परावैद्युत दर्पण: Difference between revisions

From Vigyanwiki
(modification)
No edit summary
Line 1: Line 1:
{{Short description|Mirror made of dielectric materials}}
{{Short description|Mirror made of dielectric materials}}
[[File:Dielectric-mirror780_3.jpg|thumb|300px|right|एक दर्पण माउंट में एक अवरक्त परावैद्युत हुआ दर्पण]]एक [[ढांकता हुआ|परावैद्युत]] [[दर्पण]], जिसे ब्रैग दर्पण के रूप में भी जाना जाता है, एक प्रकार का दर्पण है जो परावैद्युत सामग्री की कई [[पतली फिल्म]] से बना है, जो सामान्यतः [[कांच]] के एक सब्सट्रेट या कुछ अन्य ऑप्टिकल सामग्री पर जमा होता है। परावैद्युत परतों के प्रकार और मोटाई के सावधानीपूर्वक विकल्प से, कोई भी प्रकाश के विभिन्न [[तरंग दैर्ध्य]] पर निर्दिष्ट परावर्तन के साथ एक [[ऑप्टिकल कोटिंग]] डिजाइन कर सकता है। परावैद्युत दर्पण का उपयोग अल्ट्रा-हाई रिफ्लेक्टिविटी दर्पण का उत्पादन करने के लिए भी किया जाता है: 99.999% के मूल्यों को या उत्तमतरीके से तरंग दैर्ध्य की एक संकीर्ण रेंज पर विशेष तकनीकों का उपयोग करके उत्पादित किया जा सकता है।वैकल्पिक रूप से, उन्हें प्रकाश के एक व्यापक [[स्पेक्ट्रम]] को प्रतिबिंबित करने के लिए बनाया जा सकता है, जैसे कि संपूर्ण दृश्यमान सीमा या टीआई-सैफायर [[लेज़र]] का स्पेक्ट्रम।इस प्रकार के दर्पण [[प्रकाशिकी]] प्रयोगों में बहुत आम हैं, उत्तमतकनीकों के कारण जो उच्च गुणवत्ता वाले दर्पणों के सस्ती निर्माण की अनुमति देते हैं। उनके अनुप्रयोगों के उदाहरणों में लेजर [[ऑप्टिकल गुहा]] एंड दर्पण, [[हॉट मिरर|हॉट दर्पण]] और [[ठंडा दर्पण]], थिन-फिल्म [[किरण विभाजक]], हाई [[लेजर क्षति दहलीज]] दर्पण, और आधुनिक दर्पण धूप के चश्मे और कुछ दूरबीन#डाइलेक्ट्रिक_दर्पण पर कोटिंग्स शामिल हैं।
[[File:Dielectric-mirror780_3.jpg|thumb|300px|right|एक दर्पण माउंट में एक अवरक्त परावैद्युत हुआ दर्पण]][[ढांकता हुआ|परावैद्युत]] [[दर्पण]], जिसे ब्रैग दर्पण के रूप में भी जाना जाता है, एक प्रकार का दर्पण है जो परावैद्युत सामग्री की कई [[पतली फिल्म]] से बना है, जो सामान्यतः [[कांच]] के एक सब्सट्रेट या कुछ अन्य ऑप्टिकल सामग्री पर जमा होता है। परावैद्युत परतों के प्रकार और मोटाई के सावधानीपूर्वक विकल्प से, कोई भी प्रकाश के विभिन्न [[तरंग दैर्ध्य]] पर निर्दिष्ट परावर्तन के साथ एक [[ऑप्टिकल कोटिंग]] डिजाइन कर सकता है। परावैद्युत दर्पण का उपयोग अल्ट्रा-हाई रिफ्लेक्टिविटी दर्पण का उत्पादन करने के लिए भी किया जाता है: 99.999% के मूल्यों को या उत्तमतरीके से तरंग दैर्ध्य की एक संकीर्ण रेंज पर विशेष तकनीकों का उपयोग करके उत्पादित किया जा सकता है।वैकल्पिक रूप से, उन्हें प्रकाश के एक व्यापक [[स्पेक्ट्रम]] को प्रतिबिंबित करने के लिए बनाया जा सकता है, जैसे कि संपूर्ण दृश्यमान सीमा या टीआई-सैफायर [[लेज़र]] का स्पेक्ट्रम।इस प्रकार के दर्पण [[प्रकाशिकी]] प्रयोगों में बहुत आम हैं, उत्तमतकनीकों के कारण जो उच्च गुणवत्ता वाले दर्पणों के सस्ती निर्माण की अनुमति देते हैं। उनके अनुप्रयोगों के उदाहरणों में लेजर [[ऑप्टिकल गुहा]] एंड दर्पण, [[हॉट मिरर|हॉट दर्पण]] और [[ठंडा दर्पण]], थिन-फिल्म [[किरण विभाजक]], हाई [[लेजर क्षति दहलीज]] दर्पण, और आधुनिक दर्पण धूप के चश्मे और कुछ दूरबीन#डाइलेक्ट्रिक_दर्पण पर कोटिंग्स सम्मिलित हैं।


== तंत्र ==
== तंत्र ==
Line 7: Line 7:


परावैद्युत दर्पण, परावैद्युत हुआ ढेर की विभिन्न परतों से परिलक्षित प्रकाश के हस्तक्षेप (तरंग प्रसार) के आधार पर कार्य करते हैं।यह वही सिद्धांत है जिसका उपयोग मल्टी-लेयर एंटी-परावर्तक कोटिंग में किया जाता है। [[परावर्तक - विरोधी लेप]], जो परावैद्युत हुआ ढेर हैं जो परावर्तकता को अधिकतम करने के बजाय कम से कम करने के लिए प्रारुप किए गए हैं। सरल परावैद्युत दर्पण एक-आयामी [[फोटोनिक क्रिस्टल]] की तरह कार्य करते हैं, जिसमें कम [[अपवर्तक सूचकांक]] की परतों के साथ एक उच्च अपवर्तक सूचकांक के साथ परतों का ढेर होता है (आरेख देखें)। परतों की मोटाई को इस तरह से चुना जाता है कि विभिन्न उच्च-सूचकांक परतों से प्रतिबिंबों के लिए पथ-लंबाई के अंतर तरंग दैर्ध्य के पूर्णांक गुणक होते हैं, जिसके लिए दर्पण को प्रारुप किया गया है।कम-सूचकांक परतों से प्रतिबिंबों में पथ की लंबाई के अंतर में बिल्कुल आधा तरंग दैर्ध्य होता है, लेकिन उच्च-से-निम्न सूचकांक सीमा की तुलना में कम से-उच्च सूचकांक सीमा पर चरण शिफ्ट में 180-डिग्री अंतर होता है,जिसका अर्थ है कि ये प्रतिबिंब भी चरण में हैं। सामान्य घटनाओं में एक दर्पण के संधर्व में, परतों में एक चौथाई तरंग दैर्ध्य की मोटाई होती है।
परावैद्युत दर्पण, परावैद्युत हुआ ढेर की विभिन्न परतों से परिलक्षित प्रकाश के हस्तक्षेप (तरंग प्रसार) के आधार पर कार्य करते हैं।यह वही सिद्धांत है जिसका उपयोग मल्टी-लेयर एंटी-परावर्तक कोटिंग में किया जाता है। [[परावर्तक - विरोधी लेप]], जो परावैद्युत हुआ ढेर हैं जो परावर्तकता को अधिकतम करने के बजाय कम से कम करने के लिए प्रारुप किए गए हैं। सरल परावैद्युत दर्पण एक-आयामी [[फोटोनिक क्रिस्टल]] की तरह कार्य करते हैं, जिसमें कम [[अपवर्तक सूचकांक]] की परतों के साथ एक उच्च अपवर्तक सूचकांक के साथ परतों का ढेर होता है (आरेख देखें)। परतों की मोटाई को इस तरह से चुना जाता है कि विभिन्न उच्च-सूचकांक परतों से प्रतिबिंबों के लिए पथ-लंबाई के अंतर तरंग दैर्ध्य के पूर्णांक गुणक होते हैं, जिसके लिए दर्पण को प्रारुप किया गया है।कम-सूचकांक परतों से प्रतिबिंबों में पथ की लंबाई के अंतर में बिल्कुल आधा तरंग दैर्ध्य होता है, लेकिन उच्च-से-निम्न सूचकांक सीमा की तुलना में कम से-उच्च सूचकांक सीमा पर चरण शिफ्ट में 180-डिग्री अंतर होता है,जिसका अर्थ है कि ये प्रतिबिंब भी चरण में हैं। सामान्य घटनाओं में एक दर्पण के संधर्व में, परतों में एक चौथाई तरंग दैर्ध्य की मोटाई होती है।
[[File:Dielectric_filter_tilted.gif|thumb|right|परावैद्युत हुआ फिल्टर द्वारा प्रेषित रंग तब बदल जाता है जब घटना प्रकाश का कोण बदल जाता है।]]अन्य डिजाइनों में सामान्यतः [[अनुकूलन]] (गणित) द्वारा उत्पादित एक अधिक जटिल संरचना होती है।बाद के घटना में, परावर्तित प्रकाश के [[फैलाव (प्रकाशिकी)]] को भी नियंत्रित किया जा सकता है (देखें चिरपड [[मिरर|दर्पण]])। परावैद्युत दर्पणों के प्रारुप में, एक ऑप्टिकल ट्रांसफर-मैट्रिक्स विधि (ऑप्टिक्स) | ट्रांसफर-मैट्रिक्स विधि का उपयोग किया जा सकता है। एक अच्छी तरह से प्रारुप की गई बहुपरत परावैद्युत हुआ कोटिंग दृश्यमान स्पेक्ट्रम में 99% से अधिक की परावर्तकता प्रदान कर सकती है।<ref>{{cite journal |first1=ZenaE. |last1=Slaiby |first2=Saeed N. |last2=Turki |title=Study the reflectance of dielectric coating for the visiblespectrum |journal=International Journal of Emerging Trends & Technology in Computer Science |volume=3 |issue=6 |date=November–December 2014 |pages=1–4 |issn=2278-6856|url=https://www.ijettcs.org/Volume3Issue6/IJETTCS-2014-10-30-4.pdf}}</ref>
[[File:Dielectric_filter_tilted.gif|thumb|right|परावैद्युत हुआ फिल्टर द्वारा प्रेषित रंग तब बदल जाता है जब घटना प्रकाश का कोण बदल जाता है।]]अन्य डिजाइनों में सामान्यतः [[अनुकूलन]] (गणित) द्वारा उत्पादित एक अधिक जटिल संरचना होती है। बाद के घटना में, परावर्तित प्रकाश के [[फैलाव (प्रकाशिकी)]] को भी नियंत्रित किया जा सकता है (देखें चिरपड [[मिरर|दर्पण]])। परावैद्युत दर्पणों के प्रारुप में, एक ऑप्टिकल ट्रांसफर-मैट्रिक्स विधि (ऑप्टिक्स) ट्रांसफर-मैट्रिक्स विधि का उपयोग किया जा सकता है। एक अच्छी तरह से प्रारुप की गई बहुपरत परावैद्युत हुआ कोटिंग दृश्यमान स्पेक्ट्रम में 99% से अधिक की परावर्तकता प्रदान कर सकती है।<ref>{{cite journal |first1=ZenaE. |last1=Slaiby |first2=Saeed N. |last2=Turki |title=Study the reflectance of dielectric coating for the visiblespectrum |journal=International Journal of Emerging Trends & Technology in Computer Science |volume=3 |issue=6 |date=November–December 2014 |pages=1–4 |issn=2278-6856|url=https://www.ijettcs.org/Volume3Issue6/IJETTCS-2014-10-30-4.pdf}}</ref>
परावैद्युत दर्पण और दर्पण प्रारुप के कोण के एक समारोह के रूप में [[तरंग प्लेट]] को प्रदर्शित करते हैं।<ref>{{cite journal |title=Phase retardance of periodic multilayer mirrors |first=J. H. |last=Apfel |journal=Applied Optics |volume=21 |pages=733–738 |year=1982|issue=4 |doi=10.1364/AO.21.000733 }}</ref>
परावैद्युत दर्पण और दर्पण प्रारुप के कोण के एक समारोह के रूप में [[तरंग प्लेट]] को प्रदर्शित करते हैं।<ref>{{cite journal |title=Phase retardance of periodic multilayer mirrors |first=J. H. |last=Apfel |journal=Applied Optics |volume=21 |pages=733–738 |year=1982|issue=4 |doi=10.1364/AO.21.000733 }}</ref>सम्मिलित
 
 
== विनिर्माण ==
== विनिर्माण ==


[[Image:DBR SEM.jpg|thumb|right|ढांकता हुआ दर्पण के लगभग 13 माइक्रोमीटर टुकड़े की एक [[इलेक्ट्रान सूक्ष्मदर्शी]] छवि एक बड़े सब्सट्रेट से काट दी जा रही है।टैंटलम पेंटोक्साइड की वैकल्पिक परतें | टा<sub>2</sub>O<sub>5</sub>और सिलिकॉन डाइऑक्साइड | sio<sub>2</sub>नीचे के किनारे पर दिखाई दे रहे हैं।]]परावैद्युत दर्पण के लिए विनिर्माण तकनीक पतली-फिल्म निक्षेपण विधियों पर आधारित है। सामान्य तकनीक भौतिक वाष्प जमाव हैं (जिसमें [[बाष्पीकरणीय बयान|बाष्पीकरणीय जमाव]] और आयन बीम सहायक जमाव सम्मलित हैं), रासायनिक वाष्प जमाव, आयन बीम जमाव, [[आणविक बीम एपिटैक्सी]] और [[स्पटर डिप्रेशन]] सम्मलित हैं।सामान्य सामग्री [[मैग्नीशियम फ्लोराइड]] होती है {{nowrap|1=(''[[Refractive index|n]]'' = 1.37)}}, [[सिलिकॉन डाइऑक्साइड]] {{nowrap|1=(''n'' = 1.45)}}, [[टैंटलम पेंटोक्साइड]] {{nowrap|1=(''n'' = 2.28)}} , [[जिंक सल्फाइड]] {{nowrap|1=(''n'' = 2.32)}}, और [[टाइटेनियम डाइऑक्साइड]] {{nowrap|1=(''n'' = 2.4)}}।
[[Image:DBR SEM.jpg|thumb|right|ढांकता हुआ दर्पण के लगभग 13 माइक्रोमीटर टुकड़े की एक [[इलेक्ट्रान सूक्ष्मदर्शी]] छवि एक बड़े सब्सट्रेट से काट दी जा रही है।टैंटलम पेंटोक्साइड की वैकल्पिक परतें | टा<sub>2</sub>O<sub>5</sub>और सिलिकॉन डाइऑक्साइड | sio<sub>2</sub>नीचे के किनारे पर दिखाई दे रहे हैं।]]परावैद्युत दर्पण के लिए विनिर्माण तकनीक पतली-फिल्म निक्षेपण विधियों पर आधारित है। सामान्य तकनीक भौतिक वाष्प जमाव हैं (जिसमें [[बाष्पीकरणीय बयान|बाष्पीकरणीय जमाव]] और आयन बीम सहायक जमाव सम्मिलित हैं), रासायनिक वाष्प जमाव, आयन बीम जमाव, [[आणविक बीम एपिटैक्सी]] और [[स्पटर डिप्रेशन]] सम्मिलित हैं।सामान्य सामग्री [[मैग्नीशियम फ्लोराइड]] होती है {{nowrap|1=(''[[Refractive index|n]]'' = 1.37)}}, [[सिलिकॉन डाइऑक्साइड]] {{nowrap|1=(''n'' = 1.45)}}, [[टैंटलम पेंटोक्साइड]] {{nowrap|1=(''n'' = 2.28)}} , [[जिंक सल्फाइड]] {{nowrap|1=(''n'' = 2.32)}}, और [[टाइटेनियम डाइऑक्साइड]] {{nowrap|1=(''n'' = 2.4)}}।


पॉलिमेरिक परावैद्युत दर्पण पिघल पॉलिमर के सह-उपचार के माध्यम से औद्योगिक रूप से गढ़े जाते हैं,<ref>{{cite book |title=Organic and Hybrid Photonic Crystals |date=2015 |doi=10.1007/978-3-319-16580-6 |isbn=978-3-319-16579-0 |s2cid=139074878 |url=https://link.springer.com/book/10.1007/978-3-319-16580-6 |language=en-gb|editor-last1=Comoretto |editor-first1=Davide }}</ref> और स्पिन कोटिंग<ref>{{cite journal |last1=Lova |first1=Paola |last2=Giusto |first2=Paolo |last3=Stasio |first3=Francesco Di |last4=Manfredi |first4=Giovanni |last5=Paternò |first5=Giuseppe M. |last6=Cortecchia |first6=Daniele |last7=Soci |first7=Cesare |last8=Comoretto |first8=Davide |title=All-polymer methylammonium lead iodide perovskite microcavities |journal=Nanoscale |date=9 May 2019 |volume=11 |issue=18 |pages=8978–8983 |doi=10.1039/C9NR01422E |pmid=31017152 |url=https://pubs.rsc.org/ko/content/articlelanding/2019/nr/c9nr01422e |language=en |issn=2040-3372|hdl=11567/944564 |s2cid=129943931 |hdl-access=free }}</ref> या डिप-कोटिंग<ref>{{cite journal |last1=Russo |first1=Manuela |last2=Campoy‐Quiles |first2=Mariano |last3=Lacharmoise |first3=Paul |last4=Ferenczi |first4=Toby A. M. |last5=Garriga |first5=Miquel |last6=Caseri |first6=Walter R. |last7=Stingelin |first7=Natalie |title=One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns |journal=Journal of Polymer Science Part B: Polymer Physics |date=2012 |volume=50 |issue=1 |pages=65–74 |doi=10.1002/polb.22373 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.22373 |language=en |issn=1099-0488}}</ref> छोटे पैमाने पर औद्योगिक रूप से गढ़े जाते हैं।
पॉलिमेरिक परावैद्युत दर्पण पिघल पॉलिमर के सह-उपचार के माध्यम से औद्योगिक रूप से गढ़े जाते हैं,<ref>{{cite book |title=Organic and Hybrid Photonic Crystals |date=2015 |doi=10.1007/978-3-319-16580-6 |isbn=978-3-319-16579-0 |s2cid=139074878 |url=https://link.springer.com/book/10.1007/978-3-319-16580-6 |language=en-gb|editor-last1=Comoretto |editor-first1=Davide }}</ref> और स्पिन कोटिंग<ref>{{cite journal |last1=Lova |first1=Paola |last2=Giusto |first2=Paolo |last3=Stasio |first3=Francesco Di |last4=Manfredi |first4=Giovanni |last5=Paternò |first5=Giuseppe M. |last6=Cortecchia |first6=Daniele |last7=Soci |first7=Cesare |last8=Comoretto |first8=Davide |title=All-polymer methylammonium lead iodide perovskite microcavities |journal=Nanoscale |date=9 May 2019 |volume=11 |issue=18 |pages=8978–8983 |doi=10.1039/C9NR01422E |pmid=31017152 |url=https://pubs.rsc.org/ko/content/articlelanding/2019/nr/c9nr01422e |language=en |issn=2040-3372|hdl=11567/944564 |s2cid=129943931 |hdl-access=free }}</ref> या डिप-कोटिंग<ref>{{cite journal |last1=Russo |first1=Manuela |last2=Campoy‐Quiles |first2=Mariano |last3=Lacharmoise |first3=Paul |last4=Ferenczi |first4=Toby A. M. |last5=Garriga |first5=Miquel |last6=Caseri |first6=Walter R. |last7=Stingelin |first7=Natalie |title=One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns |journal=Journal of Polymer Science Part B: Polymer Physics |date=2012 |volume=50 |issue=1 |pages=65–74 |doi=10.1002/polb.22373 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.22373 |language=en |issn=1099-0488}}</ref> छोटे पैमाने पर औद्योगिक रूप से गढ़े जाते हैं।
Line 25: Line 23:
==संदर्भ==
==संदर्भ==
<references/>
<references/>
==बाहरी कड़ियाँ==
==बाहरी कड़ियाँ==
{{Commons category|Dielectric mirrors}}
* [https://www.mit.edu/~birge/dispersion Fast code for computation of dielectric mirror reflectivity and dispersion]
* [https://www.mit.edu/~birge/dispersion Fast code for computation of dielectric mirror reflectivity and dispersion]
[[Category: ऑप्टिकल फ़िल्टर]] [[Category: दर्पण]]  
[[Category: ऑप्टिकल फ़िल्टर]] [[Category: दर्पण]]  

Revision as of 22:23, 4 February 2023

एक दर्पण माउंट में एक अवरक्त परावैद्युत हुआ दर्पण

परावैद्युत दर्पण, जिसे ब्रैग दर्पण के रूप में भी जाना जाता है, एक प्रकार का दर्पण है जो परावैद्युत सामग्री की कई पतली फिल्म से बना है, जो सामान्यतः कांच के एक सब्सट्रेट या कुछ अन्य ऑप्टिकल सामग्री पर जमा होता है। परावैद्युत परतों के प्रकार और मोटाई के सावधानीपूर्वक विकल्प से, कोई भी प्रकाश के विभिन्न तरंग दैर्ध्य पर निर्दिष्ट परावर्तन के साथ एक ऑप्टिकल कोटिंग डिजाइन कर सकता है। परावैद्युत दर्पण का उपयोग अल्ट्रा-हाई रिफ्लेक्टिविटी दर्पण का उत्पादन करने के लिए भी किया जाता है: 99.999% के मूल्यों को या उत्तमतरीके से तरंग दैर्ध्य की एक संकीर्ण रेंज पर विशेष तकनीकों का उपयोग करके उत्पादित किया जा सकता है।वैकल्पिक रूप से, उन्हें प्रकाश के एक व्यापक स्पेक्ट्रम को प्रतिबिंबित करने के लिए बनाया जा सकता है, जैसे कि संपूर्ण दृश्यमान सीमा या टीआई-सैफायर लेज़र का स्पेक्ट्रम।इस प्रकार के दर्पण प्रकाशिकी प्रयोगों में बहुत आम हैं, उत्तमतकनीकों के कारण जो उच्च गुणवत्ता वाले दर्पणों के सस्ती निर्माण की अनुमति देते हैं। उनके अनुप्रयोगों के उदाहरणों में लेजर ऑप्टिकल गुहा एंड दर्पण, हॉट दर्पण और ठंडा दर्पण, थिन-फिल्म किरण विभाजक, हाई लेजर क्षति दहलीज दर्पण, और आधुनिक दर्पण धूप के चश्मे और कुछ दूरबीन#डाइलेक्ट्रिक_दर्पण पर कोटिंग्स सम्मिलित हैं।

तंत्र

[[इमेज:परावैद्युत दर्पण डायग्राम डाट एसवीजी|थंब|राइट| परावैद्युत दर्पण का आरेख, उच्च अपवर्तनांक n1 वाली पतली परतें कम अपवर्तक सूचकांक n2 वाली मोटी परतों के साथ परस्पर जुड़ी होती हैं। पथ की लंबाई lA और lB बिल्कुल एक तरंग दैर्ध्य से भिन्न होती है, जो रचनात्मक हस्तक्षेप की ओर ले जाती है।

परावैद्युत दर्पण, परावैद्युत हुआ ढेर की विभिन्न परतों से परिलक्षित प्रकाश के हस्तक्षेप (तरंग प्रसार) के आधार पर कार्य करते हैं।यह वही सिद्धांत है जिसका उपयोग मल्टी-लेयर एंटी-परावर्तक कोटिंग में किया जाता है। परावर्तक - विरोधी लेप, जो परावैद्युत हुआ ढेर हैं जो परावर्तकता को अधिकतम करने के बजाय कम से कम करने के लिए प्रारुप किए गए हैं। सरल परावैद्युत दर्पण एक-आयामी फोटोनिक क्रिस्टल की तरह कार्य करते हैं, जिसमें कम अपवर्तक सूचकांक की परतों के साथ एक उच्च अपवर्तक सूचकांक के साथ परतों का ढेर होता है (आरेख देखें)। परतों की मोटाई को इस तरह से चुना जाता है कि विभिन्न उच्च-सूचकांक परतों से प्रतिबिंबों के लिए पथ-लंबाई के अंतर तरंग दैर्ध्य के पूर्णांक गुणक होते हैं, जिसके लिए दर्पण को प्रारुप किया गया है।कम-सूचकांक परतों से प्रतिबिंबों में पथ की लंबाई के अंतर में बिल्कुल आधा तरंग दैर्ध्य होता है, लेकिन उच्च-से-निम्न सूचकांक सीमा की तुलना में कम से-उच्च सूचकांक सीमा पर चरण शिफ्ट में 180-डिग्री अंतर होता है,जिसका अर्थ है कि ये प्रतिबिंब भी चरण में हैं। सामान्य घटनाओं में एक दर्पण के संधर्व में, परतों में एक चौथाई तरंग दैर्ध्य की मोटाई होती है।

परावैद्युत हुआ फिल्टर द्वारा प्रेषित रंग तब बदल जाता है जब घटना प्रकाश का कोण बदल जाता है।

अन्य डिजाइनों में सामान्यतः अनुकूलन (गणित) द्वारा उत्पादित एक अधिक जटिल संरचना होती है। बाद के घटना में, परावर्तित प्रकाश के फैलाव (प्रकाशिकी) को भी नियंत्रित किया जा सकता है (देखें चिरपड दर्पण)। परावैद्युत दर्पणों के प्रारुप में, एक ऑप्टिकल ट्रांसफर-मैट्रिक्स विधि (ऑप्टिक्स) ट्रांसफर-मैट्रिक्स विधि का उपयोग किया जा सकता है। एक अच्छी तरह से प्रारुप की गई बहुपरत परावैद्युत हुआ कोटिंग दृश्यमान स्पेक्ट्रम में 99% से अधिक की परावर्तकता प्रदान कर सकती है।[1]

परावैद्युत दर्पण और दर्पण प्रारुप के कोण के एक समारोह के रूप में तरंग प्लेट को प्रदर्शित करते हैं।[2]सम्मिलित

विनिर्माण

sio2नीचे के किनारे पर दिखाई दे रहे हैं।

परावैद्युत दर्पण के लिए विनिर्माण तकनीक पतली-फिल्म निक्षेपण विधियों पर आधारित है। सामान्य तकनीक भौतिक वाष्प जमाव हैं (जिसमें बाष्पीकरणीय जमाव और आयन बीम सहायक जमाव सम्मिलित हैं), रासायनिक वाष्प जमाव, आयन बीम जमाव, आणविक बीम एपिटैक्सी और स्पटर डिप्रेशन सम्मिलित हैं।सामान्य सामग्री मैग्नीशियम फ्लोराइड होती है (n = 1.37), सिलिकॉन डाइऑक्साइड (n = 1.45), टैंटलम पेंटोक्साइड (n = 2.28) , जिंक सल्फाइड (n = 2.32), और टाइटेनियम डाइऑक्साइड (n = 2.4)

पॉलिमेरिक परावैद्युत दर्पण पिघल पॉलिमर के सह-उपचार के माध्यम से औद्योगिक रूप से गढ़े जाते हैं,[3] और स्पिन कोटिंग[4] या डिप-कोटिंग[5] छोटे पैमाने पर औद्योगिक रूप से गढ़े जाते हैं।

यह भी देखें

संदर्भ

  1. Slaiby, ZenaE.; Turki, Saeed N. (November–December 2014). "Study the reflectance of dielectric coating for the visiblespectrum" (PDF). International Journal of Emerging Trends & Technology in Computer Science. 3 (6): 1–4. ISSN 2278-6856.
  2. Apfel, J. H. (1982). "Phase retardance of periodic multilayer mirrors". Applied Optics. 21 (4): 733–738. doi:10.1364/AO.21.000733.
  3. Comoretto, Davide, ed. (2015). Organic and Hybrid Photonic Crystals (in British English). doi:10.1007/978-3-319-16580-6. ISBN 978-3-319-16579-0. S2CID 139074878.
  4. Lova, Paola; Giusto, Paolo; Stasio, Francesco Di; Manfredi, Giovanni; Paternò, Giuseppe M.; Cortecchia, Daniele; Soci, Cesare; Comoretto, Davide (9 May 2019). "All-polymer methylammonium lead iodide perovskite microcavities". Nanoscale (in English). 11 (18): 8978–8983. doi:10.1039/C9NR01422E. hdl:11567/944564. ISSN 2040-3372. PMID 31017152. S2CID 129943931.
  5. Russo, Manuela; Campoy‐Quiles, Mariano; Lacharmoise, Paul; Ferenczi, Toby A. M.; Garriga, Miquel; Caseri, Walter R.; Stingelin, Natalie (2012). "One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns". Journal of Polymer Science Part B: Polymer Physics (in English). 50 (1): 65–74. doi:10.1002/polb.22373. ISSN 1099-0488.

बाहरी कड़ियाँ