संयुक्त समष्टि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 44: Line 44:
एक संस्थानिक स्थान  <math>X</math> को  {{visible anchor|डिसकनेक्टेड }} कहा जाता है यदि दो भिन्न -भिन्न गैर-खाली खुले समूहों का मिलन है। अन्यथा, <math>X</math> को जुड़ा कहा जाता है। एक संस्थानिक स्थान के एक  [[सबसेट|उप स्थान]] को जुड़ा कहा जाता है यदि उप स्थान टोपोलॉजी के अंतर्गत जुड़ा हुआ है। कुछ लेखक खाली समूह (इसकी अनूठी टोपोलॉजी के साथ) को एक जुड़ा हुआ स्थान के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।
एक संस्थानिक स्थान  <math>X</math> को  {{visible anchor|डिसकनेक्टेड }} कहा जाता है यदि दो भिन्न -भिन्न गैर-खाली खुले समूहों का मिलन है। अन्यथा, <math>X</math> को जुड़ा कहा जाता है। एक संस्थानिक स्थान के एक  [[सबसेट|उप स्थान]] को जुड़ा कहा जाता है यदि उप स्थान टोपोलॉजी के अंतर्गत जुड़ा हुआ है। कुछ लेखक खाली समूह (इसकी अनूठी टोपोलॉजी के साथ) को एक जुड़ा हुआ स्थान के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।


एक टोपोलॉजिकल स्पेस के लिए <math>X</math> निम्नलिखित शर्तें समतुल्य हैं:
एक संस्थानिक स्थान के लिए <math>X</math> निम्नलिखित प्रतिबंध समतुल्य हैं:


#<math>X</math> जुड़ा हुआ है, यानी इसे दो अलग-अलग गैर-खाली खुले सेटों में विभाजित नहीं किया जा सकता है।
#<math>X</math> जुड़ा हुआ है, इसे दो भिन्न -भिन्न गैर-खाली खुले समूहों में विभाजित नहीं किया जा सकता है।
# का एकमात्र उपसमुच्चय <math>X</math> जो खुले और बंद दोनों प्रकार के होते हैं ([[क्लोपेन सेट]]) होते हैं <math>X</math> और खाली सेट।
# <math>X</math> के एकमात्र उपसमुच्चय खुले और बंद ([[क्लोपेन सेट|क्लोपेन समूह]]) दोनों प्रकार के होते हैं <math>X</math> खाली समूह हैं।
# का एकमात्र उपसमुच्चय <math>X</math> खाली [[सीमा (टोपोलॉजी)]] के साथ हैं <math>X</math> और खाली सेट।
# खाली [[सीमा (टोपोलॉजी)]] के साथ <math>X</math> के एकमात्र उपसमुच्चय <math>X</math> और खाली समूह हैं।
#<math>X</math> दो गैर-खाली [[अलग सेट]]ों के संघ के रूप में नहीं लिखा जा सकता है (सेट जिसके लिए प्रत्येक दूसरे के बंद होने से अलग है)।
#<math>X</math> को दो गैर-खाली [[अलग सेट|भिन्न समूहों]] के संघ के रूप में नहीं लिखा जा सकता है (समूह जिसके लिए प्रत्येक दूसरे के बंद होने से भिन्न है)।
#सभी सतत कार्य#टोपोलॉजिकल स्पेस के बीच निरंतर कार्य से कार्य करता है <math>X</math> प्रति <math>\{ 0, 1 \}</math> स्थिर हैं, कहाँ <math>\{ 0, 1 \}</math> असतत टोपोलॉजी से संपन्न दो-बिंदु स्थान है।
#<math>X</math> से <math>\{ 0, 1 \}</math> तक सभी निरंतर कार्य स्थिर हैं, जहां प्रदर्शन शैली <math>\{ 0, 1 \}</math> असतत टोपोलॉजी से संपन्न दो-बिंदु स्थान है| ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण दो भिन्न -भिन्न समूहों में <math>X</math> के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें | <ref>{{cite journal |last1=Wilder |first1=R.L. |title="कनेक्टेड" की सामयिक अवधारणा का विकास|journal=American Mathematical Monthly |date=1978 |volume=85 |issue=9 |pages=720–726 |doi=10.2307/2321676|jstor=2321676 }}</ref>  
 
ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण (कोई विभाजन नहीं होने के संदर्भ में <math>X</math> दो अलग-अलग सेटों में) पहली बार (स्वतंत्र रूप से) 20वीं शताब्दी की शुरुआत में एन. देखना <ref>{{cite journal |last1=Wilder |first1=R.L. |title="कनेक्टेड" की सामयिक अवधारणा का विकास|journal=American Mathematical Monthly |date=1978 |volume=85 |issue=9 |pages=720–726 |doi=10.2307/2321676|jstor=2321676 }}</ref> ब्योरा हेतु।


=== जुड़े हुए घटक ===
=== जुड़े हुए घटक ===

Revision as of 23:36, 16 December 2022

R²के जुड़े और डिस्कनेक्ट किए गए उपस्थान
ऊपर से नीचे: लाल स्थान A, गुलाबी स्थान B, पीला स्थान
C और नारंगी स्थान D सभी हैं कनेक्टेड स्पेस,जबकि ग्रीन स्पेस E (उपसमुच्चय से बना है E1, E2, E3, and E4) है डिस्कनेक्ट किया गया. आगे, A and B भी हैं सिम्पली कनेक्टेड (जीनस
0), जबकिC तथाD नहीं हैं: C जीनस है 1 तथाD जीनस 4 है।

टोपोलॉजी और गणित की संबंधित शाखाओं में, जुड़ा हुआ स्थान एक संस्थानिक स्थान है जिसे दो या दो से अधिक असंयुक्त गैर-रिक्त खुले उपसमुच्चय के संघ के रूप में के रूप में प्रदर्शित नहीं किया जा सकता है। जुड़ाव एक प्रमुख टोपोलॉजिकल गुणों में से एक है जिसका उपयोग संस्थानिक स्थान को भिन्न करने के लिए किया जाता है।

संस्थानिक स्थान का एक उपसमुच्चय एक जुड़ा हुआ समूह है, यदि इसे के उप स्थान टोपोलॉजी के रूप में देखा जाए तो यह एक जुड़ा हुआ स्थान है|

कुछ संबंधित लेकिन मजबूत स्थितियाँ पथ जुड़ाव हैं, सरल रूप से जुड़ा हुआ स्थान और -जुड़ा हैं। एक अन्य संबंधित धारणा स्थानीय रूप से जुड़ी हुई है, जिसका न तो अर्थ है और न ही संबद्धता का अनुसरण करती है।

औपचारिक परिभाषा

एक संस्थानिक स्थान को डिसकनेक्टेड कहा जाता है यदि दो भिन्न -भिन्न गैर-खाली खुले समूहों का मिलन है। अन्यथा, को जुड़ा कहा जाता है। एक संस्थानिक स्थान के एक उप स्थान को जुड़ा कहा जाता है यदि उप स्थान टोपोलॉजी के अंतर्गत जुड़ा हुआ है। कुछ लेखक खाली समूह (इसकी अनूठी टोपोलॉजी के साथ) को एक जुड़ा हुआ स्थान के रूप में बाहर करते हैं, लेकिन यह लेख उस अभ्यास का पालन नहीं करता है।

एक संस्थानिक स्थान के लिए निम्नलिखित प्रतिबंध समतुल्य हैं:

  1. जुड़ा हुआ है, इसे दो भिन्न -भिन्न गैर-खाली खुले समूहों में विभाजित नहीं किया जा सकता है।
  2. के एकमात्र उपसमुच्चय खुले और बंद (क्लोपेन समूह) दोनों प्रकार के होते हैं खाली समूह हैं।
  3. खाली सीमा (टोपोलॉजी) के साथ के एकमात्र उपसमुच्चय और खाली समूह हैं।
  4. को दो गैर-खाली भिन्न समूहों के संघ के रूप में नहीं लिखा जा सकता है (समूह जिसके लिए प्रत्येक दूसरे के बंद होने से भिन्न है)।
  5. से तक सभी निरंतर कार्य स्थिर हैं, जहां प्रदर्शन शैली असतत टोपोलॉजी से संपन्न दो-बिंदु स्थान है| ऐतिहासिक रूप से जुड़ाव की धारणा का यह आधुनिक सूत्रीकरण दो भिन्न -भिन्न समूहों में के विभाजन के बिना) पहली बार (स्वतंत्र रूप से) 20वीं दशक की शुरुआत में एन. विवरण के लिए देखें | [1]

जुड़े हुए घटक

कुछ बिंदु दिया एक टोपोलॉजिकल स्पेस में जुड़े हुए उपसमुच्चयों के किसी भी संग्रह का संघ जैसे कि प्रत्येक में शामिल है एक बार फिर से जुड़ा हुआ उपसमुच्चय होगा। एक बिंदु का जुड़ा हुआ घटक में के सभी जुड़े उपसमूहों का संघ है जिसमें शामिल है यह अद्वितीय सबसे बड़ा है (के संबंध में ) का जुड़ा सबसेट उसमें सम्मिलित है अधिकतम तत्व जुड़ा हुआ सबसेट (सबसेट द्वारा क्रमबद्ध ) एक गैर-खाली टोपोलॉजिकल स्पेस को स्पेस के कनेक्टेड कंपोनेंट्स कहा जाता है। किसी भी टोपोलॉजिकल स्पेस के घटक के एक सेट का एक विभाजन बनाएँ: वे असंयुक्त समुच्चय हैं, अरिक्त हैं और उनका मिलन संपूर्ण स्थान है। प्रत्येक घटक मूल स्थान का एक बंद उपसमुच्चय है। यह इस प्रकार है कि, उस मामले में जहां उनकी संख्या परिमित है, प्रत्येक घटक भी एक खुला उपसमुच्चय है। हालाँकि, यदि उनकी संख्या अनंत है, तो यह स्थिति नहीं हो सकती है; उदाहरण के लिए, परिमेय संख्याओं के समुच्चय के जुड़े घटक एक-बिंदु समुच्चय (सिंगलटन (गणित)) हैं, जो खुले नहीं हैं। उपपत्ति: कोई भी दो भिन्न परिमेय संख्याएँ विभिन्न घटकों में हैं। एक अपरिमेय संख्या लीजिए और फिर सेट करें तथा फिर का वियोग है तथा . इस प्रकार प्रत्येक घटक एक-बिंदु सेट है।

होने देना का जुड़ा हुआ घटक हो एक टोपोलॉजिकल स्पेस में तथा युक्त सभी clopen सेटों का प्रतिच्छेदन हो (स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है। का अर्ध-घटक ) फिर जहां समानता रखती है कॉम्पैक्ट हौसडॉर्फ या स्थानीय रूप से जुड़ा हुआ है। [2]


डिस्कनेक्ट किए गए रिक्त स्थान

एक स्थान जिसमें सभी घटक एक-बिंदु सेट होते हैं, को पूरी तरह से डिस्कनेक्ट किया गया स्थान कहा जाता हैtotally disconnected. इस संपत्ति से संबंधित, एक स्थान कहा जाता हैtotally separatedअगर, किसी भी दो अलग-अलग तत्वों के लिए तथा का , वहाँ खुले सेट मौजूद हैं युक्त तथा युक्त ऐसा है कि का संघ है तथा . स्पष्ट रूप से, कोई भी पूरी तरह से अलग स्थान पूरी तरह से डिस्कनेक्ट हो गया है, लेकिन बातचीत पकड़ में नहीं आती है। उदाहरण के लिए परिमेय संख्याओं की दो प्रतियाँ लें , और शून्य को छोड़कर हर बिंदु पर उन्हें पहचानें। परिणामी स्थान, भागफल टोपोलॉजी के साथ, पूरी तरह से डिस्कनेक्ट हो गया है। हालांकि, शून्य की दो प्रतियों पर विचार करने से, कोई यह देखता है कि अंतरिक्ष पूरी तरह से अलग नहीं हुआ है। वास्तव में, यह हॉसडॉर्फ स्थान भी नहीं है, और पूरी तरह से अलग होने की स्थिति हॉसडॉर्फ होने की स्थिति से अधिक मजबूत है।

उदाहरण

  • बंद अंतराल यूक्लिडियन अंतरिक्ष उप-अंतरिक्ष टोपोलॉजी में जुड़ा हुआ है; हालांकि, उदाहरण के लिए, इसे संघ के रूप में लिखा जा सकता है तथा के चुने हुए टोपोलॉजी में दूसरा सेट खुला नहीं है
  • का संघ तथा डिस्कनेक्ट किया गया है; ये दोनों अंतराल मानक टोपोलॉजिकल स्पेस में खुले हैं
  • डिस्कनेक्ट किया गया है।
  • का एक उत्तल सेट जुड़ा हुआ है; यह वास्तव में बस जुड़ा हुआ सेट है।
  • एक यूक्लिडियन स्थान मूल को छोड़कर, जुड़ा हुआ है, लेकिन सिर्फ जुड़ा नहीं है। मूल के बिना त्रि-आयामी यूक्लिडियन अंतरिक्ष जुड़ा हुआ है, और यहां तक ​​​​कि बस जुड़ा हुआ है। इसके विपरीत, मूल के बिना एक आयामी यूक्लिडियन स्थान जुड़ा नहीं है।
  • एक सीधी रेखा के साथ एक यूक्लिडियन विमान जुड़ा नहीं है क्योंकि इसमें दो अर्ध-विमान होते हैं।
  • सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं का स्थान जुड़ा हुआ है।
  • निचली सीमा टोपोलॉजी डिस्कनेक्ट हो गई है।[3] *यदि एक भी बिंदु से हटा दिया जाए , शेष काट दिया गया है। हालाँकि, यदि अंकों की एक गणनीय अनंतता को भी हटा दिया जाता है , कहाँ पे शेष जुड़ा हुआ है। यदि , फिर गिने-चुने बिंदुओं को हटाने के बाद भी बस जुड़ा रहता है।
  • कोई टोपोलॉजिकल वेक्टर स्पेस, उदा। कोई भी हिल्बर्ट अंतरिक्ष या बनच स्थान, कनेक्टेड फील्ड पर (जैसे या ), बस जुड़ा हुआ है।
  • कम से कम दो तत्वों के साथ हर असतत सामयिक स्थान डिस्कनेक्ट हो गया है, वास्तव में ऐसा स्पेस पूरी तरह पूरी तरह से डिस्कनेक्ट किया गया स्थान है। सबसे सरल उदाहरण असतत दो-बिंदु स्थान है।[4]
  • दूसरी ओर, एक परिमित सेट जुड़ा हो सकता है। उदाहरण के लिए, असतत मूल्यांकन अंगूठी के स्पेक्ट्रम में दो बिंदु होते हैं और जुड़े होते हैं। यह सिएरपिन्स्की अंतरिक्ष का एक उदाहरण है।
  • कैंटर सेट पूरी तरह से डिस्कनेक्ट हो गया है; चूंकि सेट में बेशुमार रूप से कई बिंदु होते हैं, इसमें बेशुमार रूप से कई घटक होते हैं।
  • यदि कोई स्थान एक जुड़े हुए स्थान के लिए होमोटॉपी है, फिर स्वयं जुड़ा हुआ है।
  • टोपोलॉजिस्ट का साइन कर्व एक सेट का एक उदाहरण है जो जुड़ा हुआ है लेकिन न तो पथ से जुड़ा है और न ही स्थानीय रूप से जुड़ा हुआ है।
  • सामान्य रैखिक समूह (अर्थात् समूह -द्वारा- वास्तविक, व्युत्क्रमणीय मैट्रिसेस) में दो जुड़े घटक होते हैं: एक सकारात्मक निर्धारक के मैट्रिसेस के साथ और दूसरा नकारात्मक निर्धारक के साथ। विशेष रूप से, यह जुड़ा नहीं है। इसके विपरीत, जुड़ा हुआ है। अधिक आम तौर पर, एक जटिल हिल्बर्ट स्पेस पर इन्वर्टिबल बाउंडेड ऑपरेटरों का सेट जुड़ा हुआ है।
  • कम्यूटेटिव स्थानीय अंगूठी और इंटीग्रल डोमेन के स्पेक्ट्रा जुड़े हुए हैं। अधिक सामान्यतः, निम्नलिखित समकक्ष हैं[5]
    1. क्रमविनिमेय वलय का स्पेक्ट्रम जुड़ा हुआ है
    2. हर सूक्ष्म रूप से उत्पन्न प्रोजेक्टिव मॉड्यूल खत्म निरंतर रैंक है।
    3. कोई बेवकूफ नहीं है (अर्थात।, गैर-तुच्छ तरीके से दो रिंगों का उत्पाद नहीं है)।

एक अंतरिक्ष का एक उदाहरण जो जुड़ा नहीं है, एक विमान है जिसमें से एक अनंत रेखा हटा दी गई है। डिस्कनेक्ट किए गए रिक्त स्थान के अन्य उदाहरण (अर्थात, रिक्त स्थान जो जुड़े नहीं हैं) में एक एनलस (गणित) को हटाए गए विमान के साथ-साथ दो अलग-अलग बंद डिस्क (गणित) का संघ शामिल है, जहां इस अनुच्छेद के सभी उदाहरण सबस्पेस ( टोपोलॉजी) द्वि-आयामी यूक्लिडियन अंतरिक्ष से प्रेरित है।

पथ जुड़ाव

R² का यह उपस्थान पथ से जुड़ा हुआ है, क्योंकि अंतरिक्ष में किन्हीं दो बिंदुओं के बीच एक पथ खींचा जा सकता है।

path-connected spaceजुड़ाव की एक मजबूत धारणा है, जिसके लिए पथ की संरचना की आवश्यकता होती है। एक बिंदु से एक पथ (टोपोलॉजी) एक स्तर तक एक टोपोलॉजिकल स्पेस में एक सतत कार्य है इकाई अंतराल से प्रति साथ तथा . एpath-componentका का समतुल्य वर्ग है समतुल्य संबंध के तहत जो बनाता है के बराबर अगर वहाँ से कोई रास्ता है प्रति . अंतरिक्ष कहा जाता है कि पथ से जुड़ा हुआ है (या पथ से जुड़ा हुआ है या -कनेक्टेड) ​​अगर बिल्कुल एक पथ-घटक है, यानी यदि कोई दो बिंदुओं में शामिल होने वाला मार्ग है . फिर से, कई लेखक खाली स्थान को बाहर कर देते हैं (इस परिभाषा के अनुसार, हालांकि, खाली स्थान पथ से जुड़ा नहीं है क्योंकि इसमें शून्य पथ-घटक हैं; खाली सेट पर एक अद्वितीय तुल्यता संबंध है जिसमें शून्य तुल्यता वर्ग है)।

हर पथ से जुड़ा स्थान जुड़ा हुआ है। इसका विलोम हमेशा सत्य नहीं होता है: जुड़े हुए स्थान के उदाहरण जो पथ से जुड़े नहीं हैं उनमें विस्तारित लंबी रेखा (टोपोलॉजी) शामिल है और टोपोलॉजिस्ट का साइन कर्व।

वास्तविक रेखा के उपसमुच्चय जुड़े हुए हैं अगर और केवल अगर वे पथ से जुड़े हुए हैं; ये उपसमुच्चय का अंतराल (गणित) हैं . साथ ही, के खुले उपसमुच्चय या जुड़े हुए हैं अगर और केवल अगर वे पथ से जुड़े हुए हैं। इसके अतिरिक्त, परिमित सामयिक स्थानों के लिए जुड़ाव और पथ-जुड़ाव समान हैं।

चाप जुड़ाव

एक स्थान आर्क-कनेक्टेड या आर्कवाइज कनेक्टेड कहा जाता है यदि कोई दो टोपोलॉजिकल रूप से अलग-अलग बिंदुओं को एक पाथ (टोपोलॉजी) से जोड़ा जा सकता है, जो एक टोपोलॉजिकल एम्बेडिंग है . का चाप-घटक का अधिकतम आर्क-कनेक्टेड सबसेट है ; या समतुल्य रूप से समतुल्य संबंध का एक तुल्यता वर्ग कि क्या दो बिंदुओं को एक चाप से जोड़ा जा सकता है या एक ऐसे पथ से जिसके बिंदु स्थलीय रूप से अप्रभेद्य हैं।

प्रत्येक हॉसडॉर्फ स्थान जो पथ से जुड़ा हुआ है, आर्क से भी जुड़ा हुआ है; अधिक आम तौर पर यह एक कमजोर हौसडॉर्फ स्पेस के लिए सही है-हॉसडॉर्फ अंतरिक्ष, जो एक ऐसा स्थान है जहां पथ (टोपोलॉजी) की प्रत्येक छवि बंद है। एक ऐसे स्थान का उदाहरण जो पथ से जुड़ा हुआ है लेकिन चाप से जुड़ा नहीं है, दो मूल के साथ रेखा द्वारा दिया गया है; इसकी दो प्रतियां पथ से जोड़ा जा सकता है लेकिन चाप से नहीं।

पथ से जुड़े रिक्त स्थान के लिए अंतर्ज्ञान चाप से जुड़े रिक्त स्थान पर आसानी से स्थानांतरित नहीं होता है। होने देना दो मूल वाली रेखा हो। निम्नलिखित तथ्य हैं जिनके अनुरूप पथ से जुड़े रिक्त स्थान के लिए हैं, लेकिन आर्क से जुड़े रिक्त स्थान के लिए नहीं हैं:

  • आर्क-कनेक्टेड स्पेस की निरंतर छवि आर्क-कनेक्टेड नहीं हो सकती है: उदाहरण के लिए, आर्क-कनेक्टेड स्पेस से उसके भागफल के लिए बहुत से (कम से कम 2) टोपोलॉजिकल रूप से अलग-अलग बिंदुओं के साथ एक कोशेंट मैप बहुत छोटा होने के कारण आर्क-कनेक्ट नहीं किया जा सकता है। कार्डिनैलिटी।
  • चाप-घटक असंयुक्त नहीं हो सकते। उदाहरण के लिए, दो अतिव्यापी चाप-घटक हैं।
  • आर्क-कनेक्टेड प्रोडक्ट स्पेस आर्क-कनेक्टेड स्पेस का प्रोडक्ट नहीं हो सकता है। उदाहरण के लिए, चाप से जुड़ा है, लेकिन नहीं है।
  • किसी उत्पाद स्थान के चाप-घटक सीमांत स्थानों के चाप-घटकों के उत्पाद नहीं हो सकते हैं। उदाहरण के लिए, एक चाप-घटक है, लेकिन दो चाप-घटक हैं।
  • यदि चाप से जुड़े उपसमुच्चय में एक गैर-खाली चौराहा है, तो उनका संघ चाप से जुड़ा नहीं हो सकता है। उदाहरण के लिए, के चाप-घटक प्रतिच्छेद करते हैं, लेकिन उनका मिलन चाप से जुड़ा नहीं है।

स्थानीय जुड़ाव

एक टोपोलॉजिकल स्पेस को एक बिंदु पर स्थानीय रूप से जुड़ा हुआ स्थान कहा जाता है अगर हर पड़ोस एक जुड़ा हुआ खुला पड़ोस शामिल है। यह स्थानीय रूप से जुड़ा हुआ है अगर इसमें जुड़े हुए सेटों का आधार (टोपोलॉजी) है। यह दिखाया जा सकता है कि एक स्थान स्थानीय रूप से जुड़ा हुआ है अगर और केवल अगर हर खुले सेट के हर घटक खुला है।

इसी प्रकार एक टोपोलॉजिकल स्पेस को कहा जाता हैlocally path-connectedअगर इसमें पथ से जुड़े सेट का आधार है। स्थानीय रूप से पथ से जुड़े स्थान का एक खुला उपसमुच्चय जुड़ा हुआ है अगर और केवल अगर यह पथ से जुड़ा हुआ है। यह पहले के बयान को सामान्यीकृत करता है तथा , जिनमें से प्रत्येक स्थानीय रूप से पथ से जुड़ा हुआ है। अधिक आम तौर पर, कोई भी टोपोलॉजिकल मैनिफोल्ड स्थानीय रूप से पथ से जुड़ा होता है।

टोपोलॉजिस्ट का ज्या वक्र जुड़ा हुआ है, लेकिन यह स्थानीय रूप से जुड़ा नहीं है

स्थानीय रूप से जुड़ा हुआ मतलब जुड़ा नहीं है, न ही स्थानीय रूप से जुड़ा हुआ पथ जुड़ा हुआ है। स्थानीय रूप से जुड़े (और स्थानीय रूप से पथ से जुड़े) स्थान का एक सरल उदाहरण जो जुड़ा नहीं है (या पथ से जुड़ा हुआ है) दो अलग-अलग सेट अंतरालों का मिलन है , जैसे कि .

एक जुड़े हुए स्थान का एक शास्त्रीय उदाहरण जो स्थानीय रूप से जुड़ा नहीं है, तथाकथित टोपोलॉजिस्ट की साइन वक्र है, जिसे परिभाषित किया गया है में शामिल करके यूक्लिडियन टोपोलॉजी प्रेरित टोपोलॉजी के साथ .

सेट संचालन

जुड़े हुए सेटों के संघों और चौराहों के उदाहरण

जुड़े हुए सेटों का प्रतिच्छेदन आवश्यक रूप से जुड़ा हुआ नहीं है।

जुड़े हुए सेटों का संघ आवश्यक रूप से जुड़ा नहीं है, जैसा कि विचार करके देखा जा सकता है .

प्रत्येक दीर्घवृत्त एक जुड़ा हुआ सेट है, लेकिन संघ जुड़ा नहीं है, क्योंकि इसे दो अलग-अलग खुले सेटों में विभाजित किया जा सकता है तथा .

इसका मतलब यह है कि, अगर संघ डिस्कनेक्ट किया गया है, तो संग्रह दो उप-संग्रहों में विभाजित किया जा सकता है, जैसे कि उप-संग्रहों के संघ अलग-अलग हैं और खुले हैं (तस्वीर देखो)। इसका तात्पर्य है कि कई मामलों में, जुड़े हुए सेटों का एक संघ is अनिवार्य रूप से जुड़ा हुआ है। विशेष रूप से:

  1. यदि सभी समुच्चयों का उभयनिष्ठ चौराहा खाली नहीं है (), तो जाहिर है कि उन्हें अलग-अलग यूनियनों के संग्रह में विभाजित नहीं किया जा सकता है। इसलिए गैर-रिक्त चौराहों के साथ जुड़े हुए सेटों का मिलन जुड़ा हुआ है।
  2. यदि सेट के प्रत्येक जोड़े का चौराहा खाली नहीं है () तो फिर उन्हें अलग-अलग यूनियनों के साथ संग्रह में विभाजित नहीं किया जा सकता है, इसलिए उनका संघ जुड़ा होना चाहिए।
  3. यदि सेट को लिंक्ड चेन के रूप में ऑर्डर किया जा सकता है, यानी पूर्णांक सूचकांकों द्वारा अनुक्रमित और , फिर से उनका संघ जुड़ा होना चाहिए।
  4. यदि सेट जोड़ीदार-असंबद्ध हैं और भागफल स्थान (टोपोलॉजी) जुड़ा हुआ है, तो X जुड़ा होना चाहिए। नहीं तो अगर का वियोग है X फिर भागफल स्थान का पृथक्करण है (चूंकि असंयुक्त हैं और भागफल स्थान में खुले हैं)।[6]

कनेक्टेड सेट का सेट अंतर जरूरी नहीं है। हालांकि, यदि और उनका अंतर डिस्कनेक्ट किया गया है (और इस प्रकार दो खुले सेटों के मिलन के रूप में लिखा जा सकता है तथा ), फिर संघ ऐसे प्रत्येक घटक के साथ जुड़ा हुआ है (यानी सभी के लिए जुड़ा हुआ है ).

Proof[7]

By contradiction, suppose is not connected. So it can be written as the union of two disjoint open sets, e.g. . Because is connected, it must be entirely contained in one of these components, say , and thus is contained in . Now we know that:

The two sets in the last union are disjoint and open in , so there is a separation of , contradicting the fact that is connected.

दो जुड़े हुए सेट जिनका अंतर जुड़ा नहीं है

प्रमेय

  • संबद्धता का मुख्य प्रमेय: होने देना तथा टोपोलॉजिकल स्पेस बनें और दें एक सतत कार्य हो। यदि है (पथ-) छवि से जुड़ा हुआ है (पथ-) जुड़ा हुआ है। इस परिणाम को मध्यवर्ती मूल्य प्रमेय का सामान्यीकरण माना जा सकता है।
  • हर पथ से जुड़ा स्थान जुड़ा हुआ है।
  • हर स्थानीय पथ से जुड़ा स्थान स्थानीय रूप से जुड़ा हुआ है।
  • स्थानीय रूप से पाथ-कनेक्टेड स्पेस पाथ-कनेक्टेड है अगर और केवल अगर यह जुड़ा हुआ है।
  • जुड़े हुए सबसेट का क्लोजर (टोपोलॉजी) जुड़ा हुआ है। इसके अलावा, जुड़े हुए सबसेट और उसके बंद होने के बीच कोई भी सबसेट जुड़ा हुआ है।
  • जुड़े हुए घटक हमेशा बंद सेट होते हैं (लेकिन सामान्य तौर पर खुले नहीं होते हैं)
  • स्थानीय रूप से जुड़े हुए स्थान के जुड़े घटक भी खुले हैं।
  • एक स्थान के जुड़े घटक पथ से जुड़े घटकों के असंयुक्त संघ हैं (जो सामान्य रूप से न तो खुले हैं और न ही बंद हैं)।
  • कनेक्टेड (स्थानीय रूप से जुड़ा हुआ, पथ-जुड़ा हुआ, स्थानीय रूप से पथ-जुड़ा हुआ) स्थान का प्रत्येक भाग स्थान (टोपोलॉजी) जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से जुड़ा हुआ है, पथ-जुड़ा हुआ है, स्थानीय रूप से जुड़ा हुआ है)।
  • कनेक्टेड (प्रतिक्रिया पथ से जुड़े) रिक्त स्थान के एक परिवार का प्रत्येक उत्पाद टोपोलॉजी जुड़ा हुआ है (उत्तर पथ से जुड़ा हुआ है)।
  • स्थानीय रूप से जुड़े (प्रतिक्रिया स्थानीय रूप से पथ से जुड़े) स्थान का प्रत्येक खुला उपसमुच्चय स्थानीय रूप से जुड़ा हुआ है (प्रतिक्रिया स्थानीय रूप से पथ से जुड़ा हुआ है)।
  • प्रत्येक विविध स्थानीय रूप से पाथ-कनेक्टेड है।
  • चाप-वार जुड़ा हुआ स्थान पथ से जुड़ा हुआ है, लेकिन पथ-वार जुड़ा हुआ स्थान चाप-वार जुड़ा नहीं हो सकता है
  • चाप-वार जुड़े सेट की निरंतर छवि चाप-वार जुड़ी हुई है।

रेखांकन

ग्राफ़ (असतत गणित) में पथ से जुड़े उपसमुच्चय होते हैं, अर्थात् वे उपसमुच्चय जिनके लिए बिंदुओं के प्रत्येक युग्म में उनके साथ जुड़ने वाले किनारों का मार्ग होता है। लेकिन बिंदुओं के सेट पर एक टोपोलॉजी खोजना हमेशा संभव नहीं होता है जो समान कनेक्टेड सेट को प्रेरित करता है। चक्र ग्राफ | 5-चक्र ग्राफ (और कोई भी -साइकिल के साथ विषम) ऐसा ही एक उदाहरण है।

नतीजतन, अंतरिक्ष पर टोपोलॉजी से स्वतंत्र रूप से जुड़ाव की धारणा तैयार की जा सकती है। बुद्धि के लिए, कनेक्टिंग रिक्त स्थान की एक श्रेणी है जिसमें कनेक्टेड सबसेट के संग्रह के साथ सेट शामिल हैं जो कनेक्टिविटी स्वयंसिद्धों को संतुष्ट करते हैं; उनके morphisms वे कार्य हैं जो कनेक्टेड सेट को कनेक्टेड सेट से मैप करते हैं (Muscat & Buhagiar 2006). टोपोलॉजिकल स्पेस और ग्राफ़ कनेक्टिव स्पेस के विशेष मामले हैं; वास्तव में, परिमित संयोजी स्थान निश्चित रूप से परिमित रेखांकन हैं।

हालांकि, इकाई अंतराल की प्रतियों के रूप में बिंदुओं और किनारों के रूप में वर्टिकल का इलाज करके, प्रत्येक ग्राफ को कैनोनिक रूप से एक टोपोलॉजिकल स्पेस में बनाया जा सकता है (टोपोलॉजिकल ग्राफ थ्योरी # ग्राफ़ को टोपोलॉजिकल स्पेस के रूप में देखें)। तब कोई दिखा सकता है कि ग्राफ जुड़ा हुआ है (ग्राफ सैद्धांतिक अर्थ में) अगर और केवल अगर यह एक टोपोलॉजिकल स्पेस के रूप में जुड़ा हुआ है।

जुड़ाव के मजबूत रूप

टोपोलॉजिकल स्पेस के लिए जुड़ाव के मजबूत रूप हैं, उदाहरण के लिए:

  • यदि टोपोलॉजिकल स्पेस में दो अलग-अलग गैर-खाली खुले सेट मौजूद नहीं हैं , जुड़ा होना चाहिए, और इस प्रकार हाइपरकनेक्टेड स्पेस भी जुड़े हुए हैं।
  • चूँकि सरलता से जुड़ा हुआ स्थान, परिभाषा के अनुसार, पथ से जुड़ा होना भी आवश्यक है, कोई भी साधारण रूप से जुड़ा हुआ स्थान भी जुड़ा हुआ है। यदि पथ जुड़ाव की आवश्यकता को सरल कनेक्टिविटी की परिभाषा से हटा दिया जाता है, तो एक साधारण रूप से जुड़े हुए स्थान को जोड़ने की आवश्यकता नहीं होती है।
  • फिर भी कनेक्टिविटी के मजबूत संस्करणों में एक अनुबंधित स्थान की धारणा शामिल है। हर सिकुड़ा हुआ स्थान पथ जुड़ा हुआ है और इस प्रकार जुड़ा भी है।

सामान्य तौर पर, किसी भी पथ से जुड़े स्थान को जोड़ा जाना चाहिए, लेकिन ऐसे जुड़े हुए स्थान मौजूद हैं जो पथ से जुड़े नहीं हैं। कंघी की जगह ऐसा उदाहरण प्रस्तुत करता है, जैसा कि उपर्युक्त टोपोलॉजिस्ट का साइन कर्व है।

यह भी देखें

संदर्भ

  1. Wilder, R.L. (1978). ""कनेक्टेड" की सामयिक अवधारणा का विकास". American Mathematical Monthly. 85 (9): 720–726. doi:10.2307/2321676. JSTOR 2321676.
  2. "सामान्य टोपोलॉजी - परिमेय संख्याओं के समुच्चय के घटक".
  3. Stephen Willard (1970). सामान्य टोपोलॉजी. Dover. p. 191. ISBN 0-486-43479-6.
  4. George F. Simmons (1968). टोपोलॉजी और आधुनिक विश्लेषण का परिचय. McGraw Hill Book Company. p. 144. ISBN 0-89874-551-9.
  5. Charles Weibel, The K-book: An introduction to algebraic K-theory
  6. Brandsma, Henno (February 13, 2013). "इस परिणाम को भागफल मानचित्र और जुड़ाव से कैसे सिद्ध करें?". Stack Exchange.
  7. Marek (February 13, 2013). "How to prove this result about connectedness?". Stack Exchange.


अग्रिम पठन