूर्ण दबाव में नोजल पी = 7.0 एमपीए में प्रवेश करना और एक पूर्ण दबाव पी पर रॉकेट निकास से बाहर निकलना pe = 0.1 एमपीए; T = 3500 K के पूर्ण तापमान पर; एक आइसेंट्रोपिक विस्तार कारक γ = 1.22 और मोलर द्रव्यमान M = 22 kg/kmol के साथ। उपरोक्त समीकरण में उन मानों का उपयोग करने से निकास वेग प्राप्त होता है ve = 2802 मी/से, या 2.80 किमी/सेकंड, जो उपरोक्त विशिष्ट मानों के अनुरूप है।

तकनीकी साहित्य अक्सर सार्वभौमिक गैस नियम स्थिरांक R पर ध्यान दिए बिना अदला-बदली करता है, जो गैस नियम स्थिरांक Rs के साथ किसी भी आदर्श गैस पर लागू होता है, जो केवल दाढ़ द्रव्यमान M के एक विशिष्ट व्यक्तिगत गैस पर लागू होता है। दो स्थिरांक के बीच संबंध है Rs = R/M

द्रव्यमान प्रवाह दर

द्रव्यमान के संरक्षण के अनुसार क्रॉस-अनुभागीय क्षेत्र की परवाह किए बिना पूरे नोजल में गैस की द्रव्यमान प्रवाह दर समान होती है।[10]

जहाँ:  
= द्रव्यमान प्रवाह दर,
= क्रॉस-सेक्शनल क्षेत्र ,
= कुल दबाव,
= कुल तापमान,
= = आइसेंट्रोपिक विस्तार कारक,
= गैस स्थिरांक,
= मच संख्या
= गैस आणविक द्रव्यमान (आणविक भार के रूप में भी जाना जाता है)

जब गला ध्वनि गति पर होता है तो Ma = 1 जहां समीकरण सरल हो जाता है:

न्यूटन के गति के तीसरे नियम द्वारा द्रव्यमान प्रवाह दर का उपयोग निष्कासित गैस द्वारा लगाए गए बल को निर्धारित करने के लिए किया जा सकता है:

जहाँ :  
= बल लगाना,
= द्रव्यमान प्रवाह दर,
= नोजल निकास पर निकास वेग

वायुगतिकी में, नोज़ल द्वारा लगाए गए बल को थ्रस्ट के रूप में परिभाषित किया जाता है।

यह भी देखें

संदर्भ

  1. C.J. Clarke and B. Carswell (2007). Principles of Astrophysical Fluid Dynamics (1st ed.). Cambridge University Press. pp. 226. ISBN 978-0-521-85331-6.
  2. Krehl, Peter O. K. (24 September 2008). History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. ISBN 9783540304210. Archived from the original on 10 September 2021. Retrieved 10 September 2021.
  3. See:
    • Belgian patent no. 83,196 (issued: 1888 September 29)
    • English patent no. 7143 (issued: 1889 April 29)
    • de Laval, Carl Gustaf Patrik, "Steam turbine," Archived 2018-01-11 at the Wayback Machine U.S. Patent no. 522,066 (filed: 1889 May 1 ; issued: 1894 June 26)
  4. Theodore Stevens and Henry M. Hobart (1906). Steam Turbine Engineering. MacMillan Company. pp. 24–27. Available on-line here Archived 2014-10-19 at the Wayback Machine in Google Books.
  5. Robert M. Neilson (1903). The Steam Turbine. Longmans, Green, and Company. pp. 102–103. Available on-line here in Google Books.
  6. Garrett Scaife (2000). From Galaxies to Turbines: Science, Technology, and the Parsons Family. Taylor & Francis Group. p. 197. Available on-line here Archived 2014-10-19 at the Wayback Machine in Google Books.
  7. "Richard Nakka's Equation 12". Archived from the original on 2017-07-15. Retrieved 2008-01-14.
  8. "Robert Braeuning's Equation 1.22". Archived from the original on 2006-06-12. Retrieved 2006-04-15.
  9. George P. Sutton (1992). Rocket Propulsion Elements: An Introduction to the Engineering of Rockets (6th ed.). Wiley-Interscience. p. 636. ISBN 0-471-52938-9.
  10. Hall, Nancy. "Mass Flow Choking". NASA. Archived from the original on 8 August 2020. Retrieved 29 May 2020.

बाहरी कड़ियाँ