बीजगणितीय स्वतंत्रता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 29: Line 29:
लिंडमैन-वीयरस्ट्रास प्रमेय का उपयोग अक्सर यह साबित करने के लिए किया जा सकता है कि कुछ सेट <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र होते है। यह बताता है कि जब भी <math>\alpha_1,\ldots,\alpha_n</math> [[बीजगणितीय संख्या|बीजगणितीय]] संख्याएँ होती हैं जो <math>\mathbb{Q}</math> पर [[रैखिक रूप से स्वतंत्र]] होती हैं, तो <math>e^{\alpha_1},\ldots,e^{\alpha_n}</math> भी <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र होती है।
लिंडमैन-वीयरस्ट्रास प्रमेय का उपयोग अक्सर यह साबित करने के लिए किया जा सकता है कि कुछ सेट <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र होते है। यह बताता है कि जब भी <math>\alpha_1,\ldots,\alpha_n</math> [[बीजगणितीय संख्या|बीजगणितीय]] संख्याएँ होती हैं जो <math>\mathbb{Q}</math> पर [[रैखिक रूप से स्वतंत्र]] होती हैं, तो <math>e^{\alpha_1},\ldots,e^{\alpha_n}</math> भी <math>\mathbb{Q}</math> पर बीजगणितीय रूप से स्वतंत्र होती है।


== बीजगणितीय matroids ==
== बीजगणितीय मैट्रोइड्स ==
{{main|Algebraic matroid}}
{{main|बीजगणितीय मैट्रोइड}}
एक क्षेत्र विस्तार दिया <math>L/K</math> जो बीजगणितीय नहीं है, ज़ोर्न की लेम्मा का उपयोग यह दिखाने के लिए किया जा सकता है कि हमेशा अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय मौजूद होता है <math>L</math> ऊपर <math>K</math>. इसके अलावा, सभी अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय में समान [[प्रमुखता]] होती है, जिसे विस्तार की [[श्रेष्ठता की डिग्री]] के रूप में जाना जाता है।


हर सेट के लिए <math>S</math> के तत्वों का <math>L</math>, बीजगणितीय रूप से स्वतंत्र उपसमुच्चय <math>S</math> मैट्रोइड के स्वतंत्र सेट को परिभाषित करने वाले सिद्धांतों को पूरा करें। इस [[matroid]] में, तत्वों के एक सेट की रैंक इसकी श्रेष्ठता की डिग्री है, और एक सेट द्वारा उत्पन्न फ्लैट है <math>T</math> तत्वों का प्रतिच्छेदन है <math>L</math> मैदान के साथ <math>K[T]</math>. एक मैट्रॉइड जिसे इस तरह से उत्पन्न किया जा सकता है उसे बीजगणितीय मैट्रोइड कहा जाता है। बीजगणितीय matroids का कोई अच्छा लक्षण वर्णन ज्ञात नहीं है, लेकिन कुछ matroids गैर-बीजीय होने के लिए जाने जाते हैं; सबसे छोटा Vámos matroid है।<ref>{{citation
एक क्षेत्र विस्तार <math>L/K</math> दिया गया है जो बीजगणितीय नहीं है, ज़ोर्न के लेम्मा का उपयोग यह दिखाने के लिए किया जा सकता है कि <math>L</math> के ऊपर <math>K</math> का अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय हमेशा मौजूद होता है। इसके अलावा, सभी अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय में समान कार्डिनैलिटी होती है, जिसे विस्तार की [[श्रेष्ठता की डिग्री]] के रूप में जाना जाता है।
 
<math>L</math> के तत्वों के हर सेट <math>S</math> के लिए, <math>S</math> के बीजगणितीय रूप से स्वतंत्र उपसमुच्चय हैं जो सिद्धांतों को संतुष्ट करते हैं जो एक मैट्रॉइड के स्वतंत्र सेट को परिभाषित करते हैं। इस [[matroid|मैट्रॉइड]] में, तत्वों के एक सेट का रैंक इसकी श्रेष्ठता की डिग्री है, और <math>K[T]</math> के साथ <math>L</math> का प्रतिच्छेदन तत्वों के एक सेट <math>T</math> द्वारा उत्पन्न समतल क्षेत्र है। एक मैट्रॉइड जिसे इस तरह से उत्पन्न किया जा सकता है उसे बीजगणितीय मैट्रोइड कहा जाता है। बीजगणितीय मैट्रोइड्स का कोई अच्छा लक्षण वर्णन ज्ञात नहीं है, लेकिन कुछ मैट्रोइड्स को गैर-बीजीय मैट्रोइड्स के रूप में जाना जाता है; सबसे छोटा '''वामोस मैट्रोइड''' है।<ref>{{citation
  | last1 = Ingleton | first1 = A. W.
  | last1 = Ingleton | first1 = A. W.
  | last2 = Main | first2 = R. A.
  | last2 = Main | first2 = R. A.
Line 44: Line 45:
  | year = 1975| issue = 2
  | year = 1975| issue = 2
  }}.</ref>
  }}.</ref>
एक क्षेत्र पर एक [[मैट्रिक्स (गणित)]] द्वारा कई परिमित matroids Matroid प्रतिनिधित्व हो सकते हैं <math>K</math>, जिसमें मैट्रॉइड तत्व मैट्रिक्स कॉलम के अनुरूप होते हैं, और तत्वों का एक सेट स्वतंत्र होता है यदि स्तंभों का संबंधित सेट [[रैखिक स्वतंत्रता]] है। मैट्रिक्स की प्रत्येक पंक्ति के लिए एक [[अनिश्चित (चर)]] का चयन करके, और प्रत्येक कॉलम के भीतर मैट्रिक्स गुणांक का उपयोग करके प्रत्येक मैट्रोइड तत्व को एक रैखिक संयोजन निर्दिष्ट करने के लिए, इस प्रकार के एक रैखिक प्रतिनिधित्व के साथ प्रत्येक मैट्रॉइड को बीजगणितीय मैट्रॉइड के रूप में भी प्रदर्शित किया जा सकता है। ये पारलौकिक। इसका विलोम असत्य है: प्रत्येक बीजगणितीय मैट्रॉइड का एक रेखीय निरूपण नहीं होता है।<ref>{{citation|title=Applied Discrete Structures|first=K. D.|last=Joshi|publisher=New Age International|year=1997|isbn=9788122408263|page=909|url=https://books.google.com/books?id=lxIgGGJXacoC&pg=PA909}}.</ref>


एक क्षेत्र पर एक [[मैट्रिक्स (गणित)]] द्वारा कई परिमित matroids Matroid प्रतिनिधित्व हो सकते हैं <math>K</math>, जिसमें मैट्रॉइड तत्व मैट्रिक्स कॉलम के अनुरूप होते हैं, और तत्वों का एक सेट स्वतंत्र होता है यदि स्तंभों का संबंधित सेट [[रैखिक स्वतंत्रता|रैखिक स्वतंत्र]] है। मैट्रिक्स की प्रत्येक पंक्ति के लिए एक [[अनिश्चित (चर)]] का चयन करके, और प्रत्येक कॉलम के भीतर मैट्रिक्स गुणांक का उपयोग करके प्रत्येक मैट्रोइड तत्व को एक रैखिक संयोजन निर्दिष्ट करने के लिए, इस प्रकार के एक रैखिक प्रतिनिधित्व के साथ प्रत्येक मैट्रॉइड को बीजगणितीय मैट्रॉइड के रूप में भी प्रदर्शित किया जा सकता है। ये पारलौकिक। इसका विलोम असत्य है: प्रत्येक बीजगणितीय मैट्रॉइड का एक रेखीय निरूपण नहीं होता है।<ref>{{citation|title=Applied Discrete Structures|first=K. D.|last=Joshi|publisher=New Age International|year=1997|isbn=9788122408263|page=909|url=https://books.google.com/books?id=lxIgGGJXacoC&pg=PA909}}.</ref>    कई परिमित मैट्रोइड्स एक [[मैट्रिक्स (गणित)]] क्षेत्र <math>K</math> पर एक मैट्रिक्स द्वारा प्रतिनिधित्व किया जा सकता है, जिसमें मैट्रॉइड तत्व मैट्रिक्स कॉलम के अनुरूप होते हैं, और तत्वों का एक सेट स्वतंत्र होता है यदि स्तंभों का संबंधित सेट [[रैखिक स्वतंत्रता|रैखिक]] रूप से [[रैखिक स्वतंत्रता|स्वतंत्र]] होता है। मैट्रिक्स की प्रत्येक पंक्ति के लिए एक [[अनिश्चित (चर)]] का चयन करके और प्रत्येक मैट्रोइड तत्व को इन ट्रान्सेंडैंटल के एक रैखिक संयोजन को असाइन करने के लिए प्रत्येक कॉलम के भीतर मैट्रिक्स गुणांक का उपयोग करके इस प्रकार के एक रैखिक प्रतिनिधित्व के साथ प्रत्येक मैट्रॉइड तैयार करें। इसका विलोम असत्य है: प्रत्येक बीजगणितीय मैट्रॉइड का एक रेखीय निरूपण नहीं होता है।
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}

Revision as of 20:27, 7 February 2023

अमूर्त बीजगणित में, एक क्षेत्र का एक उपसमुच्चय एक उपक्षेत्र पर बीजगणितीय रूप से स्वतंत्र होता है यदि के तत्व में गुणांक वाले किसी गैर-तुच्छ (गणित) बहुपद समीकरण को संतुष्ट नहीं करते हैं।

विशेष रूप से, एक तत्व सेट , पर बीजगणितीय रूप से स्वतंत्र है यदि और केवल यदि , पर पारलौकिक है। सामान्य तौर पर, बीजगणितीय रूप से स्वतंत्र सेट के सभी तत्व पर आवश्यकता से पूरे क्षेत्र में अधिक होते हैं। के शेष तत्वों द्वारा उत्पन्न पर विस्तार होता है।

उदाहरण

दो वास्तविक संख्याएँ और प्रत्येक पारलौकिक संख्याएँ हैं: वे किसी भी गैर-तुच्छ बहुपद की जड़ें नहीं हैं जिनके गुणांक परिमेय संख्याएँ हैं। इस प्रकार, दो सिंगलटन सेट और परिमेय संख्याओं के क्षेत्र पर बीजगणितीय रूप से स्वतंत्र हैं।

हालाँकि, सेट परिमेय संख्याओं पर बीजगणितीय रूप से स्वतंत्र नहीं है, क्योंकि गैर-तुच्छ बहुपद है

शून्य है जब और .

ज्ञात स्थिरांकों की बीजगणितीय स्वतंत्रता

हालांकि और E दोनों को अनुवांशिक माना जाता है, यह ज्ञात नहीं है कि दोनों का सेट पर बीजगणितीय रूप से स्वतंत्र है या नहीं है।[1] वास्तव में, यह भी ज्ञात नहीं है कि अपरिमेय है या नहीं है।[2] नेस्टरेंको ने 1996 में साबित किया कि:

  • संख्या ,, और Γ(1/4) पर बीजगणितीय रूप से स्वतंत्र हैं।[3]
  • संख्या और Γ(1/3) पर बीजगणितीय रूप से स्वतंत्र हैं।
  • सभी सकारात्मक पूर्णांकों के लिए, संख्या बीजगणितीय रूप से पर स्वतंत्र है।[4]

लिंडमैन-वीयरस्ट्रास प्रमेय

लिंडमैन-वीयरस्ट्रास प्रमेय का उपयोग अक्सर यह साबित करने के लिए किया जा सकता है कि कुछ सेट पर बीजगणितीय रूप से स्वतंत्र होते है। यह बताता है कि जब भी बीजगणितीय संख्याएँ होती हैं जो पर रैखिक रूप से स्वतंत्र होती हैं, तो भी पर बीजगणितीय रूप से स्वतंत्र होती है।

बीजगणितीय मैट्रोइड्स

एक क्षेत्र विस्तार दिया गया है जो बीजगणितीय नहीं है, ज़ोर्न के लेम्मा का उपयोग यह दिखाने के लिए किया जा सकता है कि के ऊपर का अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय हमेशा मौजूद होता है। इसके अलावा, सभी अधिकतम बीजगणितीय रूप से स्वतंत्र उपसमुच्चय में समान कार्डिनैलिटी होती है, जिसे विस्तार की श्रेष्ठता की डिग्री के रूप में जाना जाता है।

के तत्वों के हर सेट के लिए, के बीजगणितीय रूप से स्वतंत्र उपसमुच्चय हैं जो सिद्धांतों को संतुष्ट करते हैं जो एक मैट्रॉइड के स्वतंत्र सेट को परिभाषित करते हैं। इस मैट्रॉइड में, तत्वों के एक सेट का रैंक इसकी श्रेष्ठता की डिग्री है, और के साथ का प्रतिच्छेदन तत्वों के एक सेट द्वारा उत्पन्न समतल क्षेत्र है। एक मैट्रॉइड जिसे इस तरह से उत्पन्न किया जा सकता है उसे बीजगणितीय मैट्रोइड कहा जाता है। बीजगणितीय मैट्रोइड्स का कोई अच्छा लक्षण वर्णन ज्ञात नहीं है, लेकिन कुछ मैट्रोइड्स को गैर-बीजीय मैट्रोइड्स के रूप में जाना जाता है; सबसे छोटा वामोस मैट्रोइड है।[5]

एक क्षेत्र पर एक मैट्रिक्स (गणित) द्वारा कई परिमित matroids Matroid प्रतिनिधित्व हो सकते हैं , जिसमें मैट्रॉइड तत्व मैट्रिक्स कॉलम के अनुरूप होते हैं, और तत्वों का एक सेट स्वतंत्र होता है यदि स्तंभों का संबंधित सेट रैखिक स्वतंत्र है। मैट्रिक्स की प्रत्येक पंक्ति के लिए एक अनिश्चित (चर) का चयन करके, और प्रत्येक कॉलम के भीतर मैट्रिक्स गुणांक का उपयोग करके प्रत्येक मैट्रोइड तत्व को एक रैखिक संयोजन निर्दिष्ट करने के लिए, इस प्रकार के एक रैखिक प्रतिनिधित्व के साथ प्रत्येक मैट्रॉइड को बीजगणितीय मैट्रॉइड के रूप में भी प्रदर्शित किया जा सकता है। ये पारलौकिक। इसका विलोम असत्य है: प्रत्येक बीजगणितीय मैट्रॉइड का एक रेखीय निरूपण नहीं होता है।[6] कई परिमित मैट्रोइड्स एक मैट्रिक्स (गणित) क्षेत्र पर एक मैट्रिक्स द्वारा प्रतिनिधित्व किया जा सकता है, जिसमें मैट्रॉइड तत्व मैट्रिक्स कॉलम के अनुरूप होते हैं, और तत्वों का एक सेट स्वतंत्र होता है यदि स्तंभों का संबंधित सेट रैखिक रूप से स्वतंत्र होता है। मैट्रिक्स की प्रत्येक पंक्ति के लिए एक अनिश्चित (चर) का चयन करके और प्रत्येक मैट्रोइड तत्व को इन ट्रान्सेंडैंटल के एक रैखिक संयोजन को असाइन करने के लिए प्रत्येक कॉलम के भीतर मैट्रिक्स गुणांक का उपयोग करके इस प्रकार के एक रैखिक प्रतिनिधित्व के साथ प्रत्येक मैट्रॉइड तैयार करें। इसका विलोम असत्य है: प्रत्येक बीजगणितीय मैट्रॉइड का एक रेखीय निरूपण नहीं होता है।

संदर्भ

  1. Patrick Morandi (1996). Field and Galois Theory. Springer. p. 174. ISBN 978-0-387-94753-2. Retrieved 2008-04-11.
  2. Green, Ben (2008), "III.41 Irrational and Transcendental Numbers", in Gowers, Timothy (ed.), The Princeton Companion to Mathematics, Princeton University Press, p. 222
  3. Manin, Yu. I.; Panchishkin, A. A. (2007). Introduction to Modern Number Theory. Encyclopaedia of Mathematical Sciences. Vol. 49 (Second ed.). p. 61. ISBN 978-3-540-20364-3. ISSN 0938-0396. Zbl 1079.11002.
  4. Nesterenko, Yuri V (1996). "Modular Functions and Transcendence Problems". Comptes Rendus de l'Académie des Sciences, Série I. 322 (10): 909–914.
  5. Ingleton, A. W.; Main, R. A. (1975), "Non-algebraic matroids exist", Bulletin of the London Mathematical Society, 7 (2): 144–146, doi:10.1112/blms/7.2.144, MR 0369110.
  6. Joshi, K. D. (1997), Applied Discrete Structures, New Age International, p. 909, ISBN 9788122408263.


बाहरी कड़ियाँ