अपक्षरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Removal of material from an object's surface}} {{distinguish|abrasion (disambiguation)|oblation|ablution (disambiguation){{!}}ablution}} File:Ablation of...")
 
No edit summary
Line 1: Line 1:
{{Short description|Removal of material from an object's surface}}
{{Short description|Removal of material from an object's surface}}
{{distinguish|abrasion (disambiguation)|oblation|ablution (disambiguation){{!}}ablution}}
{{distinguish|abrasion (disambiguation)|oblation|ablution (disambiguation){{!}}ablution}}
[[File:Ablation of quartz glass in a flashtube.jpg|thumb|200px|एक [[flashtube]] में इलेक्ट्रोड के पास पृथक्करण। उच्च-ऊर्जा विद्युत चाप धीरे-धीरे कांच को मिटा देता है, एक पाले सेओढ़ लिया उपस्थिति छोड़ देता है।]]अपक्षरण ({{lang-la|ablatio}} - हटाना) किसी वस्तु से [[वाष्पीकरण]], छिलना, क्षरण प्रक्रियाओं या अन्य तरीकों से किसी वस्तु को हटाना या नष्ट करना है। विभक्ति सामग्री के उदाहरण नीचे वर्णित हैं, और चढ़ाई और वायुमंडलीय पुन: प्रवेश के लिए [[अंतरिक्ष यान]] सामग्री, हिमनद विज्ञान में बर्फ और बर्फ, चिकित्सा में जैविक ऊतक और [[निष्क्रिय अग्नि सुरक्षा]] सामग्री शामिल हैं।
[[File:Ablation of quartz glass in a flashtube.jpg|thumb|200px|एक [[flashtube]] में इलेक्ट्रोड के पास पृथक्करण। उच्च-ऊर्जा विद्युत चाप धीरे-धीरे कांच को मिटा देता है, एक पाले सेओढ़ लिया उपस्थिति छोड़ देता है।]]अपक्षरण ({{lang-la|ablatio}} - हटाना) किसी वस्तु से [[वाष्पीकरण]], छिलना, क्षरण प्रक्रियाओं या अन्य तरीकों से किसी वस्तु को हटाना या नष्ट करना है। विभक्ति सामग्री के उदाहरण नीचे वर्णित हैं, और चढ़ाई और वायुमंडलीय पुन: प्रवेश के लिए [[अंतरिक्ष यान]] सामग्री, हिमनद विज्ञान में बर्फ और बर्फ, चिकित्सा में जैविक ऊतक और [[निष्क्रिय अग्नि सुरक्षा]] सामग्री सम्मलित हैं।


== आर्टिफिशियल इंटेलिजेंस ==
== आर्टिफिशियल इंटेलिजेंस ==
Line 21: Line 21:
जैविक पृथक्करण एक जैविक संरचना या कार्यक्षमता को हटाना है।
जैविक पृथक्करण एक जैविक संरचना या कार्यक्षमता को हटाना है।


जेनेटिक एब्लेशन [[जीन साइलेंसिंग]] के लिए एक और शब्द है, जिसमें जेनेटिक अनुक्रम की जानकारी में परिवर्तन या विलोपन के माध्यम से जीन अभिव्यक्ति को समाप्त कर दिया जाता है। सेल एब्लेशन में, आबादी या संस्कृति में अलग-अलग कोशिकाओं को नष्ट या हटा दिया जाता है। दोनों का उपयोग प्रायोगिक उपकरणों के रूप में किया जा सकता है, जैसा कि फंक्शन-ऑफ-फंक्शन प्रयोगों में होता है।<ref>[http://www.changbioscience.com/res/res/rCellsAblation.htm Cell Ablation definition], Change Bioscience.</ref>
जेनेटिक एब्लेशन [[जीन साइलेंसिंग]] के लिए एक और शब्द है, जिसमें जेनेटिक अनुक्रम की जानकारी में परिवर्तन या विलोपन के माध्यम से जीन अभिव्यक्ति को समाप्त कर दिया जाता है। सेल एब्लेशन में, आबादी या संस्कृति में भिन्न -भिन्न कोशिकाओं को नष्ट या हटा दिया जाता है। दोनों का उपयोग प्रायोगिक उपकरणों के रूप में किया जा सकता है, जैसा कि फंक्शन-ऑफ-फंक्शन प्रयोगों में होता है।<ref>[http://www.changbioscience.com/res/res/rCellsAblation.htm Cell Ablation definition], Change Bioscience.</ref>




Line 29: Line 29:
इलेक्ट्रो-एब्लेशन अत्यधिक प्रतिरोधी ऑक्साइड सतहों के माध्यम से टूट जाता है, जैसे कि टाइटेनियम और अन्य विदेशी धातुओं और मिश्र धातुओं पर पाए जाने वाले गैर-ऑक्सीडित धातु या मिश्र धातु को पिघलाए बिना। यह बहुत तेज सतह परिष्करण की अनुमति देता है
इलेक्ट्रो-एब्लेशन अत्यधिक प्रतिरोधी ऑक्साइड सतहों के माध्यम से टूट जाता है, जैसे कि टाइटेनियम और अन्य विदेशी धातुओं और मिश्र धातुओं पर पाए जाने वाले गैर-ऑक्सीडित धातु या मिश्र धातु को पिघलाए बिना। यह बहुत तेज सतह परिष्करण की अनुमति देता है


यह प्रक्रिया विदेशी और व्यापक रूप से उपयोग की जाने वाली धातुओं और मिश्र धातुओं की एक विस्तृत श्रृंखला के लिए सतह परिष्करण प्रदान करने में सक्षम है, जिनमें शामिल हैं: टाइटेनियम, स्टेनलेस स्टील, नाइओबियम, क्रोमियम-कोबाल्ट, [[Inconel]], एल्यूमीनियम, और व्यापक रूप से उपलब्ध स्टील्स और मिश्र धातुओं की एक श्रृंखला।
यह प्रक्रिया विदेशी और व्यापक रूप से उपयोग की जाने वाली धातुओं और मिश्र धातुओं की एक विस्तृत श्रृंखला के लिए सतह परिष्करण प्रदान करने में सक्षम है, जिनमें सम्मलित हैं: टाइटेनियम, स्टेनलेस स्टील, नाइओबियम, क्रोमियम-कोबाल्ट, [[Inconel]], एल्यूमीनियम, और व्यापक रूप से उपलब्ध स्टील्स और मिश्र धातुओं की एक श्रृंखला।


धातु के वर्कपीस (भागों) पर छिद्रों, घाटियों और छिपी या आंतरिक सतहों में उच्च स्तर की सतह परिष्करण प्राप्त करने के लिए इलेक्ट्रो-एबलेशन बहुत प्रभावी है।
धातु के वर्कपीस (भागों) पर छिद्रों, घाटियों और छिपी या आंतरिक सतहों में उच्च स्तर की सतह परिष्करण प्राप्त करने के लिए इलेक्ट्रो-एबलेशन बहुत प्रभावी है।


प्रक्रिया विशेष रूप से 3डी-मुद्रित धातुओं जैसे योज्य विनिर्माण प्रक्रिया द्वारा उत्पादित घटकों पर लागू होती है। इन घटकों का उत्पादन 5-20 माइक्रोन से अधिक खुरदरापन स्तर के साथ किया जाता है। इलेक्ट्रो-एबलेशन का उपयोग सतह की खुरदरापन को 0.8 माइक्रोन से कम करने के लिए जल्दी से कम करने के लिए किया जा सकता है, जिससे पोस्ट-प्रोसेस को वॉल्यूम प्रोडक्शन सतह फिनिशिंग के लिए इस्तेमाल किया जा सकता है।
प्रक्रिया विशेष रूप से 3डी-मुद्रित धातुओं जैसे योज्य विनिर्माण प्रक्रिया द्वारा उत्पादित घटकों पर लागू होती है। इन घटकों का उत्पादन 5-20 माइक्रोन से अधिक खुरदरापन स्तर के साथ किया जाता है। इलेक्ट्रो-एबलेशन का उपयोग सतह की खुरदरापन को 0.8 माइक्रोन से कम करने के लिए जल्दी से कम करने के लिए किया जा सकता है, जिससे पोस्ट-प्रोसेस को वॉल्यूम प्रोडक्शन सतह फिनिशिंग के लिए उपयोग किया जा सकता है।


== ग्लेशियोलॉजी ==
== ग्लेशियोलॉजी ==
{{further|Ablation zone}}
{{further|Ablation zone}}
हिमनद विज्ञान और मौसम विज्ञान में, पृथक्करण- संचय के विपरीत- उन सभी प्रक्रियाओं को संदर्भित करता है जो हिमनद या हिमक्षेत्र से बर्फ, बर्फ या पानी को हटाते हैं।<ref>Paterson, W. S. B. 1999. ''The Physics of Glaciers''. Tarrytown, N.Y., Pergamon.</ref>{{page needed|date=December 2016}} एबलेशन का तात्पर्य बर्फ या बर्फ के पिघलने से है जो ग्लेशियर से निकलता है, [[वाष्पीकरण]], [[उच्च बनाने की क्रिया (रसायन विज्ञान)]], [[बर्फ का शांत होना]], या हवा से बर्फ को हटाना। हवा का तापमान आमतौर पर अपक्षरण का प्रमुख नियंत्रण होता है, जिसमें वर्षा द्वितीयक नियंत्रण का प्रयोग करती है। अपक्षरण के मौसम के दौरान एक समशीतोष्ण जलवायु में, पृथक्करण दर आमतौर पर लगभग 2 मिमी/घंटा औसत होती है।<ref>{{Cite web |url=http://amsglossary.allenpress.com/glossary/search?p=1&query=ablation&submit=Search |title=''Glossary of Meteorology'' |access-date=2010-07-05 |archive-url=https://web.archive.org/web/20110917232831/http://amsglossary.allenpress.com/glossary/search?p=1&query=ablation&submit=Search |archive-date=2011-09-17 |url-status=dead }}</ref> जहां सौर विकिरण बर्फ के अपक्षरण का प्रमुख कारण है (उदाहरण के लिए, यदि साफ आसमान के नीचे हवा का तापमान कम है), तो बर्फ की सतह पर [[सनकप (बर्फ)]] और पेनीटेंटे (बर्फ का निर्माण) जैसे विशिष्ट अपक्षय बनावट विकसित हो सकते हैं।<ref name=Betterton>{{cite journal | last=Betterton | first=M. D. | title=Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones | journal=Physical Review E | publisher=American Physical Society (APS) | volume=63 | issue=5 | date=2001-04-26 | issn=1063-651X | doi=10.1103/physreve.63.056129 | page=056129| arxiv=physics/0007099 | pmid=11414983| bibcode=2001PhRvE..63e6129B }}</ref>
हिमनद विज्ञान और मौसम विज्ञान में, पृथक्करण- संचय के विपरीत- उन सभी प्रक्रियाओं को संदर्भित करता है जो हिमनद या हिमक्षेत्र से बर्फ, बर्फ या पानी को हटाते हैं।<ref>Paterson, W. S. B. 1999. ''The Physics of Glaciers''. Tarrytown, N.Y., Pergamon.</ref>{{page needed|date=December 2016}} एबलेशन का तात्पर्य बर्फ या बर्फ के पिघलने से है जो ग्लेशियर से निकलता है, [[वाष्पीकरण]], [[उच्च बनाने की क्रिया (रसायन विज्ञान)]], [[बर्फ का शांत होना]], या हवा से बर्फ को हटाना। हवा का तापमान सामान्यतः अपक्षरण का प्रमुख नियंत्रण होता है, जिसमें वर्षा द्वितीयक नियंत्रण का प्रयोग करती है। अपक्षरण के मौसम के दौरान एक समशीतोष्ण जलवायु में, पृथक्करण दर सामान्यतः लगभग 2 मिमी/घंटा औसत होती है।<ref>{{Cite web |url=http://amsglossary.allenpress.com/glossary/search?p=1&query=ablation&submit=Search |title=''Glossary of Meteorology'' |access-date=2010-07-05 |archive-url=https://web.archive.org/web/20110917232831/http://amsglossary.allenpress.com/glossary/search?p=1&query=ablation&submit=Search |archive-date=2011-09-17 |url-status=dead }}</ref> जहां सौर विकिरण बर्फ के अपक्षरण का प्रमुख कारण है (उदाहरण के लिए, यदि साफ आसमान के नीचे हवा का तापमान कम है), तो बर्फ की सतह पर [[सनकप (बर्फ)]] और पेनीटेंटे (बर्फ का निर्माण) जैसे विशिष्ट अपक्षय बनावट विकसित हो सकते हैं।<ref name=Betterton>{{cite journal | last=Betterton | first=M. D. | title=Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones | journal=Physical Review E | publisher=American Physical Society (APS) | volume=63 | issue=5 | date=2001-04-26 | issn=1063-651X | doi=10.1103/physreve.63.056129 | page=056129| arxiv=physics/0007099 | pmid=11414983| bibcode=2001PhRvE..63e6129B }}</ref>
पृथक्करण या तो बर्फ और बर्फ को हटाने की प्रक्रियाओं या बर्फ और बर्फ को हटाने की मात्रा को संदर्भित कर सकता है।
पृथक्करण या तो बर्फ और बर्फ को हटाने की प्रक्रियाओं या बर्फ और बर्फ को हटाने की मात्रा को संदर्भित कर सकता है।


मलबे से ढके ग्लेशियरों को भी पृथक करने की प्रक्रिया को बहुत प्रभावित करने के लिए दिखाया गया है। एक पतली मलबे की परत है जो ग्लेशियरों के शीर्ष पर स्थित हो सकती है जो बर्फ के नीचे पृथक्करण प्रक्रिया को तेज करती है। एक ग्लेशियर के मलबे से ढके हुए हिस्सों को तीन श्रेणियों में बांटा गया है जिसमें बर्फ की चट्टानें, तालाब और मलबे शामिल हैं। ये तीन खंड वैज्ञानिकों को मलबे से ढके क्षेत्र द्वारा पचाने वाली गर्मी को मापने की अनुमति देते हैं और इसकी गणना की जाती है। गणना पूरे मलबे से ढके क्षेत्रों के संबंध में क्षेत्र और शुद्ध अवशोषित गर्मी की मात्रा पर निर्भर करती है। इस प्रकार की गणना विभिन्न ग्लेशियरों के पिघलने के भविष्य के पैटर्न को समझने और उनका विश्लेषण करने के लिए की जाती है।<ref>Sakai, Akiko, et al. "Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas." IAHS PUBLICATION (2000): 119-132.</ref>
मलबे से ढके ग्लेशियरों को भी पृथक करने की प्रक्रिया को बहुत प्रभावित करने के लिए दिखाया गया है। एक पतली मलबे की परत है जो ग्लेशियरों के शीर्ष पर स्थित हो सकती है जो बर्फ के नीचे पृथक्करण प्रक्रिया को तेज करती है। एक ग्लेशियर के मलबे से ढके हुए भागो को तीन श्रेणियों में बांटा गया है जिसमें बर्फ की चट्टानें, तालाब और मलबे सम्मलित हैं। ये तीन खंड वैज्ञानिकों को मलबे से ढके क्षेत्र द्वारा पचाने वाली गर्मी को मापने की अनुमति देते हैं और इसकी गणना की जाती है। गणना पूरे मलबे से ढके क्षेत्रों के संबंध में क्षेत्र और शुद्ध अवशोषित गर्मी की मात्रा पर निर्भर करती है। इस प्रकार की गणना विभिन्न ग्लेशियरों के पिघलने के भविष्य के पैटर्न को समझने और उनका विश्लेषण करने के लिए की जाती है।<ref>Sakai, Akiko, et al. "Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas." IAHS PUBLICATION (2000): 119-132.</ref>
मोराइन (ग्लेशियल मलबे) को प्राकृतिक प्रक्रियाओं द्वारा स्थानांतरित किया जाता है जो ग्लेशियर के शरीर पर सामग्री के ढलान के नीचे की आवाजाही की अनुमति देता है। यह देखा गया है कि यदि किसी हिमनद का ढलान बहुत अधिक है तो मलबा हिमनद के साथ-साथ आगे के स्थान की ओर बढ़ता रहेगा। ग्लेशियरों के आकार और स्थान दुनिया भर में भिन्न होते हैं, इसलिए जलवायु और भौतिक भूगोल के आधार पर मलबे की किस्में भिन्न हो सकती हैं। मलबे का आकार और परिमाण ग्लेशियर के क्षेत्र पर निर्भर है और यह धूल के आकार के टुकड़ों से लेकर एक घर जितना बड़ा हो सकता है।<ref>{{cite journal | last1=Paul | first1=Frank | last2=Huggel | first2=Christian | last3=Kääb | first3=Andreas | title=Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers | journal=Remote Sensing of Environment | publisher=Elsevier BV | volume=89 | issue=4 | year=2004 | issn=0034-4257 | doi=10.1016/j.rse.2003.11.007 | pages=510–518| bibcode=2004RSEnv..89..510P }}</ref>
मोराइन (ग्लेशियल मलबे) को प्राकृतिक प्रक्रियाओं द्वारा स्थानांतरित किया जाता है जो ग्लेशियर के शरीर पर सामग्री के ढलान के नीचे की आवाजाही की अनुमति देता है। यह देखा गया है कि यदि किसी हिमनद का ढलान बहुत अधिक है तो मलबा हिमनद के साथ-साथ आगे के स्थान की ओर बढ़ता रहेगा। ग्लेशियरों के आकार और स्थान दुनिया भर में भिन्न होते हैं, इसलिए जलवायु और भौतिक भूगोल के आधार पर मलबे की किस्में भिन्न हो सकती हैं। मलबे का आकार और परिमाण ग्लेशियर के क्षेत्र पर निर्भर है और यह धूल के आकार के टुकड़ों से लेकर एक घर जितना बड़ा हो सकता है।<ref>{{cite journal | last1=Paul | first1=Frank | last2=Huggel | first2=Christian | last3=Kääb | first3=Andreas | title=Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers | journal=Remote Sensing of Environment | publisher=Elsevier BV | volume=89 | issue=4 | year=2004 | issn=0034-4257 | doi=10.1016/j.rse.2003.11.007 | pages=510–518| bibcode=2004RSEnv..89..510P }}</ref>
ग्लेशियरों की सतह पर मलबे के प्रभाव को प्रदर्शित करने के लिए कई प्रयोग किए गए हैं। [[राष्ट्रीय ध्रुवीय अनुसंधान संस्थान]] के एक प्रोफेसर योशियुकी फ़ूजी ने एक प्रयोग तैयार किया, जिसमें दिखाया गया कि अपस्फीति दर एक पतली मलबे की परत के नीचे तेज हो गई थी और एक प्राकृतिक बर्फ की सतह की तुलना में एक मोटी परत के नीचे मंद हो गई थी।<ref>{{cite journal | last=Fujii | first=Yoshiyuki | title=Field Experiment on Glacier Ablation under a Layer of Debris Cover | journal=Journal of the Japanese Society of Snow and Ice | publisher=Japanese Society of Snow and Ice | volume=39 | issue=Special | year=1977 | issn=0373-1006 | doi=10.5331/seppyo.39.special_20 | pages=20–21|doi-access=free}}</ref> जल संसाधनों की दीर्घकालिक उपलब्धता के महत्व और [[जलवायु परिवर्तन]] के लिए ग्लेशियर की प्रतिक्रिया का आकलन करने के कारण यह विज्ञान महत्वपूर्ण है।<ref>Kayastha, Rijan Bhakta, et al. "Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor." IAHS PUBLICATION 7182 (2000).</ref> ग्लेशियरों के अपक्षरण प्रक्रिया और समग्र अध्ययन के संबंध में किए गए शोध के पीछे प्राकृतिक संसाधनों की उपलब्धता एक प्रमुख ड्राइव है।
ग्लेशियरों की सतह पर मलबे के प्रभाव को प्रदर्शित करने के लिए कई प्रयोग किए गए हैं। [[राष्ट्रीय ध्रुवीय अनुसंधान संस्थान]] के एक प्रोफेसर योशियुकी फ़ूजी ने एक प्रयोग तैयार किया, जिसमें दिखाया गया कि अपस्फीति दर एक पतली मलबे की परत के नीचे तेज हो गई थी और एक प्राकृतिक बर्फ की सतह की तुलना में एक मोटी परत के नीचे मंद हो गई थी।<ref>{{cite journal | last=Fujii | first=Yoshiyuki | title=Field Experiment on Glacier Ablation under a Layer of Debris Cover | journal=Journal of the Japanese Society of Snow and Ice | publisher=Japanese Society of Snow and Ice | volume=39 | issue=Special | year=1977 | issn=0373-1006 | doi=10.5331/seppyo.39.special_20 | pages=20–21|doi-access=free}}</ref> जल संसाधनों की दीर्घकालिक उपलब्धता के महत्व और [[जलवायु परिवर्तन]] के लिए ग्लेशियर की प्रतिक्रिया का आकलन करने के कारण यह विज्ञान महत्वपूर्ण है।<ref>Kayastha, Rijan Bhakta, et al. "Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor." IAHS PUBLICATION 7182 (2000).</ref> ग्लेशियरों के अपक्षरण प्रक्रिया और समग्र अध्ययन के संबंध में किए गए शोध के पीछे प्राकृतिक संसाधनों की उपलब्धता एक प्रमुख ड्राइव है।
Line 56: Line 56:


:<math>\text{Peak power } (\mathrm{W}) = \frac{\text{pulse energy } (\mathrm{J})}{\text{pulse duration } (\mathrm{s})}</math>
:<math>\text{Peak power } (\mathrm{W}) = \frac{\text{pulse energy } (\mathrm{J})}{\text{pulse duration } (\mathrm{s})}</math>
एक [[एक्साइमर लेजर]] सिस्टम ([[LASIK]] और [[LASEK]]) का उपयोग करते हुए, कई प्रकार की आंखों की [[अपवर्तक सर्जरी]] के लिए [[कॉर्निया]] का सतही पृथक्करण अब आम है। चूंकि कॉर्निया वापस नहीं बढ़ता है, लेजर का उपयोग [[अपवर्तन]] त्रुटियों को ठीक करने के लिए कॉर्निया अपवर्तन गुणों को फिर से तैयार करने के लिए किया जाता है, जैसे [[दृष्टिवैषम्य (आंख)]], [[निकट दृष्टि दोष]] और [[पास का साफ़-साफ़ न दिखना]]। [[एंडोमेट्रियल एब्लेशन]] नामक प्रक्रिया में मासिक धर्म और [[ग्रंथिपेश्यर्बुदता]] की समस्याओं वाली महिलाओं में [[गर्भाशय]] की दीवार के हिस्से को हटाने के लिए लेजर एब्लेशन का भी उपयोग किया जाता है।
एक [[एक्साइमर लेजर]] सिस्टम ([[LASIK]] और [[LASEK]]) का उपयोग करते हुए, कई प्रकार की आंखों की [[अपवर्तक सर्जरी]] के लिए [[कॉर्निया]] का सतही पृथक्करण अब सामान्य है। चूंकि कॉर्निया वापस नहीं बढ़ता है, लेजर का उपयोग [[अपवर्तन]] त्रुटियों को ठीक करने के लिए कॉर्निया अपवर्तन गुणों को फिर से तैयार करने के लिए किया जाता है, जैसे [[दृष्टिवैषम्य (आंख)]], [[निकट दृष्टि दोष]] और [[पास का साफ़-साफ़ न दिखना]]। [[एंडोमेट्रियल एब्लेशन]] नामक प्रक्रिया में मासिक धर्म और [[ग्रंथिपेश्यर्बुदता]] की समस्याओं वाली महिलाओं में [[गर्भाशय]] की दीवार के हिस्से को हटाने के लिए लेजर एब्लेशन का भी उपयोग किया जाता है।


हाल ही में, शोधकर्ताओं ने अल्ट्रा-शॉर्ट पल्स डायोड लेजर स्रोत से केंद्रित लेजर बीम का उपयोग करके आसपास के स्वस्थ ऊतकों को कम से कम थर्मल क्षति के साथ उपसतह ट्यूमर को समाप्त करने के लिए एक सफल तकनीक का प्रदर्शन किया है।<ref>{{cite journal | last1=Yousef Sajjadi | first1=Amir | last2=Mitra | first2=Kunal | last3=Grace | first3=Michael | title=Ablation of subsurface tumors using an ultra-short pulse laser | journal=Optics and Lasers in Engineering | publisher=Elsevier BV | volume=49 | issue=3 | year=2011 | issn=0143-8166 | doi=10.1016/j.optlaseng.2010.11.020 | pages=451–456| bibcode=2011OptLE..49..451Y }}</ref>
हाल ही में, शोधकर्ताओं ने अल्ट्रा-शॉर्ट पल्स डायोड लेजर स्रोत से केंद्रित लेजर बीम का उपयोग करके आसपास के स्वस्थ ऊतकों को कम से कम थर्मल क्षति के साथ उपसतह ट्यूमर को समाप्त करने के लिए एक सफल तकनीक का प्रदर्शन किया है।<ref>{{cite journal | last1=Yousef Sajjadi | first1=Amir | last2=Mitra | first2=Kunal | last3=Grace | first3=Michael | title=Ablation of subsurface tumors using an ultra-short pulse laser | journal=Optics and Lasers in Engineering | publisher=Elsevier BV | volume=49 | issue=3 | year=2011 | issn=0143-8166 | doi=10.1016/j.optlaseng.2010.11.020 | pages=451–456| bibcode=2011OptLE..49..451Y }}</ref>
Line 62: Line 62:


== समुद्री सतह कोटिंग्स ==
== समुद्री सतह कोटिंग्स ==
बायोफ्यूलिंग#गंदगी रोधी पेंट और अन्य संबंधित कोटिंग्स का नियमित रूप से [[सूक्ष्मजीवों]] और अन्य जानवरों के निर्माण को रोकने के लिए उपयोग किया जाता है, जैसे मनोरंजक, वाणिज्यिक और सैन्य समुद्री जहाजों की निचली पतवार सतहों के लिए [[थकानेवाला]]। इस उद्देश्य के लिए अक्सर एब्लेटिव पेंट्स का उपयोग किया जाता है ताकि एंटीफ्लिंग एजेंट के कमजोर पड़ने या निष्क्रिय होने से बचा जा सके। समय के साथ, पेंट धीरे-धीरे पानी में विघटित हो जाएगा, सतह पर ताजा एंटीफ्लिंग यौगिकों को उजागर करेगा। गन्दगी रोधी एजेंटों की इंजीनियरिंग और पृथक्करण दर जैव-दूषण के घातक प्रभावों से लंबे समय तक सुरक्षा प्रदान कर सकते हैं।
बायोफ्यूलिंग#गंदगी रोधी पेंट और अन्य संबंधित कोटिंग्स का नियमित रूप से [[सूक्ष्मजीवों]] और अन्य जानवरों के निर्माण को रोकने के लिए उपयोग किया जाता है, जैसे मनोरंजक, वाणिज्यिक और सैन्य समुद्री जहाजों की निचली पतवार सतहों के लिए [[थकानेवाला]]। इस उद्देश्य के लिए अधिकांशतः एब्लेटिव पेंट्स का उपयोग किया जाता है ताकि एंटीफ्लिंग एजेंट के कमजोर पड़ने या निष्क्रिय होने से बचा जा सके। समय के साथ, पेंट धीरे-धीरे पानी में विघटित हो जाएगा, सतह पर ताजा एंटीफ्लिंग यौगिकों को उजागर करेगा। गन्दगी रोधी एजेंटों की इंजीनियरिंग और पृथक्करण दर जैव-दूषण के घातक प्रभावों से लंबे समय तक सुरक्षा प्रदान कर सकते हैं।


== चिकित्सा में ==
== चिकित्सा में ==


चिकित्सा में, पृथक्करण आमतौर पर शल्य चिकित्सा द्वारा [[जैविक ऊतक]] के एक हिस्से को हटाना है। [[त्वचा]] का सरफेस एब्लेशन ([[तिल]], जिसे रिसर्फेसिंग भी कहा जाता है क्योंकि यह [[पुनर्जनन (जीव विज्ञान)]] को प्रेरित करता है) को [[लेज़र]]ों (लेज़र एब्लेशन), फ्रीज़िंग ([[क्रायोब्लेशन]]), या बिजली ([[फुलगुरेशन]]) द्वारा रसायनों (कीमोब्लेशन) द्वारा किया जा सकता है। इसका उद्देश्य त्वचा के धब्बे, बढ़ती उम्र, झुर्रियां दूर करना है, इस प्रकार यह कायाकल्प ([[उम्र बढ़ने]]) करता है। कई प्रकार की [[ऑपरेशन]] के लिए [[ओटोलर्यनोलोजी]] में सरफेस एब्लेशन का भी उपयोग किया जाता है, जैसे कि [[खर्राटों]] के लिए। [[रेडियो आवृति पृथककरण]] (RFA) न्यूनतम इनवेसिव प्रक्रियाओं के माध्यम से शरीर के भीतर से असामान्य ऊतक को हटाने की एक विधि है, इसका उपयोग विभिन्न प्रकार के कार्डियक अतालता जैसे कि सुप्रा[[वेंट्रीकुलर टेचिकार्डिया]], वोल्फ-पार्किंसंस-व्हाइट सिंड्रोम (WPW), वेंट्रिकुलर टैचीकार्डिया, और को ठीक करने के लिए किया जाता है। हाल ही में आलिंद फिब्रिलेशन के प्रबंधन के रूप में। इस शब्द का प्रयोग अक्सर लेज़र एब्लेशन के संदर्भ में किया जाता है, एक ऐसी प्रक्रिया जिसमें लेज़र सामग्री के [[सहसंयोजक बंधन]] को भंग कर देता है। ऊतकों को अलग करने के लिए एक लेजर के लिए, शक्ति घनत्व या प्रवाह उच्च होना चाहिए, अन्यथा थर्मोकोएग्यूलेशन होता है, जो कि ऊतकों का थर्मल वाष्पीकरण है।
चिकित्सा में, पृथक्करण सामान्यतः शल्य चिकित्सा द्वारा [[जैविक ऊतक]] के एक हिस्से को हटाना है। [[त्वचा]] का सरफेस एब्लेशन ([[तिल]], जिसे रिसर्फेसिंग भी कहा जाता है क्योंकि यह [[पुनर्जनन (जीव विज्ञान)]] को प्रेरित करता है) को [[लेज़र]]ों (लेज़र एब्लेशन), फ्रीज़िंग ([[क्रायोब्लेशन]]), या बिजली ([[फुलगुरेशन]]) द्वारा रसायनों (कीमोब्लेशन) द्वारा किया जा सकता है। इसका उद्देश्य त्वचा के धब्बे, बढ़ती उम्र, झुर्रियां दूर करना है, इस प्रकार यह कायाकल्प ([[उम्र बढ़ने]]) करता है। कई प्रकार की [[ऑपरेशन]] के लिए [[ओटोलर्यनोलोजी]] में सरफेस एब्लेशन का भी उपयोग किया जाता है, जैसे कि [[खर्राटों]] के लिए। [[रेडियो आवृति पृथककरण]] (RFA) न्यूनतम इनवेसिव प्रक्रियाओं के माध्यम से शरीर के भीतर से असामान्य ऊतक को हटाने की एक विधि है, इसका उपयोग विभिन्न प्रकार के कार्डियक अतालता जैसे कि सुप्रा[[वेंट्रीकुलर टेचिकार्डिया]], वोल्फ-पार्किंसंस-व्हाइट सिंड्रोम (WPW), वेंट्रिकुलर टैचीकार्डिया, और को ठीक करने के लिए किया जाता है। हाल ही में आलिंद फिब्रिलेशन के प्रबंधन के रूप में। इस शब्द का प्रयोग अधिकांशतः लेज़र एब्लेशन के संदर्भ में किया जाता है, एक ऐसी प्रक्रिया जिसमें लेज़र सामग्री के [[सहसंयोजक बंधन]] को भंग कर देता है। ऊतकों को भिन्न करने के लिए एक लेजर के लिए, शक्ति घनत्व या प्रवाह उच्च होना चाहिए, अन्यथा थर्मोकोएग्यूलेशन होता है, जो कि ऊतकों का थर्मल वाष्पीकरण है।


रोटब्लेशन एक प्रकार की धमनी सफाई है जिसमें फैटी जमा या पट्टिका को हटाने के लिए [[प्रभाव]]ित धमनी में एक छोटा, हीरा-टिप वाला, ड्रिल जैसा उपकरण डाला जाता है। रक्त प्रवाह को बहाल करने के लिए कोरोनरी हृदय रोग के उपचार में प्रक्रिया का उपयोग किया जाता है।
रोटब्लेशन एक प्रकार की धमनी सफाई है जिसमें फैटी जमा या पट्टिका को हटाने के लिए [[प्रभाव]]ित धमनी में एक छोटा, हीरा-टिप वाला, ड्रिल जैसा उपकरण डाला जाता है। रक्त प्रवाह को बहाल करने के लिए कोरोनरी हृदय रोग के उपचार में प्रक्रिया का उपयोग किया जाता है।
Line 74: Line 74:
[[उच्च तीव्रता केंद्रित अल्ट्रासाउंड]] | हाई-इंटेंसिटी फोकस्ड अल्ट्रासाउंड (एचआईएफयू) एब्लेशन शरीर के भीतर से ऊतक को गैर-आक्रामक रूप से हटा देता है।
[[उच्च तीव्रता केंद्रित अल्ट्रासाउंड]] | हाई-इंटेंसिटी फोकस्ड अल्ट्रासाउंड (एचआईएफयू) एब्लेशन शरीर के भीतर से ऊतक को गैर-आक्रामक रूप से हटा देता है।


बोन मैरो एब्लेशन एक ऐसी प्रक्रिया है जिसमें [[अस्थि मज्जा]] प्रत्यारोपण की तैयारी में मानव अस्थि मज्जा कोशिकाओं को समाप्त कर दिया जाता है। यह उच्च तीव्रता [[कीमोथेरपी]] और [[कुल शरीर विकिरण]] का उपयोग करके किया जाता है। इस प्रकार, इस लेख के बाकी हिस्सों में वर्णित वाष्पीकरण तकनीकों से इसका कोई लेना-देना नहीं है।
बोन मैरो एब्लेशन एक ऐसी प्रक्रिया है जिसमें [[अस्थि मज्जा]] प्रत्यारोपण की तैयारी में मानव अस्थि मज्जा कोशिकाओं को समाप्त कर दिया जाता है। यह उच्च तीव्रता [[कीमोथेरपी]] और [[कुल शरीर विकिरण]] का उपयोग करके किया जाता है। इस प्रकार, इस लेख के बाकी भागो में वर्णित वाष्पीकरण तकनीकों से इसका कोई लेना-देना नहीं है।


[[एब्लेटिव ब्रेन सर्जरी]] का उपयोग कुछ न्यूरोलॉजिकल विकारों, विशेष रूप से पार्किंसंस रोग और कभी-कभी मानसिक विकारों के इलाज के लिए भी किया जाता है।
[[एब्लेटिव ब्रेन सर्जरी]] का उपयोग कुछ न्यूरोलॉजिकल विकारों, विशेष रूप से पार्किंसंस रोग और कभी-कभी मानसिक विकारों के इलाज के लिए भी किया जाता है।
Line 83: Line 83:
== निष्क्रिय अग्नि सुरक्षा ==
== निष्क्रिय अग्नि सुरक्षा ==
[[आग को रोकने वाला]]िंग और [[पोस्टर]] उत्पाद प्रकृति में अपवर्तक हो सकते हैं। इसका मतलब [[एन्दोठेर्मिक]] सामग्री, या केवल ऐसी सामग्री हो सकती है जो बलिदान हैं और समय के साथ [[आग]] के संपर्क में आने पर खर्च हो जाती हैं, जैसे कि [[सिलिकॉन]] फायरस्टॉप उत्पाद।
[[आग को रोकने वाला]]िंग और [[पोस्टर]] उत्पाद प्रकृति में अपवर्तक हो सकते हैं। इसका मतलब [[एन्दोठेर्मिक]] सामग्री, या केवल ऐसी सामग्री हो सकती है जो बलिदान हैं और समय के साथ [[आग]] के संपर्क में आने पर खर्च हो जाती हैं, जैसे कि [[सिलिकॉन]] फायरस्टॉप उत्पाद।
आग या गर्मी की स्थिति में पर्याप्त समय दिए जाने पर, ये उत्पाद जल जाते हैं, उखड़ जाते हैं और गायब हो जाते हैं। विचार यह है कि इस सामग्री को आग के रास्ते में पर्याप्त मात्रा में रखा जाए ताकि अग्नि-प्रतिरोध रेटिंग का एक स्तर बनाए रखा जा सके, जैसा कि अग्नि परीक्षण में दिखाया गया है। विभक्ति सामग्री में आमतौर पर कार्बनिक पदार्थों की एक बड़ी मात्रा होती है{{Citation needed|date=September 2008}} जो आग से जलकर राख हो जाता है। सिलिकॉन के मामले में, कार्बनिक [[रबड़]] बहुत सूक्ष्मता से विभाजित [[सिलिका]] [[धूल]] (इस धूल के प्रति ग्राम सभी धूल कणों के संयुक्त सतह क्षेत्र के 380 वर्ग मीटर तक) को घेरता है।{{Citation needed|date=September 2008}}). जब जैविक रबर को आग के संपर्क में लाया जाता है, तो यह राख में जल जाता है और सिलिका धूल को पीछे छोड़ देता है जिससे उत्पाद शुरू हुआ।
आग या गर्मी की स्थिति में पर्याप्त समय दिए जाने पर, ये उत्पाद जल जाते हैं, उखड़ जाते हैं और गायब हो जाते हैं। विचार यह है कि इस सामग्री को आग के रास्ते में पर्याप्त मात्रा में रखा जाए ताकि अग्नि-प्रतिरोध रेटिंग का एक स्तर बनाए रखा जा सके, जैसा कि अग्नि परीक्षण में दिखाया गया है। विभक्ति सामग्री में सामान्यतः कार्बनिक पदार्थों की एक बड़ी मात्रा होती है{{Citation needed|date=September 2008}} जो आग से जलकर राख हो जाता है। सिलिकॉन के मामले में, कार्बनिक [[रबड़]] बहुत सूक्ष्मता से विभाजित [[सिलिका]] [[धूल]] (इस धूल के प्रति ग्राम सभी धूल कणों के संयुक्त सतह क्षेत्र के 380 वर्ग मीटर तक) को घेरता है।{{Citation needed|date=September 2008}}). जब जैविक रबर को आग के संपर्क में लाया जाता है, तो यह राख में जल जाता है और सिलिका धूल को पीछे छोड़ देता है जिससे उत्पाद शुरू हुआ।


== [[[[पुरातन-[[ग्रह]]]]री डिस्क]] एब्लेशन ==
== [[[[पुरातन-[[ग्रह]]]]री डिस्क]] एब्लेशन ==
प्रोटोप्लेनेटरी डिस्क तारकीय विकास के चारों ओर घनी गैस और धूल की [[सर्कमस्टेलर डिस्क]] को घुमा रही है। युवा, नवगठित सितारे। तारे के बनने के कुछ ही समय बाद, सितारों के पास अक्सर आसपास की सामग्री बची रहती है जो अभी भी उनके लिए गुरुत्वाकर्षण से बंधी होती है, जो आदिम डिस्क बनाती है जो तारे के भूमध्य रेखा के चारों ओर परिक्रमा करती है - [[शनि के छल्ले]] से बहुत भिन्न नहीं। ऐसा इसलिए होता है क्योंकि गठन के दौरान [[प्रोटोस्टार]] सामग्री की त्रिज्या में कमी से [[कोणीय गति]] बढ़ जाती है, जिसका अर्थ है कि यह शेष सामग्री तारे के चारों ओर एक चपटी परिस्थितिजन्य डिस्क में मार दी जाती है। यह सर्कमस्टेलर डिस्क अंततः परिपक्व हो सकती है जिसे प्रोटोप्लेनेटरी डिस्क के रूप में संदर्भित किया जाता है: गैस, धूल, बर्फ और अन्य सामग्रियों की एक डिस्क जिससे [[ग्रह प्रणाली]] बन सकती है। इन डिस्कों में, धूल के दानों और बर्फ के एक साथ चिपके रहने से डिस्क के ठंडे मध्य-तल में परिक्रमा करने वाला पदार्थ जमा होने लगता है। ये छोटे अभिवृद्धि कंकड़ से चट्टानों से प्रारंभिक शिशु ग्रहों तक बढ़ते हैं, जिन्हें [[ग्रहाणु]] कहा जाता है, फिर प्रोटोप्लैनेट, और अंत में, पूर्ण ग्रह।<ref>{{Cite journal|last=Sheehan|first=Patrick|date=October 2020|title=Early onset of planet formation observed in a nascent star system|journal=Nature|language=en|volume=586|issue=7828|pages=205–206|doi=10.1038/d41586-020-02748-w|pmid=33029003|bibcode=2020Natur.586..205S |doi-access=free}}</ref>
प्रोटोप्लेनेटरी डिस्क तारकीय विकास के चारों ओर घनी गैस और धूल की [[सर्कमस्टेलर डिस्क]] को घुमा रही है। युवा, नवगठित सितारे। तारे के बनने के कुछ ही समय बाद, सितारों के पास अधिकांशतः आसपास की सामग्री बची रहती है जो अभी भी उनके लिए गुरुत्वाकर्षण से बंधी होती है, जो आदिम डिस्क बनाती है जो तारे के भूमध्य रेखा के चारों ओर परिक्रमा करती है - [[शनि के छल्ले]] से बहुत भिन्न नहीं। ऐसा इसलिए होता है क्योंकि गठन के दौरान [[प्रोटोस्टार]] सामग्री की त्रिज्या में कमी से [[कोणीय गति]] बढ़ जाती है, जिसका अर्थ है कि यह शेष सामग्री तारे के चारों ओर एक चपटी परिस्थितिजन्य डिस्क में मार दी जाती है। यह सर्कमस्टेलर डिस्क अंततः परिपक्व हो सकती है जिसे प्रोटोप्लेनेटरी डिस्क के रूप में संदर्भित किया जाता है: गैस, धूल, बर्फ और अन्य सामग्रियों की एक डिस्क जिससे [[ग्रह प्रणाली]] बन सकती है। इन डिस्कों में, धूल के दानों और बर्फ के एक साथ चिपके रहने से डिस्क के ठंडे मध्य-तल में परिक्रमा करने वाला पदार्थ जमा होने लगता है। ये छोटे अभिवृद्धि कंकड़ से चट्टानों से प्रारंभिक शिशु ग्रहों तक बढ़ते हैं, जिन्हें [[ग्रहाणु]] कहा जाता है, फिर प्रोटोप्लैनेट, और अंत में, पूर्ण ग्रह।<ref>{{Cite journal|last=Sheehan|first=Patrick|date=October 2020|title=Early onset of planet formation observed in a nascent star system|journal=Nature|language=en|volume=586|issue=7828|pages=205–206|doi=10.1038/d41586-020-02748-w|pmid=33029003|bibcode=2020Natur.586..205S |doi-access=free}}</ref>
जैसा कि यह माना जाता है कि सबसे बड़े सितारों की सूची सक्रिय रूप से स्टार गठन को ट्रिगर करने में भूमिका निभा सकती है (अन्य कारकों के बीच गुरुत्वाकर्षण अस्थिरता को शुरू करके),<ref>{{Cite journal|last1=Lee|first1=Hsu-Tai|last2=Chen|first2=W. P.|date=10 March 2007|title=Triggered Star Formation by Massive Stars|url=https://iopscience.iop.org/article/10.1086/510893/meta|journal=The Astrophysical Journal|language=en|volume=657|issue=2|pages=884|doi=10.1086/510893|arxiv=astro-ph/0509315|bibcode=2007ApJ...657..884L |s2cid=18844691|issn=0004-637X}}</ref> यह प्रशंसनीय है कि युवा, डिस्क वाले छोटे सितारे पुराने, अधिक विशाल सितारों के अपेक्षाकृत निकट रह सकते हैं। कुछ [[स्टार क्लस्टर]] में मामला होने के लिए अवलोकन के माध्यम से इसकी पुष्टि पहले ही की जा चुकी है, उदा। [[ट्रेपेज़ियम क्लस्टर]] में।<ref>{{Cite journal|last1=McCaughrean|first1=Mark J.|last2=O'dell|first2=C. Robert|date=May 1996|title=Direct Imaging of Circumstellar Disks in the Orion Nebula|url=http://adsabs.harvard.edu/cgi-bin/bib_query?1996AJ....111.1977M|journal=The Astronomical Journal|volume=111|pages=1977|doi=10.1086/117934|bibcode=1996AJ....111.1977M|s2cid=122335780 }}</ref> चूंकि बड़े सितारे अपने जीवन के अंत में [[सुपरनोवा]] के माध्यम से ढहते हैं, अनुसंधान अब जांच कर रहा है कि इस तरह के विस्फोट की [[शॉक वेव]] और परिणामी [[सुपरनोवा अवशेष]] (एसएनआर) क्या भूमिका निभाते हैं, अगर यह आग की रेखा में होता है प्रोटोप्लानेटरी डिस्क। कम्प्यूटेशनल रूप से तैयार किए गए सिमुलेशन के अनुसार, एक प्रोटोप्लेनेटरी डिस्क पर हमला करने वाले एक एसएनआर के परिणामस्वरूप डिस्क का महत्वपूर्ण अपघटन होगा, और यह अपघटन डिस्क से महत्वपूर्ण मात्रा में प्रोटोप्लानेटरी सामग्री को छीन लेगा - लेकिन जरूरी नहीं कि डिस्क पूरी तरह से नष्ट हो जाए।<ref>{{Cite journal|last1=Close|first1=J. L.|last2=Pittard|first2=J. M.|date=July 2017|title=Hydrodynamic ablation of protoplanetary discs via supernovae|url=https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stx897|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=469|issue=1|pages=1117–1130|doi=10.1093/mnras/stx897|arxiv=1704.06308|s2cid=119262203|issn=0035-8711}}</ref> यह एक महत्वपूर्ण बिंदु है क्योंकि एक डिस्क जो एक ग्रह प्रणाली बनाने के लिए पर्याप्त सामग्री बचे हुए के साथ इस तरह की बातचीत से बचती है, एसएनआर से एक परिवर्तित [[Astrochemistry]] प्राप्त कर सकती है, जो बाद में बनने वाली ग्रह प्रणालियों पर प्रभाव डाल सकती है।
जैसा कि यह माना जाता है कि सबसे बड़े सितारों की सूची सक्रिय रूप से स्टार गठन को ट्रिगर करने में भूमिका निभा सकती है (अन्य कारकों के बीच गुरुत्वाकर्षण अस्थिरता को शुरू करके),<ref>{{Cite journal|last1=Lee|first1=Hsu-Tai|last2=Chen|first2=W. P.|date=10 March 2007|title=Triggered Star Formation by Massive Stars|url=https://iopscience.iop.org/article/10.1086/510893/meta|journal=The Astrophysical Journal|language=en|volume=657|issue=2|pages=884|doi=10.1086/510893|arxiv=astro-ph/0509315|bibcode=2007ApJ...657..884L |s2cid=18844691|issn=0004-637X}}</ref> यह प्रशंसनीय है कि युवा, डिस्क वाले छोटे सितारे पुराने, अधिक विशाल सितारों के अपेक्षाकृत निकट रह सकते हैं। कुछ [[स्टार क्लस्टर]] में स्थिति होने के लिए अवलोकन के माध्यम से इसकी पुष्टि पहले ही की जा चुकी है, उदा। [[ट्रेपेज़ियम क्लस्टर]] में।<ref>{{Cite journal|last1=McCaughrean|first1=Mark J.|last2=O'dell|first2=C. Robert|date=May 1996|title=Direct Imaging of Circumstellar Disks in the Orion Nebula|url=http://adsabs.harvard.edu/cgi-bin/bib_query?1996AJ....111.1977M|journal=The Astronomical Journal|volume=111|pages=1977|doi=10.1086/117934|bibcode=1996AJ....111.1977M|s2cid=122335780 }}</ref> चूंकि बड़े सितारे अपने जीवन के अंत में [[सुपरनोवा]] के माध्यम से ढहते हैं, अनुसंधान अब जांच कर रहा है कि इस प्रकार के विस्फोट की [[शॉक वेव]] और परिणामी [[सुपरनोवा अवशेष]] (एसएनआर) क्या भूमिका निभाते हैं, यदि यह आग की रेखा में होता है प्रोटोप्लानेटरी डिस्क। कम्प्यूटेशनल रूप से तैयार किए गए सिमुलेशन के अनुसार, एक प्रोटोप्लेनेटरी डिस्क पर हमला करने वाले एक एसएनआर के परिणामस्वरूप डिस्क का महत्वपूर्ण अपघटन होगा, और यह अपघटन डिस्क से महत्वपूर्ण मात्रा में प्रोटोप्लानेटरी सामग्री को छीन लेगा - लेकिन जरूरी नहीं कि डिस्क पूरी प्रकार से नष्ट हो जाए।<ref>{{Cite journal|last1=Close|first1=J. L.|last2=Pittard|first2=J. M.|date=July 2017|title=Hydrodynamic ablation of protoplanetary discs via supernovae|url=https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stx897|journal=Monthly Notices of the Royal Astronomical Society|language=en|volume=469|issue=1|pages=1117–1130|doi=10.1093/mnras/stx897|arxiv=1704.06308|s2cid=119262203|issn=0035-8711}}</ref> यह एक महत्वपूर्ण बिंदु है क्योंकि एक डिस्क जो एक ग्रह प्रणाली बनाने के लिए पर्याप्त सामग्री बचे हुए के साथ इस प्रकार की बातचीत से बचती है, एसएनआर से एक परिवर्तित [[Astrochemistry]] प्राप्त कर सकती है, जो बाद में बनने वाली ग्रह प्रणालियों पर प्रभाव डाल सकती है।


== स्पेसफ्लाइट ==
== स्पेसफ्लाइट ==
{{main article|atmospheric reentry#Ablative}}
{{main article|atmospheric reentry#Ablative}}
अंतरिक्ष यान के डिजाइन में, यांत्रिक भागों और/या पेलोड को ठंडा और संरक्षित करने के लिए पृथक्करण का उपयोग किया जाता है जो अन्यथा अत्यधिक उच्च तापमान से क्षतिग्रस्त हो जाएगा। अंतरिक्ष से वायुमंडल में प्रवेश करने वाले अंतरिक्ष यान के लिए [[गर्म ढाल]] और [[रॉकेट इंजन]] नोजल को ठंडा करने के लिए दो प्रमुख अनुप्रयोग हैं। उदाहरणों में अपोलो कमांड/सर्विस मॉड्यूल शामिल है जो अंतरिक्ष यात्रियों को वायुमंडलीय रीएंट्री की [[गर्मी]] से बचाता है और Kestrel (रॉकेट इंजन) [[मल्टीस्टेज रॉकेट]] रॉकेट इंजन बाहरी अंतरिक्ष # पर्यावरण के [[वातावरण]] में विशेष उपयोग के लिए डिज़ाइन किया गया है क्योंकि कोई संवहन संभव नहीं है।
अंतरिक्ष यान के डिजाइन में, यांत्रिक भागों और/या पेलोड को ठंडा और संरक्षित करने के लिए पृथक्करण का उपयोग किया जाता है जो अन्यथा अत्यधिक उच्च तापमान से क्षतिग्रस्त हो जाएगा। अंतरिक्ष से वायुमंडल में प्रवेश करने वाले अंतरिक्ष यान के लिए [[गर्म ढाल]] और [[रॉकेट इंजन]] नोजल को ठंडा करने के लिए दो प्रमुख अनुप्रयोग हैं। उदाहरणों में अपोलो कमांड/सर्विस मॉड्यूल सम्मलित है जो अंतरिक्ष यात्रियों को वायुमंडलीय रीएंट्री की [[गर्मी]] से बचाता है और Kestrel (रॉकेट इंजन) [[मल्टीस्टेज रॉकेट]] रॉकेट इंजन बाहरी अंतरिक्ष # पर्यावरण के [[वातावरण]] में विशेष उपयोग के लिए डिज़ाइन किया गया है क्योंकि कोई संवहन संभव नहीं है।


एक बुनियादी अर्थ में, विभक्ति सामग्री को डिज़ाइन किया गया है ताकि अंतरिक्ष यान की संरचना में गर्मी को प्रेषित करने के बजाय, केवल सामग्री की बाहरी सतह ही अधिकांश ताप प्रभाव को सहन करती है। बाहरी सतह झुलस जाती है और जल जाती है - लेकिन काफी धीरे-धीरे, केवल धीरे-धीरे नीचे नई ताजा सुरक्षात्मक सामग्री को उजागर करती है। एब्लेटिव प्रक्रिया द्वारा उत्पन्न गैसों द्वारा अंतरिक्ष यान से गर्मी को दूर ले जाया जाता है, और कभी भी सतह सामग्री में प्रवेश नहीं करता है, इसलिए धातु और अन्य संवेदनशील संरचनाएं जिनकी वे रक्षा करते हैं, सुरक्षित तापमान पर रहते हैं। जैसे ही सतह जलती है और अंतरिक्ष में बिखर जाती है, शेष ठोस सामग्री यान को जारी गर्मी और अतितापित गैसों से बचाती रहती है। विभक्ति परत की मोटाई की गणना अपने मिशन पर आने वाली गर्मी से बचने के लिए पर्याप्त होने के लिए की जाती है।
एक बुनियादी अर्थ में, विभक्ति सामग्री को डिज़ाइन किया गया है ताकि अंतरिक्ष यान की संरचना में गर्मी को प्रेषित करने के अतिरिक्त , केवल सामग्री की बाहरी सतह ही अधिकांश ताप प्रभाव को सहन करती है। बाहरी सतह झुलस जाती है और जल जाती है - लेकिन काफी धीरे-धीरे, केवल धीरे-धीरे नीचे नई ताजा सुरक्षात्मक सामग्री को उजागर करती है। एब्लेटिव प्रक्रिया द्वारा उत्पन्न गैसों द्वारा अंतरिक्ष यान से गर्मी को दूर ले जाया जाता है, और कभी भी सतह सामग्री में प्रवेश नहीं करता है, इसलिए धातु और अन्य संवेदनशील संरचनाएं जिनकी वे रक्षा करते हैं, सुरक्षित तापमान पर रहते हैं। जैसे ही सतह जलती है और अंतरिक्ष में बिखर जाती है, शेष ठोस सामग्री यान को जारी गर्मी और अतितापित गैसों से बचाती रहती है। विभक्ति परत की मोटाई की गणना अपने मिशन पर आने वाली गर्मी से बचने के लिए पर्याप्त होने के लिए की जाती है।


[[अंतरिक्ष उड़ान]] अनुसंधान की एक पूरी शाखा है जिसमें सर्वश्रेष्ठ विभक्ति प्रदर्शन प्राप्त करने के लिए नई अग्निरोधक सामग्री की खोज शामिल है; यह कार्य अंतरिक्ष यान में रहने वालों और पेलोड को अन्यथा अत्यधिक गर्मी भार से बचाने के लिए महत्वपूर्ण है।<ref>[[John Parker (scientist)|Parker, John]] and C. Michael Hogan, "Techniques for Wind Tunnel assessment of Ablative Materials", NASA Ames Research Center, Technical Publication, August 1965.</ref> कुछ निष्क्रिय [[अग्नि सुरक्षा]] अनुप्रयोगों में एक ही तकनीक का उपयोग किया जाता है, कुछ मामलों में एक ही विक्रेता द्वारा, जो इन अग्निरोधक उत्पादों के विभिन्न संस्करणों की पेशकश करते हैं, कुछ एयरोस्पेस के लिए और कुछ संरचनात्मक अग्नि सुरक्षा के लिए।
[[अंतरिक्ष उड़ान]] अनुसंधान की एक पूरी शाखा है जिसमें सर्वश्रेष्ठ विभक्ति प्रदर्शन प्राप्त करने के लिए नई अग्निरोधक सामग्री की खोज सम्मलित है; यह कार्य अंतरिक्ष यान में रहने वालों और पेलोड को अन्यथा अत्यधिक गर्मी भार से बचाने के लिए महत्वपूर्ण है।<ref>[[John Parker (scientist)|Parker, John]] and C. Michael Hogan, "Techniques for Wind Tunnel assessment of Ablative Materials", NASA Ames Research Center, Technical Publication, August 1965.</ref> कुछ निष्क्रिय [[अग्नि सुरक्षा]] अनुप्रयोगों में एक ही तकनीक का उपयोग किया जाता है, कुछ स्थितियो में एक ही विक्रेता द्वारा, जो इन अग्निरोधक उत्पादों के विभिन्न संस्करणों की पेशकश करते हैं, कुछ एयरोस्पेस के लिए और कुछ संरचनात्मक अग्नि सुरक्षा के लिए।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 09:36, 31 January 2023

एक flashtube में इलेक्ट्रोड के पास पृथक्करण। उच्च-ऊर्जा विद्युत चाप धीरे-धीरे कांच को मिटा देता है, एक पाले सेओढ़ लिया उपस्थिति छोड़ देता है।

अपक्षरण (Latin: ablatio - हटाना) किसी वस्तु से वाष्पीकरण, छिलना, क्षरण प्रक्रियाओं या अन्य तरीकों से किसी वस्तु को हटाना या नष्ट करना है। विभक्ति सामग्री के उदाहरण नीचे वर्णित हैं, और चढ़ाई और वायुमंडलीय पुन: प्रवेश के लिए अंतरिक्ष यान सामग्री, हिमनद विज्ञान में बर्फ और बर्फ, चिकित्सा में जैविक ऊतक और निष्क्रिय अग्नि सुरक्षा सामग्री सम्मलित हैं।

आर्टिफिशियल इंटेलिजेंस

कृत्रिम होशियारी (एआई) में, विशेष रूप से मशीन लर्निंग, पृथक्करण (कृत्रिम बुद्धि) एआई सिस्टम के एक घटक को हटाना है।[1] यह शब्द जीव विज्ञान के अनुरूप है: किसी जीव के घटकों को हटाना।

जीव विज्ञान

जैविक पृथक्करण एक जैविक संरचना या कार्यक्षमता को हटाना है।

जेनेटिक एब्लेशन जीन साइलेंसिंग के लिए एक और शब्द है, जिसमें जेनेटिक अनुक्रम की जानकारी में परिवर्तन या विलोपन के माध्यम से जीन अभिव्यक्ति को समाप्त कर दिया जाता है। सेल एब्लेशन में, आबादी या संस्कृति में भिन्न -भिन्न कोशिकाओं को नष्ट या हटा दिया जाता है। दोनों का उपयोग प्रायोगिक उपकरणों के रूप में किया जा सकता है, जैसा कि फंक्शन-ऑफ-फंक्शन प्रयोगों में होता है।[2]


इलेक्ट्रो-एबलेशन

इलेक्ट्रो-एब्लेशन, एक ऐसी प्रक्रिया है जो सतह की खुरदरापन को कम करने के लिए धातु वर्कपीस से सामग्री को हटाती है।

इलेक्ट्रो-एब्लेशन अत्यधिक प्रतिरोधी ऑक्साइड सतहों के माध्यम से टूट जाता है, जैसे कि टाइटेनियम और अन्य विदेशी धातुओं और मिश्र धातुओं पर पाए जाने वाले गैर-ऑक्सीडित धातु या मिश्र धातु को पिघलाए बिना। यह बहुत तेज सतह परिष्करण की अनुमति देता है

यह प्रक्रिया विदेशी और व्यापक रूप से उपयोग की जाने वाली धातुओं और मिश्र धातुओं की एक विस्तृत श्रृंखला के लिए सतह परिष्करण प्रदान करने में सक्षम है, जिनमें सम्मलित हैं: टाइटेनियम, स्टेनलेस स्टील, नाइओबियम, क्रोमियम-कोबाल्ट, Inconel, एल्यूमीनियम, और व्यापक रूप से उपलब्ध स्टील्स और मिश्र धातुओं की एक श्रृंखला।

धातु के वर्कपीस (भागों) पर छिद्रों, घाटियों और छिपी या आंतरिक सतहों में उच्च स्तर की सतह परिष्करण प्राप्त करने के लिए इलेक्ट्रो-एबलेशन बहुत प्रभावी है।

प्रक्रिया विशेष रूप से 3डी-मुद्रित धातुओं जैसे योज्य विनिर्माण प्रक्रिया द्वारा उत्पादित घटकों पर लागू होती है। इन घटकों का उत्पादन 5-20 माइक्रोन से अधिक खुरदरापन स्तर के साथ किया जाता है। इलेक्ट्रो-एबलेशन का उपयोग सतह की खुरदरापन को 0.8 माइक्रोन से कम करने के लिए जल्दी से कम करने के लिए किया जा सकता है, जिससे पोस्ट-प्रोसेस को वॉल्यूम प्रोडक्शन सतह फिनिशिंग के लिए उपयोग किया जा सकता है।

ग्लेशियोलॉजी

हिमनद विज्ञान और मौसम विज्ञान में, पृथक्करण- संचय के विपरीत- उन सभी प्रक्रियाओं को संदर्भित करता है जो हिमनद या हिमक्षेत्र से बर्फ, बर्फ या पानी को हटाते हैं।[3][page needed] एबलेशन का तात्पर्य बर्फ या बर्फ के पिघलने से है जो ग्लेशियर से निकलता है, वाष्पीकरण, उच्च बनाने की क्रिया (रसायन विज्ञान), बर्फ का शांत होना, या हवा से बर्फ को हटाना। हवा का तापमान सामान्यतः अपक्षरण का प्रमुख नियंत्रण होता है, जिसमें वर्षा द्वितीयक नियंत्रण का प्रयोग करती है। अपक्षरण के मौसम के दौरान एक समशीतोष्ण जलवायु में, पृथक्करण दर सामान्यतः लगभग 2 मिमी/घंटा औसत होती है।[4] जहां सौर विकिरण बर्फ के अपक्षरण का प्रमुख कारण है (उदाहरण के लिए, यदि साफ आसमान के नीचे हवा का तापमान कम है), तो बर्फ की सतह पर सनकप (बर्फ) और पेनीटेंटे (बर्फ का निर्माण) जैसे विशिष्ट अपक्षय बनावट विकसित हो सकते हैं।[5] पृथक्करण या तो बर्फ और बर्फ को हटाने की प्रक्रियाओं या बर्फ और बर्फ को हटाने की मात्रा को संदर्भित कर सकता है।

मलबे से ढके ग्लेशियरों को भी पृथक करने की प्रक्रिया को बहुत प्रभावित करने के लिए दिखाया गया है। एक पतली मलबे की परत है जो ग्लेशियरों के शीर्ष पर स्थित हो सकती है जो बर्फ के नीचे पृथक्करण प्रक्रिया को तेज करती है। एक ग्लेशियर के मलबे से ढके हुए भागो को तीन श्रेणियों में बांटा गया है जिसमें बर्फ की चट्टानें, तालाब और मलबे सम्मलित हैं। ये तीन खंड वैज्ञानिकों को मलबे से ढके क्षेत्र द्वारा पचाने वाली गर्मी को मापने की अनुमति देते हैं और इसकी गणना की जाती है। गणना पूरे मलबे से ढके क्षेत्रों के संबंध में क्षेत्र और शुद्ध अवशोषित गर्मी की मात्रा पर निर्भर करती है। इस प्रकार की गणना विभिन्न ग्लेशियरों के पिघलने के भविष्य के पैटर्न को समझने और उनका विश्लेषण करने के लिए की जाती है।[6] मोराइन (ग्लेशियल मलबे) को प्राकृतिक प्रक्रियाओं द्वारा स्थानांतरित किया जाता है जो ग्लेशियर के शरीर पर सामग्री के ढलान के नीचे की आवाजाही की अनुमति देता है। यह देखा गया है कि यदि किसी हिमनद का ढलान बहुत अधिक है तो मलबा हिमनद के साथ-साथ आगे के स्थान की ओर बढ़ता रहेगा। ग्लेशियरों के आकार और स्थान दुनिया भर में भिन्न होते हैं, इसलिए जलवायु और भौतिक भूगोल के आधार पर मलबे की किस्में भिन्न हो सकती हैं। मलबे का आकार और परिमाण ग्लेशियर के क्षेत्र पर निर्भर है और यह धूल के आकार के टुकड़ों से लेकर एक घर जितना बड़ा हो सकता है।[7] ग्लेशियरों की सतह पर मलबे के प्रभाव को प्रदर्शित करने के लिए कई प्रयोग किए गए हैं। राष्ट्रीय ध्रुवीय अनुसंधान संस्थान के एक प्रोफेसर योशियुकी फ़ूजी ने एक प्रयोग तैयार किया, जिसमें दिखाया गया कि अपस्फीति दर एक पतली मलबे की परत के नीचे तेज हो गई थी और एक प्राकृतिक बर्फ की सतह की तुलना में एक मोटी परत के नीचे मंद हो गई थी।[8] जल संसाधनों की दीर्घकालिक उपलब्धता के महत्व और जलवायु परिवर्तन के लिए ग्लेशियर की प्रतिक्रिया का आकलन करने के कारण यह विज्ञान महत्वपूर्ण है।[9] ग्लेशियरों के अपक्षरण प्रक्रिया और समग्र अध्ययन के संबंध में किए गए शोध के पीछे प्राकृतिक संसाधनों की उपलब्धता एक प्रमुख ड्राइव है।

लेज़र एब्लेशन

एन डी: वाईएजी लेजर नैटराइल रबड़ के एक ब्लॉक के माध्यम से एक छेद ड्रिल करता है। इन्फ्रारेड विकिरण का तीव्र विस्फोट अत्यधिक अवशोषित रबर को समाप्त कर देता है, जिससे प्लाज्मा (भौतिकी) का विस्फोट होता है।

लेजर पृथक सामग्री की प्रकृति और ऊर्जा को अवशोषित करने की उसकी क्षमता से बहुत प्रभावित होता है, इसलिए एब्लेशन लेज़र की तरंग दैर्ध्य में न्यूनतम अवशोषण गहराई होनी चाहिए। जबकि ये लेज़र एक कम शक्ति का औसत कर सकते हैं, वे इसके द्वारा दी गई चरम तीव्रता और प्रवाह की पेशकश कर सकते हैं:

जबकि चरम शक्ति है

एक एक्साइमर लेजर सिस्टम (LASIK और LASEK) का उपयोग करते हुए, कई प्रकार की आंखों की अपवर्तक सर्जरी के लिए कॉर्निया का सतही पृथक्करण अब सामान्य है। चूंकि कॉर्निया वापस नहीं बढ़ता है, लेजर का उपयोग अपवर्तन त्रुटियों को ठीक करने के लिए कॉर्निया अपवर्तन गुणों को फिर से तैयार करने के लिए किया जाता है, जैसे दृष्टिवैषम्य (आंख), निकट दृष्टि दोष और पास का साफ़-साफ़ न दिखनाएंडोमेट्रियल एब्लेशन नामक प्रक्रिया में मासिक धर्म और ग्रंथिपेश्यर्बुदता की समस्याओं वाली महिलाओं में गर्भाशय की दीवार के हिस्से को हटाने के लिए लेजर एब्लेशन का भी उपयोग किया जाता है।

हाल ही में, शोधकर्ताओं ने अल्ट्रा-शॉर्ट पल्स डायोड लेजर स्रोत से केंद्रित लेजर बीम का उपयोग करके आसपास के स्वस्थ ऊतकों को कम से कम थर्मल क्षति के साथ उपसतह ट्यूमर को समाप्त करने के लिए एक सफल तकनीक का प्रदर्शन किया है।[10]


समुद्री सतह कोटिंग्स

बायोफ्यूलिंग#गंदगी रोधी पेंट और अन्य संबंधित कोटिंग्स का नियमित रूप से सूक्ष्मजीवों और अन्य जानवरों के निर्माण को रोकने के लिए उपयोग किया जाता है, जैसे मनोरंजक, वाणिज्यिक और सैन्य समुद्री जहाजों की निचली पतवार सतहों के लिए थकानेवाला। इस उद्देश्य के लिए अधिकांशतः एब्लेटिव पेंट्स का उपयोग किया जाता है ताकि एंटीफ्लिंग एजेंट के कमजोर पड़ने या निष्क्रिय होने से बचा जा सके। समय के साथ, पेंट धीरे-धीरे पानी में विघटित हो जाएगा, सतह पर ताजा एंटीफ्लिंग यौगिकों को उजागर करेगा। गन्दगी रोधी एजेंटों की इंजीनियरिंग और पृथक्करण दर जैव-दूषण के घातक प्रभावों से लंबे समय तक सुरक्षा प्रदान कर सकते हैं।

चिकित्सा में

चिकित्सा में, पृथक्करण सामान्यतः शल्य चिकित्सा द्वारा जैविक ऊतक के एक हिस्से को हटाना है। त्वचा का सरफेस एब्लेशन (तिल, जिसे रिसर्फेसिंग भी कहा जाता है क्योंकि यह पुनर्जनन (जीव विज्ञान) को प्रेरित करता है) को लेज़रों (लेज़र एब्लेशन), फ्रीज़िंग (क्रायोब्लेशन), या बिजली (फुलगुरेशन) द्वारा रसायनों (कीमोब्लेशन) द्वारा किया जा सकता है। इसका उद्देश्य त्वचा के धब्बे, बढ़ती उम्र, झुर्रियां दूर करना है, इस प्रकार यह कायाकल्प (उम्र बढ़ने) करता है। कई प्रकार की ऑपरेशन के लिए ओटोलर्यनोलोजी में सरफेस एब्लेशन का भी उपयोग किया जाता है, जैसे कि खर्राटों के लिए। रेडियो आवृति पृथककरण (RFA) न्यूनतम इनवेसिव प्रक्रियाओं के माध्यम से शरीर के भीतर से असामान्य ऊतक को हटाने की एक विधि है, इसका उपयोग विभिन्न प्रकार के कार्डियक अतालता जैसे कि सुप्रावेंट्रीकुलर टेचिकार्डिया, वोल्फ-पार्किंसंस-व्हाइट सिंड्रोम (WPW), वेंट्रिकुलर टैचीकार्डिया, और को ठीक करने के लिए किया जाता है। हाल ही में आलिंद फिब्रिलेशन के प्रबंधन के रूप में। इस शब्द का प्रयोग अधिकांशतः लेज़र एब्लेशन के संदर्भ में किया जाता है, एक ऐसी प्रक्रिया जिसमें लेज़र सामग्री के सहसंयोजक बंधन को भंग कर देता है। ऊतकों को भिन्न करने के लिए एक लेजर के लिए, शक्ति घनत्व या प्रवाह उच्च होना चाहिए, अन्यथा थर्मोकोएग्यूलेशन होता है, जो कि ऊतकों का थर्मल वाष्पीकरण है।

रोटब्लेशन एक प्रकार की धमनी सफाई है जिसमें फैटी जमा या पट्टिका को हटाने के लिए प्रभावित धमनी में एक छोटा, हीरा-टिप वाला, ड्रिल जैसा उपकरण डाला जाता है। रक्त प्रवाह को बहाल करने के लिए कोरोनरी हृदय रोग के उपचार में प्रक्रिया का उपयोग किया जाता है।

माइक्रोवेव एब्लेशन (MWA) RFA के समान है लेकिन विद्युत चुम्बकीय विकिरण की उच्च आवृत्तियों पर।

उच्च तीव्रता केंद्रित अल्ट्रासाउंड | हाई-इंटेंसिटी फोकस्ड अल्ट्रासाउंड (एचआईएफयू) एब्लेशन शरीर के भीतर से ऊतक को गैर-आक्रामक रूप से हटा देता है।

बोन मैरो एब्लेशन एक ऐसी प्रक्रिया है जिसमें अस्थि मज्जा प्रत्यारोपण की तैयारी में मानव अस्थि मज्जा कोशिकाओं को समाप्त कर दिया जाता है। यह उच्च तीव्रता कीमोथेरपी और कुल शरीर विकिरण का उपयोग करके किया जाता है। इस प्रकार, इस लेख के बाकी भागो में वर्णित वाष्पीकरण तकनीकों से इसका कोई लेना-देना नहीं है।

एब्लेटिव ब्रेन सर्जरी का उपयोग कुछ न्यूरोलॉजिकल विकारों, विशेष रूप से पार्किंसंस रोग और कभी-कभी मानसिक विकारों के इलाज के लिए भी किया जाता है।

हाल ही में, कुछ शोधकर्ताओं ने जेनेटिक एब्लेशन के साथ सफल परिणामों की सूचना दी। विशेष रूप से, अनुवांशिक पृथक्करण संभावित रूप से फोडा कोशिकाओं जैसे अवांछित कोशिकाओं को हटाने का एक अधिक कुशल तरीका है, क्योंकि बड़ी संख्या में ऐसे जानवर उत्पन्न हो सकते हैं जिनमें विशिष्ट कोशिकाओं की कमी होती है। आनुवंशिक रूप से पृथक लाइनों को लंबे समय तक बनाए रखा जा सकता है और अनुसंधान समुदाय के भीतर साझा किया जा सकता है। कोलंबिया विश्वविद्यालय के शोधकर्ताओं ने कैनोर्हाडाइटिस एलिगेंस से संयुक्त पुनर्गठित caspases की रिपोर्ट|सी। एलिगेंस और इंसान, जो लक्ष्य विशिष्टता के उच्च स्तर को बनाए रखते हैं। वर्णित जेनेटिक एबलेशन तकनीक कैंसर से लड़ने में उपयोगी साबित हो सकती है।[11]


निष्क्रिय अग्नि सुरक्षा

आग को रोकने वालािंग और पोस्टर उत्पाद प्रकृति में अपवर्तक हो सकते हैं। इसका मतलब एन्दोठेर्मिक सामग्री, या केवल ऐसी सामग्री हो सकती है जो बलिदान हैं और समय के साथ आग के संपर्क में आने पर खर्च हो जाती हैं, जैसे कि सिलिकॉन फायरस्टॉप उत्पाद। आग या गर्मी की स्थिति में पर्याप्त समय दिए जाने पर, ये उत्पाद जल जाते हैं, उखड़ जाते हैं और गायब हो जाते हैं। विचार यह है कि इस सामग्री को आग के रास्ते में पर्याप्त मात्रा में रखा जाए ताकि अग्नि-प्रतिरोध रेटिंग का एक स्तर बनाए रखा जा सके, जैसा कि अग्नि परीक्षण में दिखाया गया है। विभक्ति सामग्री में सामान्यतः कार्बनिक पदार्थों की एक बड़ी मात्रा होती है[citation needed] जो आग से जलकर राख हो जाता है। सिलिकॉन के मामले में, कार्बनिक रबड़ बहुत सूक्ष्मता से विभाजित सिलिका धूल (इस धूल के प्रति ग्राम सभी धूल कणों के संयुक्त सतह क्षेत्र के 380 वर्ग मीटर तक) को घेरता है।[citation needed]). जब जैविक रबर को आग के संपर्क में लाया जाता है, तो यह राख में जल जाता है और सिलिका धूल को पीछे छोड़ देता है जिससे उत्पाद शुरू हुआ।

[[[[पुरातन-ग्रह]]री डिस्क]] एब्लेशन

प्रोटोप्लेनेटरी डिस्क तारकीय विकास के चारों ओर घनी गैस और धूल की सर्कमस्टेलर डिस्क को घुमा रही है। युवा, नवगठित सितारे। तारे के बनने के कुछ ही समय बाद, सितारों के पास अधिकांशतः आसपास की सामग्री बची रहती है जो अभी भी उनके लिए गुरुत्वाकर्षण से बंधी होती है, जो आदिम डिस्क बनाती है जो तारे के भूमध्य रेखा के चारों ओर परिक्रमा करती है - शनि के छल्ले से बहुत भिन्न नहीं। ऐसा इसलिए होता है क्योंकि गठन के दौरान प्रोटोस्टार सामग्री की त्रिज्या में कमी से कोणीय गति बढ़ जाती है, जिसका अर्थ है कि यह शेष सामग्री तारे के चारों ओर एक चपटी परिस्थितिजन्य डिस्क में मार दी जाती है। यह सर्कमस्टेलर डिस्क अंततः परिपक्व हो सकती है जिसे प्रोटोप्लेनेटरी डिस्क के रूप में संदर्भित किया जाता है: गैस, धूल, बर्फ और अन्य सामग्रियों की एक डिस्क जिससे ग्रह प्रणाली बन सकती है। इन डिस्कों में, धूल के दानों और बर्फ के एक साथ चिपके रहने से डिस्क के ठंडे मध्य-तल में परिक्रमा करने वाला पदार्थ जमा होने लगता है। ये छोटे अभिवृद्धि कंकड़ से चट्टानों से प्रारंभिक शिशु ग्रहों तक बढ़ते हैं, जिन्हें ग्रहाणु कहा जाता है, फिर प्रोटोप्लैनेट, और अंत में, पूर्ण ग्रह।[12] जैसा कि यह माना जाता है कि सबसे बड़े सितारों की सूची सक्रिय रूप से स्टार गठन को ट्रिगर करने में भूमिका निभा सकती है (अन्य कारकों के बीच गुरुत्वाकर्षण अस्थिरता को शुरू करके),[13] यह प्रशंसनीय है कि युवा, डिस्क वाले छोटे सितारे पुराने, अधिक विशाल सितारों के अपेक्षाकृत निकट रह सकते हैं। कुछ स्टार क्लस्टर में स्थिति होने के लिए अवलोकन के माध्यम से इसकी पुष्टि पहले ही की जा चुकी है, उदा। ट्रेपेज़ियम क्लस्टर में।[14] चूंकि बड़े सितारे अपने जीवन के अंत में सुपरनोवा के माध्यम से ढहते हैं, अनुसंधान अब जांच कर रहा है कि इस प्रकार के विस्फोट की शॉक वेव और परिणामी सुपरनोवा अवशेष (एसएनआर) क्या भूमिका निभाते हैं, यदि यह आग की रेखा में होता है प्रोटोप्लानेटरी डिस्क। कम्प्यूटेशनल रूप से तैयार किए गए सिमुलेशन के अनुसार, एक प्रोटोप्लेनेटरी डिस्क पर हमला करने वाले एक एसएनआर के परिणामस्वरूप डिस्क का महत्वपूर्ण अपघटन होगा, और यह अपघटन डिस्क से महत्वपूर्ण मात्रा में प्रोटोप्लानेटरी सामग्री को छीन लेगा - लेकिन जरूरी नहीं कि डिस्क पूरी प्रकार से नष्ट हो जाए।[15] यह एक महत्वपूर्ण बिंदु है क्योंकि एक डिस्क जो एक ग्रह प्रणाली बनाने के लिए पर्याप्त सामग्री बचे हुए के साथ इस प्रकार की बातचीत से बचती है, एसएनआर से एक परिवर्तित Astrochemistry प्राप्त कर सकती है, जो बाद में बनने वाली ग्रह प्रणालियों पर प्रभाव डाल सकती है।

स्पेसफ्लाइट

अंतरिक्ष यान के डिजाइन में, यांत्रिक भागों और/या पेलोड को ठंडा और संरक्षित करने के लिए पृथक्करण का उपयोग किया जाता है जो अन्यथा अत्यधिक उच्च तापमान से क्षतिग्रस्त हो जाएगा। अंतरिक्ष से वायुमंडल में प्रवेश करने वाले अंतरिक्ष यान के लिए गर्म ढाल और रॉकेट इंजन नोजल को ठंडा करने के लिए दो प्रमुख अनुप्रयोग हैं। उदाहरणों में अपोलो कमांड/सर्विस मॉड्यूल सम्मलित है जो अंतरिक्ष यात्रियों को वायुमंडलीय रीएंट्री की गर्मी से बचाता है और Kestrel (रॉकेट इंजन) मल्टीस्टेज रॉकेट रॉकेट इंजन बाहरी अंतरिक्ष # पर्यावरण के वातावरण में विशेष उपयोग के लिए डिज़ाइन किया गया है क्योंकि कोई संवहन संभव नहीं है।

एक बुनियादी अर्थ में, विभक्ति सामग्री को डिज़ाइन किया गया है ताकि अंतरिक्ष यान की संरचना में गर्मी को प्रेषित करने के अतिरिक्त , केवल सामग्री की बाहरी सतह ही अधिकांश ताप प्रभाव को सहन करती है। बाहरी सतह झुलस जाती है और जल जाती है - लेकिन काफी धीरे-धीरे, केवल धीरे-धीरे नीचे नई ताजा सुरक्षात्मक सामग्री को उजागर करती है। एब्लेटिव प्रक्रिया द्वारा उत्पन्न गैसों द्वारा अंतरिक्ष यान से गर्मी को दूर ले जाया जाता है, और कभी भी सतह सामग्री में प्रवेश नहीं करता है, इसलिए धातु और अन्य संवेदनशील संरचनाएं जिनकी वे रक्षा करते हैं, सुरक्षित तापमान पर रहते हैं। जैसे ही सतह जलती है और अंतरिक्ष में बिखर जाती है, शेष ठोस सामग्री यान को जारी गर्मी और अतितापित गैसों से बचाती रहती है। विभक्ति परत की मोटाई की गणना अपने मिशन पर आने वाली गर्मी से बचने के लिए पर्याप्त होने के लिए की जाती है।

अंतरिक्ष उड़ान अनुसंधान की एक पूरी शाखा है जिसमें सर्वश्रेष्ठ विभक्ति प्रदर्शन प्राप्त करने के लिए नई अग्निरोधक सामग्री की खोज सम्मलित है; यह कार्य अंतरिक्ष यान में रहने वालों और पेलोड को अन्यथा अत्यधिक गर्मी भार से बचाने के लिए महत्वपूर्ण है।[16] कुछ निष्क्रिय अग्नि सुरक्षा अनुप्रयोगों में एक ही तकनीक का उपयोग किया जाता है, कुछ स्थितियो में एक ही विक्रेता द्वारा, जो इन अग्निरोधक उत्पादों के विभिन्न संस्करणों की पेशकश करते हैं, कुछ एयरोस्पेस के लिए और कुछ संरचनात्मक अग्नि सुरक्षा के लिए।

यह भी देखें

संदर्भ

  1. Newell, Allen (1975). D. Raj Reddy (ed.). A Tutorial on Speech Understanding Systems. In Speech Recognition: Invited Papers Presented at the 1974 IEEE Symposium. New York: Academic. p. 43.
  2. Cell Ablation definition, Change Bioscience.
  3. Paterson, W. S. B. 1999. The Physics of Glaciers. Tarrytown, N.Y., Pergamon.
  4. "Glossary of Meteorology". Archived from the original on 2011-09-17. Retrieved 2010-07-05.
  5. Betterton, M. D. (2001-04-26). "Theory of structure formation in snowfields motivated by penitentes, suncups, and dirt cones". Physical Review E. American Physical Society (APS). 63 (5): 056129. arXiv:physics/0007099. Bibcode:2001PhRvE..63e6129B. doi:10.1103/physreve.63.056129. ISSN 1063-651X. PMID 11414983.
  6. Sakai, Akiko, et al. "Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas." IAHS PUBLICATION (2000): 119-132.
  7. Paul, Frank; Huggel, Christian; Kääb, Andreas (2004). "Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers". Remote Sensing of Environment. Elsevier BV. 89 (4): 510–518. Bibcode:2004RSEnv..89..510P. doi:10.1016/j.rse.2003.11.007. ISSN 0034-4257.
  8. Fujii, Yoshiyuki (1977). "Field Experiment on Glacier Ablation under a Layer of Debris Cover". Journal of the Japanese Society of Snow and Ice. Japanese Society of Snow and Ice. 39 (Special): 20–21. doi:10.5331/seppyo.39.special_20. ISSN 0373-1006.
  9. Kayastha, Rijan Bhakta, et al. "Practical prediction of ice melting beneath various thickness of debris cover on Khumbu Glacier, Nepal, using a positive degree-day factor." IAHS PUBLICATION 7182 (2000).
  10. Yousef Sajjadi, Amir; Mitra, Kunal; Grace, Michael (2011). "Ablation of subsurface tumors using an ultra-short pulse laser". Optics and Lasers in Engineering. Elsevier BV. 49 (3): 451–456. Bibcode:2011OptLE..49..451Y. doi:10.1016/j.optlaseng.2010.11.020. ISSN 0143-8166.
  11. Chelur, Dattananda S.; Chalfie, Martin (February 2007). "Targeted cell killing by reconstituted caspases". Proceedings of the National Academy of Sciences. 104 (7): 2283–8. Bibcode:2007PNAS..104.2283C. doi:10.1073/pnas.0610877104. PMC 1892955. PMID 17283333.
  12. Sheehan, Patrick (October 2020). "Early onset of planet formation observed in a nascent star system". Nature (in English). 586 (7828): 205–206. Bibcode:2020Natur.586..205S. doi:10.1038/d41586-020-02748-w. PMID 33029003.
  13. Lee, Hsu-Tai; Chen, W. P. (10 March 2007). "Triggered Star Formation by Massive Stars". The Astrophysical Journal (in English). 657 (2): 884. arXiv:astro-ph/0509315. Bibcode:2007ApJ...657..884L. doi:10.1086/510893. ISSN 0004-637X. S2CID 18844691.
  14. McCaughrean, Mark J.; O'dell, C. Robert (May 1996). "Direct Imaging of Circumstellar Disks in the Orion Nebula". The Astronomical Journal. 111: 1977. Bibcode:1996AJ....111.1977M. doi:10.1086/117934. S2CID 122335780.
  15. Close, J. L.; Pittard, J. M. (July 2017). "Hydrodynamic ablation of protoplanetary discs via supernovae". Monthly Notices of the Royal Astronomical Society (in English). 469 (1): 1117–1130. arXiv:1704.06308. doi:10.1093/mnras/stx897. ISSN 0035-8711. S2CID 119262203.
  16. Parker, John and C. Michael Hogan, "Techniques for Wind Tunnel assessment of Ablative Materials", NASA Ames Research Center, Technical Publication, August 1965.


बाहरी कड़ियाँ