शक्ति तंत्र का संरक्षण: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
== अवयव == | == अवयव == | ||
सुरक्षा प्रणालियों में | सुरक्षा प्रणालियों में सामान्यतः पर पांच घटक होते है | ||
*रिले से निपटने के लिए सुविधाजनक स्तर तक विद्युत शक्ति प्रणाली के उच्च वोल्टेज और धाराओं को कम करने के लिए वर्तमान और वोल्टेज ट्रांसफार्मर होते है। | *रिले से निपटने के लिए सुविधाजनक स्तर तक विद्युत शक्ति प्रणाली के उच्च वोल्टेज और धाराओं को कम करने के लिए वर्तमान और वोल्टेज ट्रांसफार्मर होते है। | ||
*सुरक्षात्मक रिले गलती को समझने और एक यात्रा, या डिस्कनेक्शन, ऑर्डर शुरू करने के लिए होता है। | *सुरक्षात्मक रिले गलती को समझने और एक यात्रा, या डिस्कनेक्शन, ऑर्डर शुरू करने के लिए होता है। | ||
Line 30: | Line 30: | ||
=== पृथ्वी दोष / भूमि दोष === | === पृथ्वी दोष / भूमि दोष === | ||
पृथ्वी दोष संरक्षण के लिए भी वर्तमान ट्रांसफार्मर की आवश्यकता होती है और तीन-चरण सर्किट में असंतुलन की अनुभूति होती है। | पृथ्वी दोष संरक्षण के लिए भी वर्तमान ट्रांसफार्मर की आवश्यकता होती है और तीन-चरण सर्किट में असंतुलन की अनुभूति होती है। सामान्यतः पर तीन चरण धाराएं संतुलन में होती है, परिमाण में लगभग बराबर होती है। यदि एक या दो चरण कम प्रतिबाधा पथ के माध्यम से पृथ्वी से जुड़ जाता है, तो उनका परिमाण नाटकीय रूप से बढ़ जाता है, जिससे कि वर्तमान असंतुलित होता है। यदि यह असंतुलन पूर्व निर्धारित मान से अधिक हो जाता है, तो सर्किट ब्रेकर को संचालित करता है। प्रतिबंधित पृथ्वी दोष संरक्षण एक प्रकार का पृथ्वी दोष संरक्षण है जो वर्तमान ट्रांसफार्मर के दो सेटों के बीच पृथ्वी दोष की तलाश करता है<ref>{{cite web|title=Restricted Earth Fault Protection|url=http://myelectrical.com/notes/entryid/150/restricted-earth-fault-protection|publisher=myElectrical.com|access-date=2 July 2013}}</ref> (इसलिए उस क्षेत्र तक ही सीमित है)। | ||
=== दूरी (प्रतिबाधा रिले) === | === दूरी (प्रतिबाधा रिले) === | ||
दूरी सुरक्षा वोल्टेज और करंट दोनों का पता लगाता है। सर्किट पर एक गलती | दूरी सुरक्षा वोल्टेज और करंट दोनों का पता लगाता है। सर्किट पर एक गलती सामान्यतः पर वोल्टेज स्तर में शिथिलता पैदा करता है। यदि रिले टर्मिनलों पर मापे गए वोल्टेज से करंट का अनुपात जो एक प्रतिबाधा के बराबर है, एक पूर्व निर्धारित स्तर के भीतर आते ही सर्किट ब्रेकर संचालित होता है। यह उचित रूप से लंबी लाइनों, 10 मील से अधिक लंबी लाइनों के लिए उपयोगी होता है, क्योंकि उनकी परिचालन विशेषताएँ लाइन विशेषताओं पर आधारित होती है। इसका मतलब यह है कि जब लाइन पर कोई दोष दिखाई देता है तो प्रतिबाधा सेटिंग की तुलना रिले टर्मिनलों से दोष तक लाइन के स्पष्ट प्रतिबाधा से जाता है। यदि रिले सेटिंग को स्पष्ट प्रतिबाधा से कम निर्धारित किया जाता है तो यह निर्धारित किया जाता है कि दोष सुरक्षा के क्षेत्र के भीतर होता है। जब ट्रांसमिशन लाइन की लंबाई बहुत कम होती है, 10 मील से कम, दूरी की सुरक्षा को समन्वयित करना अधिक कठिन हो जाता है। इन उदाहरणों में सुरक्षा का सबसे अच्छा विकल्प वर्तमान विभेदक सुरक्षा होता है। | ||
===बैक-अप === | ===बैक-अप === | ||
संरक्षण का उद्देश्य केवल पौधे के प्रभावित हिस्से को हटाना है और कुछ नहीं होता है। एक सर्किट ब्रेकर या सुरक्षा रिले संचालित करने में विफल भी हो सकता है। महत्वपूर्ण प्रणालियों में, प्राथमिक सुरक्षा की विफलता के परिणामस्वरूप | संरक्षण का उद्देश्य केवल पौधे के प्रभावित हिस्से को हटाना है और कुछ नहीं होता है। एक सर्किट ब्रेकर या सुरक्षा रिले संचालित करने में विफल भी हो सकता है। महत्वपूर्ण प्रणालियों में, प्राथमिक सुरक्षा की विफलता के परिणामस्वरूप सामान्यतः पर बैक-अप सुरक्षा का संचालन होता है। रिमोट बैक-अप सुरक्षा सामान्यतः पर गलती को दूर करने के लिए पौधे की प्रभावित और अप्रभावित दोनों वस्तुओं को हटा देता है। स्थानीय बैक-अप सुरक्षा दोष को दूर करने के लिए संयंत्र की प्रभावित वस्तुओं को हटा देता है। | ||
=== [[कम वोल्टेज नेटवर्क]] === | === [[कम वोल्टेज नेटवर्क]] === | ||
लो-वोल्टेज नेटवर्क | लो-वोल्टेज नेटवर्क सामान्यतः पर फ़्यूज़ या लो-वोल्टेज सर्किट ब्रेकर पर निर्भर करता है जिससे ओवरलोड और अर्थ दोनों दोषों को दूर किया जा सकता है। | ||
=== साइबर सुरक्षा === | === साइबर सुरक्षा === | ||
Line 44: | Line 44: | ||
== समन्वय == | == समन्वय == | ||
सुरक्षात्मक उपकरण समन्वय असामान्य विद्युत स्थितियों के होने पर वर्तमान रुकावट के "सर्वश्रेष्ठ फिट" समय को निर्धारित करने की प्रक्रिया होती है। लक्ष्य एक आउटेज को संभव सबसे बड़ी सीमा तक कम करता है। ऐतिहासिक रूप से, पारभासी लॉग-लॉग पेपर पर सुरक्षात्मक उपकरण समन्वय किया जाता है। आधुनिक तरीकों में | सुरक्षात्मक उपकरण समन्वय असामान्य विद्युत स्थितियों के होने पर वर्तमान रुकावट के "सर्वश्रेष्ठ फिट" समय को निर्धारित करने की प्रक्रिया होती है। लक्ष्य एक आउटेज को संभव सबसे बड़ी सीमा तक कम करता है। ऐतिहासिक रूप से, पारभासी लॉग-लॉग पेपर पर सुरक्षात्मक उपकरण समन्वय किया जाता है। आधुनिक तरीकों में सामान्यतः पर विस्तृत कंप्यूटर आधारित विश्लेषण और रिपोर्टिंग सम्मलित होती है। | ||
बिजली व्यवस्था को सुरक्षात्मक क्षेत्रों में विभाजित करके सुरक्षा समन्वय भी संभाला जाता है। यदि किसी दिए गए क्षेत्र में कोई खराबी आती है, तो उस क्षेत्र को पूरे सिस्टम से अलग करने के लिए आवश्यक कार्रवाई होती है। ज़ोन की परिभाषाएँ जनरेटर, बसों, ट्रांसफार्मर, ट्रांसमिशन और वितरण लाइनों और मोटर्स के लिए होती है। इसके अतिरिक्त, ज़ोन में निम्नलिखित विशेषताएं होती हैं: ज़ोन ओवरलैप, ओवरलैप क्षेत्र सर्किट ब्रेकर को दर्शाते है, और किसी दिए गए ज़ोन में सभी सर्किट ब्रेकर फ़ॉल्ट को अलग करने के लिए खोले जाते है। ओवरलैप्ड क्षेत्र प्रत्येक सर्किट ब्रेकर के लिए उपकरण ट्रांसफार्मर और रिले के दो सेटों द्वारा बनाए जाते है। वे असुरक्षित क्षेत्रों को खत्म करने के लिए अतिरेक के लिए डिज़ाइन किए गए हैं; हालाँकि, ओवरलैप किए गए क्षेत्रों को जितना संभव हो उतना छोटा रहने के लिए तैयार किया जाता है, जब एक ओवरलैप क्षेत्र में कोई खराबी होती है और दो ज़ोन जो गलती को | बिजली व्यवस्था को सुरक्षात्मक क्षेत्रों में विभाजित करके सुरक्षा समन्वय भी संभाला जाता है। यदि किसी दिए गए क्षेत्र में कोई खराबी आती है, तो उस क्षेत्र को पूरे सिस्टम से अलग करने के लिए आवश्यक कार्रवाई होती है। ज़ोन की परिभाषाएँ जनरेटर, बसों, ट्रांसफार्मर, ट्रांसमिशन और वितरण लाइनों और मोटर्स के लिए होती है। इसके अतिरिक्त, ज़ोन में निम्नलिखित विशेषताएं होती हैं: ज़ोन ओवरलैप, ओवरलैप क्षेत्र सर्किट ब्रेकर को दर्शाते है, और किसी दिए गए ज़ोन में सभी सर्किट ब्रेकर फ़ॉल्ट को अलग करने के लिए खोले जाते है। ओवरलैप्ड क्षेत्र प्रत्येक सर्किट ब्रेकर के लिए उपकरण ट्रांसफार्मर और रिले के दो सेटों द्वारा बनाए जाते है। वे असुरक्षित क्षेत्रों को खत्म करने के लिए अतिरेक के लिए डिज़ाइन किए गए हैं; हालाँकि, ओवरलैप किए गए क्षेत्रों को जितना संभव हो उतना छोटा रहने के लिए तैयार किया जाता है, जब एक ओवरलैप क्षेत्र में कोई खराबी होती है और दो ज़ोन जो गलती को सम्मलित करते हैं, अलग-थलग हो जाते हैं, बिजली व्यवस्था का क्षेत्र जो सेवा से खो गया है, दो ज़ोन के बावजूद अभी भी छोटा है पृथक किया जाता है।<ref>Glover J. D., Sarma M. S., Overbye T. J. (2010) Power System and Analysis 5th Edition. Cengage Learning. Pg 548-549.</ref> | ||
== अशांति-निगरानी उपकरण == | == अशांति-निगरानी उपकरण == | ||
अशांति-निगरानी उपकरण (डीएमई) एक गलती से संबंधित सिस्टम डेटा पर नज़र रखता है और रिकॉर्ड करता है। डीएमई तीन मुख्य उद्देश्यों को पूरा करता है: | अशांति-निगरानी उपकरण (डीएमई) एक गलती से संबंधित सिस्टम डेटा पर नज़र रखता है और रिकॉर्ड करता है। डीएमई तीन मुख्य उद्देश्यों को पूरा करता है: | ||
Line 52: | Line 52: | ||
* गड़बड़ी की जांच, और | * गड़बड़ी की जांच, और | ||
* सिस्टम सुरक्षा प्रदर्शन का आकलन।<ref>{{cite web|url=http://www.nyiso.com/public/webdocs/documents/manuals/operations/System_Protection_Manual.pdf|title=System Protection Manual|publisher=[[New York energy law|New York Independent System Operator]]|access-date=2011-12-31}}</ref> | * सिस्टम सुरक्षा प्रदर्शन का आकलन।<ref>{{cite web|url=http://www.nyiso.com/public/webdocs/documents/manuals/operations/System_Protection_Manual.pdf|title=System Protection Manual|publisher=[[New York energy law|New York Independent System Operator]]|access-date=2011-12-31}}</ref> | ||
डीएमई उपकरणों में | डीएमई उपकरणों में सम्मलित हैं:<ref>{{cite web|url=http://www.nerc.com/files/Glossary_12Feb08.pdf|title= Glossary of Terms Used in Reliability Standards|publisher=[[North American Electric Reliability Corporation]]|access-date=2011-12-31}}</ref> | ||
<nowiki>*</nowiki> घटना रिकॉर्डर का अनुक्रम, जो घटना के लिए उपकरण प्रतिक्रिया रिकॉर्ड करता है। | <nowiki>*</nowiki> घटना रिकॉर्डर का अनुक्रम, जो घटना के लिए उपकरण प्रतिक्रिया रिकॉर्ड करता है। | ||
Line 69: | Line 69: | ||
'''विश्वसनीयता: निर्भरता बनाम सुरक्षा''' | '''विश्वसनीयता: निर्भरता बनाम सुरक्षा''' | ||
सुरक्षा प्रणालियों के विश्वसनीय संचालन के दो पहलू हैं: निर्भरता और सुरक्षा।<ref>NERC Reliability Fundamentals of System Protection, December 2010, Sec 3 - 4.1.2.3, https://www.nerc.com/comm/PC/System%20Protection%20and%20Control%20Subcommittee%20SPCS%20DL/Protection%20System%20Reliability%20Fundamentals_Approved_20101208.pdf </ref> निर्भरता शक्ति प्रणाली से दोषपूर्ण तत्व को हटाने के लिए बुलाए जाने पर संचालित करने के लिए सुरक्षा प्रणाली की क्षमता है। सुरक्षा एक बाहरी दोष के दौरान खुद को संचालन से रोकने के लिए सुरक्षा प्रणाली की क्षमता है। सुरक्षा प्रणाली को डिजाइन करने में सुरक्षा और निर्भरता के बीच उचित संतुलन का चयन करने के लिए इंजीनियरिंग निर्णय की आवश्यकता होती है और | सुरक्षा प्रणालियों के विश्वसनीय संचालन के दो पहलू हैं: निर्भरता और सुरक्षा।<ref>NERC Reliability Fundamentals of System Protection, December 2010, Sec 3 - 4.1.2.3, https://www.nerc.com/comm/PC/System%20Protection%20and%20Control%20Subcommittee%20SPCS%20DL/Protection%20System%20Reliability%20Fundamentals_Approved_20101208.pdf </ref> निर्भरता शक्ति प्रणाली से दोषपूर्ण तत्व को हटाने के लिए बुलाए जाने पर संचालित करने के लिए सुरक्षा प्रणाली की क्षमता है। सुरक्षा एक बाहरी दोष के दौरान खुद को संचालन से रोकने के लिए सुरक्षा प्रणाली की क्षमता है। सुरक्षा प्रणाली को डिजाइन करने में सुरक्षा और निर्भरता के बीच उचित संतुलन का चयन करने के लिए इंजीनियरिंग निर्णय की आवश्यकता होती है और स्थितियों के आधार पर भिन्न होता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 05:02, 1 February 2023
This article needs additional citations for verification. (December 2021) (Learn how and when to remove this template message) |
पावर सिस्टम सुरक्षा इलेक्ट्रिकल पावर इंजीनियरिंग की एक शाखा है जो बाकी इलेक्ट्रिकल नेटवर्क से खराब हुए पुर्जों के डिस्कनेक्शन के माध्यम से इलेक्ट्रिकल पावर सिस्टम की खराबी के सुरक्षा से संबंधित होता है। एक सुरक्षा योजना का उद्देश्य केवल उन घटकों को अलग करके बिजली व्यवस्था को स्थिर रखना होता है, जो संचालन में जितना संभव हो उतना नेटवर्क छोड़कर पावर सिस्टम के दोषों से बचाने के लिए उपयोग किए जाने वाले उपकरणों को सुरक्षा उपकरण कहा जाता है।
अवयव
सुरक्षा प्रणालियों में सामान्यतः पर पांच घटक होते है
- रिले से निपटने के लिए सुविधाजनक स्तर तक विद्युत शक्ति प्रणाली के उच्च वोल्टेज और धाराओं को कम करने के लिए वर्तमान और वोल्टेज ट्रांसफार्मर होते है।
- सुरक्षात्मक रिले गलती को समझने और एक यात्रा, या डिस्कनेक्शन, ऑर्डर शुरू करने के लिए होता है।
- रिले और ऑटोरेक्लोजर कमांड के आधार पर सिस्टम को खोलने/बंद करने के लिए सर्किट ब्रेकर या आरसीडी होता है।
- सिस्टम में बिजली डिस्कनेक्ट होने की स्थिति में बिजली प्रदान करने के लिए बैटरी का उपयोग होता है।
- संचार चैनल एक लाइन के दूरस्थ टर्मिनलों पर वर्तमान और वोल्टेज के विश्लेषण की अनुमति देने और उपकरणों की दूरस्थ ट्रिपिंग की अनुमति देने के लिए होता है।
वितरण प्रणाली के कुछ हिस्सों के लिए, फ़्यूज़ संवेदन और डिस्कनेक्ट करने वाले दोषों दोनों में सक्षम होते है।
प्रत्येक भाग में विफलताएं हो सकती है, जैसे इन्सुलेशन विफलता, गिरने या टूटी हुई संचरण लाइनें, सर्किट ब्रेकरों का गलत संचालन, शॉर्ट सर्किट और ओपन सर्किट होते है। संपत्तियों की सुरक्षा और ऊर्जा की निरंतर आपूर्ति सुनिश्चित करने के उद्देश्य से सुरक्षा उपकरण स्थापित किया गया है।
स्विचगियर विद्युत डिस्कनेक्ट स्विच, फ़्यूज़ या सर्किट ब्रेकर का एक संयोजन है जिसका उपयोग विद्युत उपकरणों को नियंत्रित, सुरक्षित और अलग करने के लिए किया जाता है। स्विच सामान्य लोड करंट के तहत खोलने के लिए सुरक्षित होते है (कुछ स्विच सामान्य या असामान्य परिस्थितियों में संचालित करने के लिए सुरक्षित नहीं होते है), जबकि सुरक्षात्मक उपकरण फॉल्ट करंट के तहत खोलने के लिए सुरक्षित होते है। बहुत महत्वपूर्ण उपकरण में पूरी तरह से निरर्थक और स्वतंत्र सुरक्षात्मक प्रणालियां होती है, जबकि एक छोटी शाखा वितरण लाइन में बहुत ही सरल कम लागत वाली सुरक्षा होती है।[1]
सुरक्षा के प्रकार
हाई-वोल्टेज ट्रांसमिशन नेटवर्क
पारेषण और वितरण प्रणाली का संरक्षण दो कार्य करता है: संयंत्र की सुरक्षा और जनता की सुरक्षा (कर्मचारियों सहित)। एक बुनियादी स्तर पर, सुरक्षा उन उपकरणों को डिस्कनेक्ट कर देता है जो एक अधिभार या पृथ्वी पर शॉर्ट का अनुभव करते है। सबस्टेशन में कुछ वस्तुओं जैसे ट्रांसफार्मर को तापमान या गैस के दबाव के आधार पर अतिरिक्त सुरक्षा की आवश्यकता होती है।
जेनरेटर सेट
बिजली संयंत्र में सुरक्षात्मक रिले का उद्देश्य ऑपरेशन की असामान्य स्थितियों के मामले में आंतरिक विफलताओं के साथ-साथ इन्सुलेट विफलताओं या विनियमन खराबी के कारण अल्टरनेटर या ट्रांसफार्मर के नुकसान को रोकने के लिए होता है। ऐसी विफलताएं असामान्य है, इसलिए सुरक्षात्मक रिले को बहुत ही कम काम करना होता है। यदि कोई सुरक्षात्मक रिले खराबी का पता लगाने में विफल रहता है, तो अल्टरनेटर या ट्रांसफॉर्मर को होने वाली क्षति के लिए महंगा उपकरण मरम्मत या प्रतिस्थापन की आवश्यकता होती है, साथ ही ऊर्जा का उत्पादन और बिक्री करने में असमर्थता से आय की हानि भी होती है।
दूरी के लिए ओवरलोड और बैक-अप (ओवरकरंट)
अधिभार संरक्षण के लिए एक वर्तमान ट्रांसफॉर्मर की आवश्यकता होती है जो सर्किट में वर्तमान को मापता है और इसे पूर्व निर्धारित मूल्य से तुलना करता है। अधिभार संरक्षण दो प्रकार के होते हैं: तात्कालिक अतिप्रवाह (IOC) और समय अतिप्रवाह (TOC)। तात्कालिक अतिप्रवाह के लिए आवश्यक है कि सर्किट ब्रेकर को संचालित करने के लिए वर्तमान पूर्व निर्धारित स्तर से अधिक होना चाहिए। टाइम ओवरकरंट प्रोटेक्शन करंट बनाम टाइम कर्व के आधार पर संचालित होता है, इस वक्र के आधार पर यदि मापी गई धारा पूर्व निर्धारित समय के लिए दिए गए स्तर से अधिक होता है, तो सर्किट ब्रेकर या फ़्यूज़ करता है। दोनों प्रकार के कार्य में समझाया गया है "गैर-दिशात्मक अतिप्रवाह संरक्षण" on YouTube.
पृथ्वी दोष / भूमि दोष
पृथ्वी दोष संरक्षण के लिए भी वर्तमान ट्रांसफार्मर की आवश्यकता होती है और तीन-चरण सर्किट में असंतुलन की अनुभूति होती है। सामान्यतः पर तीन चरण धाराएं संतुलन में होती है, परिमाण में लगभग बराबर होती है। यदि एक या दो चरण कम प्रतिबाधा पथ के माध्यम से पृथ्वी से जुड़ जाता है, तो उनका परिमाण नाटकीय रूप से बढ़ जाता है, जिससे कि वर्तमान असंतुलित होता है। यदि यह असंतुलन पूर्व निर्धारित मान से अधिक हो जाता है, तो सर्किट ब्रेकर को संचालित करता है। प्रतिबंधित पृथ्वी दोष संरक्षण एक प्रकार का पृथ्वी दोष संरक्षण है जो वर्तमान ट्रांसफार्मर के दो सेटों के बीच पृथ्वी दोष की तलाश करता है[2] (इसलिए उस क्षेत्र तक ही सीमित है)।
दूरी (प्रतिबाधा रिले)
दूरी सुरक्षा वोल्टेज और करंट दोनों का पता लगाता है। सर्किट पर एक गलती सामान्यतः पर वोल्टेज स्तर में शिथिलता पैदा करता है। यदि रिले टर्मिनलों पर मापे गए वोल्टेज से करंट का अनुपात जो एक प्रतिबाधा के बराबर है, एक पूर्व निर्धारित स्तर के भीतर आते ही सर्किट ब्रेकर संचालित होता है। यह उचित रूप से लंबी लाइनों, 10 मील से अधिक लंबी लाइनों के लिए उपयोगी होता है, क्योंकि उनकी परिचालन विशेषताएँ लाइन विशेषताओं पर आधारित होती है। इसका मतलब यह है कि जब लाइन पर कोई दोष दिखाई देता है तो प्रतिबाधा सेटिंग की तुलना रिले टर्मिनलों से दोष तक लाइन के स्पष्ट प्रतिबाधा से जाता है। यदि रिले सेटिंग को स्पष्ट प्रतिबाधा से कम निर्धारित किया जाता है तो यह निर्धारित किया जाता है कि दोष सुरक्षा के क्षेत्र के भीतर होता है। जब ट्रांसमिशन लाइन की लंबाई बहुत कम होती है, 10 मील से कम, दूरी की सुरक्षा को समन्वयित करना अधिक कठिन हो जाता है। इन उदाहरणों में सुरक्षा का सबसे अच्छा विकल्प वर्तमान विभेदक सुरक्षा होता है।
बैक-अप
संरक्षण का उद्देश्य केवल पौधे के प्रभावित हिस्से को हटाना है और कुछ नहीं होता है। एक सर्किट ब्रेकर या सुरक्षा रिले संचालित करने में विफल भी हो सकता है। महत्वपूर्ण प्रणालियों में, प्राथमिक सुरक्षा की विफलता के परिणामस्वरूप सामान्यतः पर बैक-अप सुरक्षा का संचालन होता है। रिमोट बैक-अप सुरक्षा सामान्यतः पर गलती को दूर करने के लिए पौधे की प्रभावित और अप्रभावित दोनों वस्तुओं को हटा देता है। स्थानीय बैक-अप सुरक्षा दोष को दूर करने के लिए संयंत्र की प्रभावित वस्तुओं को हटा देता है।
कम वोल्टेज नेटवर्क
लो-वोल्टेज नेटवर्क सामान्यतः पर फ़्यूज़ या लो-वोल्टेज सर्किट ब्रेकर पर निर्भर करता है जिससे ओवरलोड और अर्थ दोनों दोषों को दूर किया जा सकता है।
साइबर सुरक्षा
बल्क सिस्टम जो ट्रांसमिशन और कंट्रोल सिस्टम सहित एक बड़ा इंटरकनेक्टेड इलेक्ट्रिकल सिस्टम होता है, हर दिन नए साइबर सुरक्षा खतरों का सामना करा जाता है। ("इलेक्ट्रिक ग्रिड साइबर सुरक्षा," 2019), इनमें से अधिकतर हमले ग्रिड में नियंत्रण प्रणाली को लक्षित करता है। ये नियंत्रण प्रणालियां इंटरनेट से जुड़ा है और हैकर्स के लिए उन पर हमला करना आसान बना देता है। ये हमले उपकरण को नुकसान पहुंचा सकता है और उपयोगिता पेशेवरों को सिस्टम को नियंत्रित करने की क्षमता को सीमित कर सकता है।
समन्वय
सुरक्षात्मक उपकरण समन्वय असामान्य विद्युत स्थितियों के होने पर वर्तमान रुकावट के "सर्वश्रेष्ठ फिट" समय को निर्धारित करने की प्रक्रिया होती है। लक्ष्य एक आउटेज को संभव सबसे बड़ी सीमा तक कम करता है। ऐतिहासिक रूप से, पारभासी लॉग-लॉग पेपर पर सुरक्षात्मक उपकरण समन्वय किया जाता है। आधुनिक तरीकों में सामान्यतः पर विस्तृत कंप्यूटर आधारित विश्लेषण और रिपोर्टिंग सम्मलित होती है।
बिजली व्यवस्था को सुरक्षात्मक क्षेत्रों में विभाजित करके सुरक्षा समन्वय भी संभाला जाता है। यदि किसी दिए गए क्षेत्र में कोई खराबी आती है, तो उस क्षेत्र को पूरे सिस्टम से अलग करने के लिए आवश्यक कार्रवाई होती है। ज़ोन की परिभाषाएँ जनरेटर, बसों, ट्रांसफार्मर, ट्रांसमिशन और वितरण लाइनों और मोटर्स के लिए होती है। इसके अतिरिक्त, ज़ोन में निम्नलिखित विशेषताएं होती हैं: ज़ोन ओवरलैप, ओवरलैप क्षेत्र सर्किट ब्रेकर को दर्शाते है, और किसी दिए गए ज़ोन में सभी सर्किट ब्रेकर फ़ॉल्ट को अलग करने के लिए खोले जाते है। ओवरलैप्ड क्षेत्र प्रत्येक सर्किट ब्रेकर के लिए उपकरण ट्रांसफार्मर और रिले के दो सेटों द्वारा बनाए जाते है। वे असुरक्षित क्षेत्रों को खत्म करने के लिए अतिरेक के लिए डिज़ाइन किए गए हैं; हालाँकि, ओवरलैप किए गए क्षेत्रों को जितना संभव हो उतना छोटा रहने के लिए तैयार किया जाता है, जब एक ओवरलैप क्षेत्र में कोई खराबी होती है और दो ज़ोन जो गलती को सम्मलित करते हैं, अलग-थलग हो जाते हैं, बिजली व्यवस्था का क्षेत्र जो सेवा से खो गया है, दो ज़ोन के बावजूद अभी भी छोटा है पृथक किया जाता है।[3]
अशांति-निगरानी उपकरण
अशांति-निगरानी उपकरण (डीएमई) एक गलती से संबंधित सिस्टम डेटा पर नज़र रखता है और रिकॉर्ड करता है। डीएमई तीन मुख्य उद्देश्यों को पूरा करता है:
- मॉडल सत्यापन,
- गड़बड़ी की जांच, और
- सिस्टम सुरक्षा प्रदर्शन का आकलन।[4]
डीएमई उपकरणों में सम्मलित हैं:[5]
* घटना रिकॉर्डर का अनुक्रम, जो घटना के लिए उपकरण प्रतिक्रिया रिकॉर्ड करता है।
- दोष रिकॉर्डर, जो सिस्टम प्राथमिक वोल्टेज और धाराओं के वास्तविक तरंग डेटा को रिकॉर्ड करता है।
- डायनेमिक डिस्टर्बेंस रिकॉर्डर (डीडीआर), जो कम आवृत्ति (0.1 Hz - 3 Hz) दोलनों और असामान्य आवृत्ति या वोल्टेज भ्रमण जैसी गतिशील घटनाओं के दौरान बिजली व्यवस्था के व्यवहार को चित्रित करने वाली घटनाओं को रिकॉर्ड करता है।
प्रदर्शन के उपाय
संरक्षण इंजीनियर निर्भरता इन-ज़ोन दोषों के लिए सही ढंग से संचालित करने के लिए सुरक्षा प्रणाली की प्रवृत्ति के रूप में परिभाषित करते है। वे सुरक्षा को आउट-ऑफ़-ज़ोन दोषों के लिए काम न करने की प्रवृत्ति के रूप में परिभाषित करते है। निर्भरता और सुरक्षा दोनों ही विश्वसनीयता के मुद्दे है। दोष वृक्ष विश्लेषण एक उपकरण है जिसके साथ एक सुरक्षा इंजीनियर प्रस्तावित सुरक्षा योजनाओं की सापेक्ष विश्वसनीयता की तुलना करता है। सुरक्षा प्रणाली में सुधार, निर्भरता बनाम सुरक्षा ट्रेडऑफ़ प्रबंधित करने और कम से कम पैसे के लिए सर्वोत्तम परिणाम प्राप्त करने पर सर्वोत्तम निर्णय लेने के लिए सुरक्षा विश्वसनीयता को मापना महत्वपूर्ण होता है। प्रतिस्पर्धी उपयोगिता उद्योग में एक मात्रात्मक समझ आवश्यक होती है।[6][7]
* विश्वसनीयता: संभावित रूप से महीनों या वर्षों तक निष्क्रिय रहने की परवाह किए बिना, खराबी की स्थिति होने पर उपकरणों को लगातार काम करना चाहिए। इस विश्वसनीयता के बिना, सिस्टम महंगा नुकसान पहुंचा सकता है।
- चयनात्मकता: उपकरणों को अवांछित, झूठी यात्राओं से बचना चाहिए।
- गति: उपकरण की क्षति और गलती की अवधि को कम करने के लिए उपकरणों को जल्दी से काम करना चाहिए, केवल बहुत ही सटीक जानबूझकर समय देरी के साथ।
- संवेदनशीलता: उपकरणों को दोषों के सबसे छोटे मूल्य का भी पता लगाना चाहिए और प्रतिक्रिया देनी चाहिए।
- अर्थव्यवस्था: उपकरणों को न्यूनतम लागत पर अधिकतम सुरक्षा प्रदान करनी चाहिए।
- सरलता: उपकरणों को सुरक्षा सर्किटरी और उपकरण को न्यूनतम करना चाहिए।
विश्वसनीयता: निर्भरता बनाम सुरक्षा
सुरक्षा प्रणालियों के विश्वसनीय संचालन के दो पहलू हैं: निर्भरता और सुरक्षा।[8] निर्भरता शक्ति प्रणाली से दोषपूर्ण तत्व को हटाने के लिए बुलाए जाने पर संचालित करने के लिए सुरक्षा प्रणाली की क्षमता है। सुरक्षा एक बाहरी दोष के दौरान खुद को संचालन से रोकने के लिए सुरक्षा प्रणाली की क्षमता है। सुरक्षा प्रणाली को डिजाइन करने में सुरक्षा और निर्भरता के बीच उचित संतुलन का चयन करने के लिए इंजीनियरिंग निर्णय की आवश्यकता होती है और स्थितियों के आधार पर भिन्न होता है।
यह भी देखें
टिप्पणियाँ
- ↑ Alexandra Von Meier (2013). Electrical Engineer 137A: Electric Power Systems. Lecture 14:Introduction to Protection Systems, Slide 3.
- ↑ "Restricted Earth Fault Protection". myElectrical.com. Retrieved 2 July 2013.
- ↑ Glover J. D., Sarma M. S., Overbye T. J. (2010) Power System and Analysis 5th Edition. Cengage Learning. Pg 548-549.
- ↑ "System Protection Manual" (PDF). New York Independent System Operator. Retrieved 2011-12-31.
- ↑ "Glossary of Terms Used in Reliability Standards" (PDF). North American Electric Reliability Corporation. Retrieved 2011-12-31.
- ↑ Kumm, John J.; Weber, Mark S.; Schweitzer, E. O.; Hou, Daqing (March 1995). Philosophies for Testing Protective Relays (PDF). NETA International Electrical Testing Association Technical Conference.
- ↑ Kumm, John J.; Schweitzer, Edmund O.; Hou, Daqing (May 1995). Assessing the Effectiveness of Self-Tests and Other Monitoring Means in Protective Relays (PDF). 1995 Pennsylvania Electric Association Relay Committee Spring Meeting.
- ↑ NERC Reliability Fundamentals of System Protection, December 2010, Sec 3 - 4.1.2.3, https://www.nerc.com/comm/PC/System%20Protection%20and%20Control%20Subcommittee%20SPCS%20DL/Protection%20System%20Reliability%20Fundamentals_Approved_20101208.pdf
संदर्भ
- Mason, C. Russell. "The Art and Science of Protective Relaying" (PDF). General Electric. Retrieved 2009-01-26.
- "Coordinated Power Systems Protection". Army Corps of Engineers. 1991-02-25. Archived from the original on 2008-01-13. Retrieved 2009-01-26.
- "How Do Protection Relays Work?". Littelfuse. Archived from the original on 2013-01-28. Retrieved 2011-12-31.
- "What is SCADA?". Rose India Technologies. Retrieved 2011-12-31.
- "Introduction to Practical Power System Protection" (PDF). University of Idaho. Archived from the original (PDF) on 2012-04-26. Retrieved 2011-12-31.
- "Electric Grid Cybersecurity" (PDF).
- Abdelmoumene, Abdelkader; Bentarzi, Hamid (23 June 2017). "A review on protective relays' developments and trends". Journal of Energy in Southern Africa. 25 (2): 91–95. doi:10.17159/2413-3051/2014/v25i2a2674.
- http://perso.numericable.fr/michlami protection and monitoring of the electrical energy transmission network