क्वांटम वेल लेजर: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Laser diode in which the active region is so narrow that quantum confinement occurs}} | {{Short description|Laser diode in which the active region is so narrow that quantum confinement occurs}} | ||
एक क्वांटम | एक क्वांटम कूप लेजर एक [[लेज़र डायोड]] है जिसमें उपकरण का सक्रिय क्षेत्र इतना संकीर्ण होता है कि क्वांटम कारावास होता है।लेजर डायोड यौगिक अर्धचालक सामग्री में बनते हैं जो प्रकाश को कुशलता से उत्सर्जित करने में सक्षम होते हैं।एक क्वांटम कूप लेजर द्वारा उत्सर्जित प्रकाश की तरंग दैर्ध्य को उन सामग्रियों के केवल [[ऊर्जा अंतराल]] के अतिरिक्त सक्रिय क्षेत्र की चौड़ाई से निर्धारित किया जाता है, जहां से इसका निर्माण किया जाता है।<ref name="forward">Foreword, [https://archive.today/20121009035143/http://www.books.google.com/books?isbn=0127818901]"The Origin of Quantum Wells and the Quantum Well Laser," by Charles H. Henry, in "Quantum Well Lasers," ed. by Peter S. Zory, Jr., Academic Press, 1993, pp. 1-13. | ||
</ref> इसका तात्पर्य यह है कि एक विशेष अर्धचालक सामग्री का उपयोग करके पारंपरिक लेजर डायोड की तुलना में बहुत कम तरंग दैर्ध्य क्वांटम अच्छी तरह से लेजर से प्राप्त किया जा सकता है।क्वांटम | </ref> इसका तात्पर्य यह है कि एक विशेष अर्धचालक सामग्री का उपयोग करके पारंपरिक लेजर डायोड की तुलना में बहुत कम तरंग दैर्ध्य क्वांटम अच्छी तरह से लेजर से प्राप्त किया जा सकता है।क्वांटम कूप लेजर की दक्षता भी राज्यों के कार्य के घनत्व के चरणबद्ध रूप के कारण एक पारंपरिक लेजर डायोड से भी अधिक है। | ||
== क्वांटम | == क्वांटम कूप की अवधारणा की उत्पत्ति == | ||
1972 में, चार्ल्स एच। हेनरी, एक भौतिक विज्ञानी और अर्धचालक विद्युत्कीय अनुसंधान विभाग के नए नियुक्त प्रमुख | 1972 में, चार्ल्स एच। हेनरी, एक भौतिक विज्ञानी और अर्धचालक विद्युत्कीय अनुसंधान विभाग के नए नियुक्त प्रमुख | ||
[[घंटी प्रयोगशालाएँ]], एकीकृत प्रकाशिकी के विषय में गहरी रुचि थी, प्रकाशीय परिपथ का निर्माण जिसमें प्रकाश तरंगपथनिर्धारित्र में यात्रा करता है। | [[घंटी प्रयोगशालाएँ]], एकीकृत प्रकाशिकी के विषय में गहरी रुचि थी, प्रकाशीय परिपथ का निर्माण जिसमें प्रकाश तरंगपथनिर्धारित्र में यात्रा करता है। | ||
Line 14: | Line 14: | ||
हेनरी यह गणना करने के लिए आगे बढ़े कि यह परिमाणीकरण कैसे इन अर्धचालकों के प्रकाशीय अवशोषण गुणों को बदल देगा। उन्होंने बोध किया कि, प्रकाशीय अवशोषण के अतिरिक्त सुचारू रूप से बढ़ने के रूप में यह साधारण अर्धचालकों में होता है, एक पतली विषमचय जब प्लॉट बनाम फोटॉन ऊर्जा का अवशोषण चरणों की एक श्रृंखला के रूप में दिखाई देगा। | हेनरी यह गणना करने के लिए आगे बढ़े कि यह परिमाणीकरण कैसे इन अर्धचालकों के प्रकाशीय अवशोषण गुणों को बदल देगा। उन्होंने बोध किया कि, प्रकाशीय अवशोषण के अतिरिक्त सुचारू रूप से बढ़ने के रूप में यह साधारण अर्धचालकों में होता है, एक पतली विषमचय जब प्लॉट बनाम फोटॉन ऊर्जा का अवशोषण चरणों की एक श्रृंखला के रूप में दिखाई देगा। | ||
हेनरी के योगदान के अतिरिक्त , [[क्वांटम वेल]] (जो कि एक प्रकार का डबल-हेट्रोस्ट्रक्चर लेजर है) वास्तव में पहली बार 1963 में हर्बर्ट क्रॉमर द्वारा IEEE की कार्यवाही में प्रस्तावित किया गया था<ref name="kroemer">{{cite journal | last=Kroemer | first=H. | title=A proposed class of hetero-junction injection lasers | journal=Proceedings of the IEEE | publisher=Institute of Electrical and Electronics Engineers (IEEE) | volume=51 | issue=12 | year=1963 | issn=0018-9219 | doi=10.1109/proc.1963.2706 | pages=1782–1783}}</ref> और एक साथ (1963 में) ZH द्वारा U.S.S.R में।आई। अल्फेरोव और आर.एफ.काज़रिनोव।<ref name="alferov">Zh. I. Alferov and R.F. Kazarinov, Authors Certificate 28448 (U.S.S.R) 1963.</ref> अल्फेरोव और क्रॉमर ने अर्धचालक विषमचय में अपने कार्य के लिए 2000 में एक नोबेल पुरस्कार साझा किया।<ref>{{Cite web | url=https://www.nobelprize.org/nobel_prizes/physics/laureates/2000/index.html |title = The Nobel Prize in Physics 2000}}</ref> | हेनरी के योगदान के अतिरिक्त , [[क्वांटम वेल|क्वांटम कूप]] (जो कि एक प्रकार का डबल-हेट्रोस्ट्रक्चर लेजर है) वास्तव में पहली बार 1963 में हर्बर्ट क्रॉमर द्वारा IEEE की कार्यवाही में प्रस्तावित किया गया था<ref name="kroemer">{{cite journal | last=Kroemer | first=H. | title=A proposed class of hetero-junction injection lasers | journal=Proceedings of the IEEE | publisher=Institute of Electrical and Electronics Engineers (IEEE) | volume=51 | issue=12 | year=1963 | issn=0018-9219 | doi=10.1109/proc.1963.2706 | pages=1782–1783}}</ref> और एक साथ (1963 में) ZH द्वारा U.S.S.R में।आई। अल्फेरोव और आर.एफ.काज़रिनोव।<ref name="alferov">Zh. I. Alferov and R.F. Kazarinov, Authors Certificate 28448 (U.S.S.R) 1963.</ref> अल्फेरोव और क्रॉमर ने अर्धचालक विषमचय में अपने कार्य के लिए 2000 में एक नोबेल पुरस्कार साझा किया।<ref>{{Cite web | url=https://www.nobelprize.org/nobel_prizes/physics/laureates/2000/index.html |title = The Nobel Prize in Physics 2000}}</ref> | ||
== क्वांटम | == क्वांटम कूप का प्रयोगात्मक सत्यापन == | ||
1973 की प्रारम्भ में, हेनरी ने रेमंड डिंगल को प्रस्तावित किया,<ref>[https://patents.justia.com/inventor/raymond-dingle "Raymond Dingle"], patents.justia.com</ref> अपने विभाग में एक भौतिक विज्ञानी, कि वह इन पूर्वानुमानित चरणों की तलाश करता है।बहुत पतला | 1973 की प्रारम्भ में, हेनरी ने रेमंड डिंगल को प्रस्तावित किया,<ref>[https://patents.justia.com/inventor/raymond-dingle "Raymond Dingle"], patents.justia.com</ref> अपने विभाग में एक भौतिक विज्ञानी, कि वह इन पूर्वानुमानित चरणों की तलाश करता है।बहुत पतला | ||
[[Index.php?title=आणविक किरण पुंज|आणविक किरण पुंज]] का उपयोग करके डब्ल्यू विगमैन द्वारा विषमचय बनाए गए थे। कदमों का नाटकीय प्रभाव आगामी समय में देखा गया था | [[Index.php?title=आणविक किरण पुंज|आणविक किरण पुंज]] का उपयोग करके डब्ल्यू विगमैन द्वारा विषमचय बनाए गए थे। कदमों का नाटकीय प्रभाव आगामी समय में देखा गया था | ||
Line 33: | Line 33: | ||
डिंगल और हेनरी ने इस नए प्रकार के [[अर्धचालक लेजर]] पर एक पेटेंट प्राप्त किया, जिसमें एक चौड़ी बैंडगैप परतों की एक जोड़ी थी, जिसमें उनके बीच एक सक्रिय क्षेत्र सैंडविच होता है, जिसमें सक्रिय परतें पर्याप्त पतली होती हैं (जैसे, लगभग 1 से 50 नैनोमीटर) क्वांटम स्तरों को अलग करने के लिएइलेक्ट्रॉनों में से एक में सीमित है।ये लेजर सक्रिय परतों की मोटाई को बदलकर तरंग दैर्ध्य ट्यूनबिलिटी का प्रदर्शन करते हैं।यह भी वर्णित है कि इलेक्ट्रॉन राज्यों के घनत्व के संशोधन के परिणामस्वरूप दहलीज में कमी की संभावना है।पेटेंट 21 सितंबर, 1976 को जारी किया गया था, जिसमें हेटरोस्ट्रक्चर लेजर, यू.एस. पेटेंट नंबर 3,982,207 में क्वांटम इफेक्ट्स थे।<ref name="quantumeffects">U.S. Patent #3,982,207, issued September 21, 1976, Inventors | डिंगल और हेनरी ने इस नए प्रकार के [[अर्धचालक लेजर]] पर एक पेटेंट प्राप्त किया, जिसमें एक चौड़ी बैंडगैप परतों की एक जोड़ी थी, जिसमें उनके बीच एक सक्रिय क्षेत्र सैंडविच होता है, जिसमें सक्रिय परतें पर्याप्त पतली होती हैं (जैसे, लगभग 1 से 50 नैनोमीटर) क्वांटम स्तरों को अलग करने के लिएइलेक्ट्रॉनों में से एक में सीमित है।ये लेजर सक्रिय परतों की मोटाई को बदलकर तरंग दैर्ध्य ट्यूनबिलिटी का प्रदर्शन करते हैं।यह भी वर्णित है कि इलेक्ट्रॉन राज्यों के घनत्व के संशोधन के परिणामस्वरूप दहलीज में कमी की संभावना है।पेटेंट 21 सितंबर, 1976 को जारी किया गया था, जिसमें हेटरोस्ट्रक्चर लेजर, यू.एस. पेटेंट नंबर 3,982,207 में क्वांटम इफेक्ट्स थे।<ref name="quantumeffects">U.S. Patent #3,982,207, issued September 21, 1976, Inventors | ||
R. Dingle and C. H. Henry ,"Quantum Effects in Heterostructure Lasers", filed March 7, 1975.</ref> | R. Dingle and C. H. Henry ,"Quantum Effects in Heterostructure Lasers", filed March 7, 1975.</ref> | ||
क्वांटम | क्वांटम कूप लेज़रों को पारंपरिक डबल हेटरोस्ट्रक्चर की तुलना में दहलीज तक पहुंचने के लिए कम इलेक्ट्रॉनों और छेद की आवश्यकता होती है | ||
लेजर।एक अच्छी तरह से डिज़ाइन किए गए क्वांटम | लेजर।एक अच्छी तरह से डिज़ाइन किए गए क्वांटम कूप लेजर में एक अत्यधिक कम सीमा हो सकती है। | ||
इसके अलावा, चूंकि क्वांटम दक्षता (प्रति इलेक्ट्रॉनों में फोटॉन्स-आउट) काफी हद तक ऑप्टिकल अवशोषण द्वारा सीमित है | इसके अलावा, चूंकि क्वांटम दक्षता (प्रति इलेक्ट्रॉनों में फोटॉन्स-आउट) काफी हद तक ऑप्टिकल अवशोषण द्वारा सीमित है | ||
इलेक्ट्रॉनों और छेद, बहुत उच्च क्वांटम क्षमताओं को क्वांटम | इलेक्ट्रॉनों और छेद, बहुत उच्च क्वांटम क्षमताओं को क्वांटम कूप लेजर के साथ प्राप्त किया जा सकता है। | ||
सक्रिय परत की मोटाई में कमी के लिए क्षतिपूर्ति करने के लिए, | सक्रिय परत की मोटाई में कमी के लिए क्षतिपूर्ति करने के लिए, | ||
समान क्वांटम | समान क्वांटम कूप की एक छोटी संख्या का उपयोग अक्सर किया जाता है।यह | ||
एक मल्टी-क्वांटम | एक मल्टी-क्वांटम कूप लेजर कहा जाता है। | ||
== प्रारंभिक प्रदर्शन == | == प्रारंभिक प्रदर्शन == | ||
जबकि क्वांटम | जबकि क्वांटम कूप लेजर शब्द 1970 के दशक के उत्तरार्ध में [[निक होलोनीक]] और उनके छात्रों द्वारा इलिनोइस विश्वविद्यालय में उरबाना चैम्पेन में गढ़ा गया था, क्वांटम कूप लेजर ऑपरेशन का पहला अवलोकन किया गया था <ref>{{cite journal | last1=van der Ziel | first1=J. P. | last2=Dingle | first2=R. | last3=Miller | first3=R. C. | last4=Wiegmann | first4=W. | last5=Nordland | first5=W. A. | title=Laser oscillation from quantum states in very thin GaAs−Al<sub>0.2</sub>Ga<sub>0.8</sub>As multilayer structures | journal=Applied Physics Letters | publisher=AIP Publishing | volume=26 | issue=8 | date=1975-04-15 | issn=0003-6951 | doi=10.1063/1.88211 | pages=463–465| bibcode=1975ApPhL..26..463V }}</ref> 1975 में बेल लेबोरेटरीज में।<ref name="forward" /> पहला विद्युत पंप इंजेक्शन क्वांटम कूप लेजर देखा गया था <ref>{{cite journal | last1=Dupuis | first1=R. D. | last2=Dapkus | first2=P. D. | last3=Holonyak | first3=Nick | last4=Rezek | first4=E. A. | last5=Chin | first5=R. | title=Room‐temperature laser operation of quantum‐well Ga<sub>(1−x)</sub>Al<sub>x</sub>As‐GaAs laser diodes grown by metalorganic chemical vapor deposition | journal=Applied Physics Letters | publisher=AIP Publishing | volume=32 | issue=5 | year=1978 | issn=0003-6951 | doi=10.1063/1.90026 | pages=295–297| bibcode=1978ApPhL..32..295D }}</ref> 1977 में उरबाना चैम्पेन (होलोनीक) समूह में इलिनोइस विश्वविद्यालय के सहयोग से, [[रॉकवेल इंटरनेशनल|रॉककूप इंटरनेशनल]] के पी। डैनियल डैपकस और रसेल डी। डुपुइस द्वारा।अर्धचालक परतों को बनाने के लिए OMCVD, OMVPE, और MOCVD) तकनीक।उस समय MOVPE तकनीक ने, बेल लैब्स द्वारा उपयोग किए जाने वाले आणविक बीम एपिटैक्सी (MBE) की तुलना में बेहतर विकिरण क्षमता प्रदान की।बाद में, हालांकि, बेल लेबोरेटरीज में टी। त्सांग जीता, 1970 के दशक के अंत में और 1980 के दशक की शुरुआत में क्वांटम कूप लेज़रों के प्रदर्शन में नाटकीय सुधार का प्रदर्शन करने के लिए एमबीई तकनीकों का उपयोग करने में सफल रहा।TSANG ने दिखाया कि, जब क्वांटम कूप को अनुकूलित किया जाता है, तो उनके पास वर्तमान में कम थ्रेशोल्ड करंट होता है और वर्तमान में लाइट-आउट में परिवर्तित करने में बहुत उच्च दक्षता होती है, जिससे वे व्यापक उपयोग के लिए आदर्श बन जाते हैं। | ||
वैकल्पिक रूप से पंप किए गए क्वांटम अच्छी तरह से लेजर के मूल 1975 के प्रदर्शन में 35 & nbsp; kW/cm की दहलीज शक्ति घनत्व था<sup>2 </sup>। | वैकल्पिक रूप से पंप किए गए क्वांटम अच्छी तरह से लेजर के मूल 1975 के प्रदर्शन में 35 & nbsp; kW/cm की दहलीज शक्ति घनत्व था<sup>2 </sup>। | ||
अंततः, यह पाया गया कि किसी भी क्वांटम अच्छी तरह से लेजर में सबसे कम व्यावहारिक सीमा वर्तमान घनत्व 40 एम्पीयर/सेमी है<sup>2 </sup>, लगभग 1,000x की कमी।<ref>Alferov et al (1998); Chand et al. (1990, 1991).</ref>{{Full citation needed|date=December 2019}} | अंततः, यह पाया गया कि किसी भी क्वांटम अच्छी तरह से लेजर में सबसे कम व्यावहारिक सीमा वर्तमान घनत्व 40 एम्पीयर/सेमी है<sup>2 </sup>, लगभग 1,000x की कमी।<ref>Alferov et al (1998); Chand et al. (1990, 1991).</ref>{{Full citation needed|date=December 2019}} | ||
[[गैलियम आर्सेनाइड]] और [[भोला फॉस्फाइड]] वेफर्स के आधार पर क्वांटम | [[गैलियम आर्सेनाइड]] और [[भोला फॉस्फाइड]] वेफर्स के आधार पर क्वांटम कूप लेजर पर व्यापक काम किया गया है।आज, हालांकि, लेज़रों ने क्वांटम कूप और असतत इलेक्ट्रॉन मोड का उपयोग किया, जो सी.एच.हेनरी 1970 के दशक की शुरुआत में, MOVPE और MBE तकनीकों दोनों द्वारा निर्मित, पराबैंगनी से THZ शासन तक विभिन्न प्रकार के तरंग दैर्ध्य में उत्पादित किए जाते हैं।सबसे छोटा तरंग दैर्ध्य लेजर [[गैलियम नाइट्राइड]]-आधारित सामग्रियों पर निर्भर करता है।सबसे लंबा तरंग दैर्ध्य लेजर [[क्वांटम कैस्केड लेजर]] डिजाइन पर निर्भर करता है। | ||
क्वांटम अच्छी तरह से अवधारणा की उत्पत्ति की कहानी, इसकी | क्वांटम अच्छी तरह से अवधारणा की उत्पत्ति की कहानी, इसकी | ||
प्रायोगिक सत्यापन, और क्वांटम का आविष्कार अच्छी तरह से | प्रायोगिक सत्यापन, और क्वांटम का आविष्कार अच्छी तरह से | ||
लेजर को हेनरी ने क्वांटम | लेजर को हेनरी ने क्वांटम कूप में फोरवॉर्ड में अधिक विस्तार से बताया है | ||
लेजर, एड।पीटर एस। ज़ोरी द्वारा, जूनियर।<ref name="forward" /> | लेजर, एड।पीटर एस। ज़ोरी द्वारा, जूनियर।<ref name="forward" /> | ||
== इंटरनेट का निर्माण == | == इंटरनेट का निर्माण == | ||
क्वांटम | क्वांटम कूप लेजर महत्वपूर्ण हैं क्योंकि वे इंटरनेट [[फाइबर ऑप्टिक संचार]] के मूल सक्रिय तत्व (लेजर लाइट स्रोत) हैं।इन लेज़रों पर प्रारंभिक कार्य, अल-गास की दीवारों से बंधे हुए गैल गैलियम आर्सेनाइड आधारित कूप पर केंद्रित है, लेकिन [[प्रकाशित रेशे]] द्वारा प्रेषित तरंग दैर्ध्य को [[नालियों का फॉस्फाइड]] आधारित कूप के साथ इंडियम फॉस्फाइड की दीवारों के साथ सबसे अच्छा हासिल किया जाता है।केबलों में दफन किए गए प्रकाश स्रोतों का केंद्रीय व्यावहारिक मुद्दा उनके जीवनकाल को जलाने के लिए है।अर्ली क्वांटम कूप लेज़रों का औसत बर्न-आउट समय एक सेकंड से भी कम था, ताकि कई प्रारंभिक वैज्ञानिक सफलताओं को दुर्लभ लेजर का उपयोग करके दिनों या हफ्तों के जले हुए समय के साथ हासिल किया गया।1990 के दशक की शुरुआत में [[प्रकाशमान]] (बेल लेबोरेटरीज से एक स्पिन-ऑफ) द्वारा व्यावसायिक सफलता प्राप्त की गई थी, जो कि Movpe Metalorganic vapor Phase epitaxy द्वारा क्वांटम कूप लेजर उत्पादन के गुणवत्ता नियंत्रण के साथ, जैसा कि जोआना (जोका) मारिया वैंडेनबर्ग द्वारा उच्च-रिज़ॉल्यूशन एक्स किरणों का उपयोग करके किया गया था।उसके गुणवत्ता नियंत्रण ने 25 साल से अधिक समय तक मंझला बर्न-आउट के साथ इंटरनेट लेज़रों का उत्पादन किया। | ||
मल्टीपल क्वांटम | मल्टीपल क्वांटम कूप III-[[नाइट्राइड]] डायोड में वे तरंग दैर्ध्य के बीच एक अतिव्यापी क्षेत्र की सुविधा होती है जो वे उत्सर्जित करते हैं और पता लगाते हैं।यह उन्हें एक ही ऑप्टिकल पथ के माध्यम से हवा पर एक मल्टी-चैनल संचार लिंक बनाने के लिए एक ट्रांसमीटर और एक रिसीवर दोनों के रूप में एक साथ उपयोग करने की अनुमति देता है।<ref>{{cite journal|url=https://archive.today/tJr9F|publisher=[[Phys.org]]|access-date=September 19, 2022|date=September 15, 2022|title=New multi-channel visible light communication system uses single optical path|doi=10.1364/OL.470796|pmid=36107094 |last1=Fu |first1=K. |last2=Gao |first2=X. |last3=Yin |first3=Q. |last4=Yan |first4=J. |last5=Ji |first5=X. |last6=Wang |first6=Y. |journal=Optics Letters |volume=47 |issue=18 |pages=4802–4805 |s2cid=251525855 }}</ref> | ||
Revision as of 17:56, 5 February 2023
एक क्वांटम कूप लेजर एक लेज़र डायोड है जिसमें उपकरण का सक्रिय क्षेत्र इतना संकीर्ण होता है कि क्वांटम कारावास होता है।लेजर डायोड यौगिक अर्धचालक सामग्री में बनते हैं जो प्रकाश को कुशलता से उत्सर्जित करने में सक्षम होते हैं।एक क्वांटम कूप लेजर द्वारा उत्सर्जित प्रकाश की तरंग दैर्ध्य को उन सामग्रियों के केवल ऊर्जा अंतराल के अतिरिक्त सक्रिय क्षेत्र की चौड़ाई से निर्धारित किया जाता है, जहां से इसका निर्माण किया जाता है।[1] इसका तात्पर्य यह है कि एक विशेष अर्धचालक सामग्री का उपयोग करके पारंपरिक लेजर डायोड की तुलना में बहुत कम तरंग दैर्ध्य क्वांटम अच्छी तरह से लेजर से प्राप्त किया जा सकता है।क्वांटम कूप लेजर की दक्षता भी राज्यों के कार्य के घनत्व के चरणबद्ध रूप के कारण एक पारंपरिक लेजर डायोड से भी अधिक है।
क्वांटम कूप की अवधारणा की उत्पत्ति
1972 में, चार्ल्स एच। हेनरी, एक भौतिक विज्ञानी और अर्धचालक विद्युत्कीय अनुसंधान विभाग के नए नियुक्त प्रमुख घंटी प्रयोगशालाएँ, एकीकृत प्रकाशिकी के विषय में गहरी रुचि थी, प्रकाशीय परिपथ का निर्माण जिसमें प्रकाश तरंगपथनिर्धारित्र में यात्रा करता है।
बाद में उस वर्ष तरंगपथनिर्धारित्र के भौतिकी को इंगित करते हुए, हेनरी की गहन अंतर्दृष्टि थी।उन्होंने महसूस किया कि एक दोहरे विषमचय न केवल हल्की तरंगों के लिए एक तरंगपथनिर्धारित्र है, बल्कि एक साथ इलेक्ट्रॉन तरंगों के लिए भी है।हेनरी क्वांटम यांत्रिकी के सिद्धांतों पर आकर्षित कर रहा था, जिसके अनुसार इलेक्ट्रॉनों को कणों और तरंगों के रूप में व्यवहार करते हैं।उन्होंने एक तरंगपथनिर्धारित्र द्वारा प्रकाश के कारावास और इलेक्ट्रॉनों के कारावास के बीच एक पूर्ण सादृश्यता को एक दोहरे विषमचय में उर्जा अंतराल में अंतर से बनता है।
सीएच.एच.हेनरी को बोध हुआ कि, जैसे कि असतत मोड हैं, जिसमें लाइट एक तरंगपथनिर्धारित्र के भीतर यात्रा करता है, संभावित कुएं में असतत इलेक्ट्रॉन तरंग कार्य मोड में होना चाहिए, प्रत्येक में एक अद्वितीय ऊर्जा स्तर होता है।उनके अनुमान से पता चला है कि यदि विषमचय की सक्रिय परत कई दसियों नैनोमीटर के रूप में पतली है, तो इलेक्ट्रॉन ऊर्जा का स्तर मिलि-इलेक्ट्रॉन विभव के दसियों से अलग हो जाएगा।ऊर्जा स्तर के विभाजन की यह मात्रा अवलोकन योग्य है।हेनरी ने जो संरचना का विश्लेषण किया है, उसे आज एक क्वांटम अच्छी तरह से कहा जाता है।
हेनरी यह गणना करने के लिए आगे बढ़े कि यह परिमाणीकरण कैसे इन अर्धचालकों के प्रकाशीय अवशोषण गुणों को बदल देगा। उन्होंने बोध किया कि, प्रकाशीय अवशोषण के अतिरिक्त सुचारू रूप से बढ़ने के रूप में यह साधारण अर्धचालकों में होता है, एक पतली विषमचय जब प्लॉट बनाम फोटॉन ऊर्जा का अवशोषण चरणों की एक श्रृंखला के रूप में दिखाई देगा।
हेनरी के योगदान के अतिरिक्त , क्वांटम कूप (जो कि एक प्रकार का डबल-हेट्रोस्ट्रक्चर लेजर है) वास्तव में पहली बार 1963 में हर्बर्ट क्रॉमर द्वारा IEEE की कार्यवाही में प्रस्तावित किया गया था[2] और एक साथ (1963 में) ZH द्वारा U.S.S.R में।आई। अल्फेरोव और आर.एफ.काज़रिनोव।[3] अल्फेरोव और क्रॉमर ने अर्धचालक विषमचय में अपने कार्य के लिए 2000 में एक नोबेल पुरस्कार साझा किया।[4]
क्वांटम कूप का प्रयोगात्मक सत्यापन
1973 की प्रारम्भ में, हेनरी ने रेमंड डिंगल को प्रस्तावित किया,[5] अपने विभाग में एक भौतिक विज्ञानी, कि वह इन पूर्वानुमानित चरणों की तलाश करता है।बहुत पतला आणविक किरण पुंज का उपयोग करके डब्ल्यू विगमैन द्वारा विषमचय बनाए गए थे। कदमों का नाटकीय प्रभाव आगामी समय में देखा गया था प्रयोग, 1974 में प्रकाशित।[6]
क्वांटम अच्छी तरह से लेजर का आविष्कार
इस प्रयोग के बाद अनुमानित क्वांटम अच्छी तरह से ऊर्जा के स्तर की वास्तविकता दिखाई गई, हेनरी ने एक आवेदन के बारे में सोचने की कोशिश की। उन्होंने महसूस किया कि क्वांटम अच्छी तरह से संरचना अर्धचालक के राज्यों के घनत्व को बदल देगी, और परिणाम में सुधार होगा सेमीकंडक्टर लेजर लेजर थ्रेशोल्ड तक पहुंचने के लिए कम इलेक्ट्रॉनों और इलेक्ट्रॉन होल की आवश्यकता होती है।इसके अलावा, उन्होंने महसूस किया कि लेजर तरंग दैर्ध्य पतली क्वांटम अच्छी तरह से परतों की मोटाई को बदलकर केवल बदला जा सकता है, जबकि पारंपरिक लेजर में तरंग दैर्ध्य में बदलाव परत रचना में बदलाव की आवश्यकता है।इस तरह के एक लेजर, उन्होंने तर्क दिया, की तुलना में बेहतर प्रदर्शन विशेषताएं होंगी उस समय मानक डबल हेटरोस्ट्रक्चर लेजर बनाया जा रहा है।
डिंगल और हेनरी ने इस नए प्रकार के अर्धचालक लेजर पर एक पेटेंट प्राप्त किया, जिसमें एक चौड़ी बैंडगैप परतों की एक जोड़ी थी, जिसमें उनके बीच एक सक्रिय क्षेत्र सैंडविच होता है, जिसमें सक्रिय परतें पर्याप्त पतली होती हैं (जैसे, लगभग 1 से 50 नैनोमीटर) क्वांटम स्तरों को अलग करने के लिएइलेक्ट्रॉनों में से एक में सीमित है।ये लेजर सक्रिय परतों की मोटाई को बदलकर तरंग दैर्ध्य ट्यूनबिलिटी का प्रदर्शन करते हैं।यह भी वर्णित है कि इलेक्ट्रॉन राज्यों के घनत्व के संशोधन के परिणामस्वरूप दहलीज में कमी की संभावना है।पेटेंट 21 सितंबर, 1976 को जारी किया गया था, जिसमें हेटरोस्ट्रक्चर लेजर, यू.एस. पेटेंट नंबर 3,982,207 में क्वांटम इफेक्ट्स थे।[7] क्वांटम कूप लेज़रों को पारंपरिक डबल हेटरोस्ट्रक्चर की तुलना में दहलीज तक पहुंचने के लिए कम इलेक्ट्रॉनों और छेद की आवश्यकता होती है लेजर।एक अच्छी तरह से डिज़ाइन किए गए क्वांटम कूप लेजर में एक अत्यधिक कम सीमा हो सकती है।
इसके अलावा, चूंकि क्वांटम दक्षता (प्रति इलेक्ट्रॉनों में फोटॉन्स-आउट) काफी हद तक ऑप्टिकल अवशोषण द्वारा सीमित है इलेक्ट्रॉनों और छेद, बहुत उच्च क्वांटम क्षमताओं को क्वांटम कूप लेजर के साथ प्राप्त किया जा सकता है।
सक्रिय परत की मोटाई में कमी के लिए क्षतिपूर्ति करने के लिए, समान क्वांटम कूप की एक छोटी संख्या का उपयोग अक्सर किया जाता है।यह एक मल्टी-क्वांटम कूप लेजर कहा जाता है।
प्रारंभिक प्रदर्शन
जबकि क्वांटम कूप लेजर शब्द 1970 के दशक के उत्तरार्ध में निक होलोनीक और उनके छात्रों द्वारा इलिनोइस विश्वविद्यालय में उरबाना चैम्पेन में गढ़ा गया था, क्वांटम कूप लेजर ऑपरेशन का पहला अवलोकन किया गया था [8] 1975 में बेल लेबोरेटरीज में।[1] पहला विद्युत पंप इंजेक्शन क्वांटम कूप लेजर देखा गया था [9] 1977 में उरबाना चैम्पेन (होलोनीक) समूह में इलिनोइस विश्वविद्यालय के सहयोग से, रॉककूप इंटरनेशनल के पी। डैनियल डैपकस और रसेल डी। डुपुइस द्वारा।अर्धचालक परतों को बनाने के लिए OMCVD, OMVPE, और MOCVD) तकनीक।उस समय MOVPE तकनीक ने, बेल लैब्स द्वारा उपयोग किए जाने वाले आणविक बीम एपिटैक्सी (MBE) की तुलना में बेहतर विकिरण क्षमता प्रदान की।बाद में, हालांकि, बेल लेबोरेटरीज में टी। त्सांग जीता, 1970 के दशक के अंत में और 1980 के दशक की शुरुआत में क्वांटम कूप लेज़रों के प्रदर्शन में नाटकीय सुधार का प्रदर्शन करने के लिए एमबीई तकनीकों का उपयोग करने में सफल रहा।TSANG ने दिखाया कि, जब क्वांटम कूप को अनुकूलित किया जाता है, तो उनके पास वर्तमान में कम थ्रेशोल्ड करंट होता है और वर्तमान में लाइट-आउट में परिवर्तित करने में बहुत उच्च दक्षता होती है, जिससे वे व्यापक उपयोग के लिए आदर्श बन जाते हैं।
वैकल्पिक रूप से पंप किए गए क्वांटम अच्छी तरह से लेजर के मूल 1975 के प्रदर्शन में 35 & nbsp; kW/cm की दहलीज शक्ति घनत्व था2 । अंततः, यह पाया गया कि किसी भी क्वांटम अच्छी तरह से लेजर में सबसे कम व्यावहारिक सीमा वर्तमान घनत्व 40 एम्पीयर/सेमी है2 , लगभग 1,000x की कमी।[10][full citation needed] गैलियम आर्सेनाइड और भोला फॉस्फाइड वेफर्स के आधार पर क्वांटम कूप लेजर पर व्यापक काम किया गया है।आज, हालांकि, लेज़रों ने क्वांटम कूप और असतत इलेक्ट्रॉन मोड का उपयोग किया, जो सी.एच.हेनरी 1970 के दशक की शुरुआत में, MOVPE और MBE तकनीकों दोनों द्वारा निर्मित, पराबैंगनी से THZ शासन तक विभिन्न प्रकार के तरंग दैर्ध्य में उत्पादित किए जाते हैं।सबसे छोटा तरंग दैर्ध्य लेजर गैलियम नाइट्राइड-आधारित सामग्रियों पर निर्भर करता है।सबसे लंबा तरंग दैर्ध्य लेजर क्वांटम कैस्केड लेजर डिजाइन पर निर्भर करता है।
क्वांटम अच्छी तरह से अवधारणा की उत्पत्ति की कहानी, इसकी प्रायोगिक सत्यापन, और क्वांटम का आविष्कार अच्छी तरह से लेजर को हेनरी ने क्वांटम कूप में फोरवॉर्ड में अधिक विस्तार से बताया है लेजर, एड।पीटर एस। ज़ोरी द्वारा, जूनियर।[1]
इंटरनेट का निर्माण
क्वांटम कूप लेजर महत्वपूर्ण हैं क्योंकि वे इंटरनेट फाइबर ऑप्टिक संचार के मूल सक्रिय तत्व (लेजर लाइट स्रोत) हैं।इन लेज़रों पर प्रारंभिक कार्य, अल-गास की दीवारों से बंधे हुए गैल गैलियम आर्सेनाइड आधारित कूप पर केंद्रित है, लेकिन प्रकाशित रेशे द्वारा प्रेषित तरंग दैर्ध्य को नालियों का फॉस्फाइड आधारित कूप के साथ इंडियम फॉस्फाइड की दीवारों के साथ सबसे अच्छा हासिल किया जाता है।केबलों में दफन किए गए प्रकाश स्रोतों का केंद्रीय व्यावहारिक मुद्दा उनके जीवनकाल को जलाने के लिए है।अर्ली क्वांटम कूप लेज़रों का औसत बर्न-आउट समय एक सेकंड से भी कम था, ताकि कई प्रारंभिक वैज्ञानिक सफलताओं को दुर्लभ लेजर का उपयोग करके दिनों या हफ्तों के जले हुए समय के साथ हासिल किया गया।1990 के दशक की शुरुआत में प्रकाशमान (बेल लेबोरेटरीज से एक स्पिन-ऑफ) द्वारा व्यावसायिक सफलता प्राप्त की गई थी, जो कि Movpe Metalorganic vapor Phase epitaxy द्वारा क्वांटम कूप लेजर उत्पादन के गुणवत्ता नियंत्रण के साथ, जैसा कि जोआना (जोका) मारिया वैंडेनबर्ग द्वारा उच्च-रिज़ॉल्यूशन एक्स किरणों का उपयोग करके किया गया था।उसके गुणवत्ता नियंत्रण ने 25 साल से अधिक समय तक मंझला बर्न-आउट के साथ इंटरनेट लेज़रों का उत्पादन किया।
मल्टीपल क्वांटम कूप III-नाइट्राइड डायोड में वे तरंग दैर्ध्य के बीच एक अतिव्यापी क्षेत्र की सुविधा होती है जो वे उत्सर्जित करते हैं और पता लगाते हैं।यह उन्हें एक ही ऑप्टिकल पथ के माध्यम से हवा पर एक मल्टी-चैनल संचार लिंक बनाने के लिए एक ट्रांसमीटर और एक रिसीवर दोनों के रूप में एक साथ उपयोग करने की अनुमति देता है।[11]
संदर्भ
- ↑ 1.0 1.1 1.2 Foreword, [1]"The Origin of Quantum Wells and the Quantum Well Laser," by Charles H. Henry, in "Quantum Well Lasers," ed. by Peter S. Zory, Jr., Academic Press, 1993, pp. 1-13.
- ↑ Kroemer, H. (1963). "A proposed class of hetero-junction injection lasers". Proceedings of the IEEE. Institute of Electrical and Electronics Engineers (IEEE). 51 (12): 1782–1783. doi:10.1109/proc.1963.2706. ISSN 0018-9219.
- ↑ Zh. I. Alferov and R.F. Kazarinov, Authors Certificate 28448 (U.S.S.R) 1963.
- ↑ "The Nobel Prize in Physics 2000".
- ↑ "Raymond Dingle", patents.justia.com
- ↑ Dingle, R.; Wiegmann, W.; Henry, C. H. (1974-09-30). "Quantum States of Confined Carriers in Very Thin AlxGa1−xAs-GaAs-AlxGa1−xAs Heterostructures". Physical Review Letters. American Physical Society (APS). 33 (14): 827–830. Bibcode:1974PhRvL..33..827D. doi:10.1103/physrevlett.33.827. ISSN 0031-9007.
- ↑ U.S. Patent #3,982,207, issued September 21, 1976, Inventors R. Dingle and C. H. Henry ,"Quantum Effects in Heterostructure Lasers", filed March 7, 1975.
- ↑ van der Ziel, J. P.; Dingle, R.; Miller, R. C.; Wiegmann, W.; Nordland, W. A. (1975-04-15). "Laser oscillation from quantum states in very thin GaAs−Al0.2Ga0.8As multilayer structures". Applied Physics Letters. AIP Publishing. 26 (8): 463–465. Bibcode:1975ApPhL..26..463V. doi:10.1063/1.88211. ISSN 0003-6951.
- ↑ Dupuis, R. D.; Dapkus, P. D.; Holonyak, Nick; Rezek, E. A.; Chin, R. (1978). "Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition". Applied Physics Letters. AIP Publishing. 32 (5): 295–297. Bibcode:1978ApPhL..32..295D. doi:10.1063/1.90026. ISSN 0003-6951.
- ↑ Alferov et al (1998); Chand et al. (1990, 1991).
- ↑ Fu, K.; Gao, X.; Yin, Q.; Yan, J.; Ji, X.; Wang, Y. (September 15, 2022). "New multi-channel visible light communication system uses single optical path". Optics Letters. Phys.org. 47 (18): 4802–4805. doi:10.1364/OL.470796. PMID 36107094. S2CID 251525855. Retrieved September 19, 2022.